Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.265
Filtrar
1.
Microb Biotechnol ; 17(7): e14521, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949508

RESUMO

Rhodopsins, a diverse class of light-sensitive proteins found in various life domains, have attracted considerable interest for their potential applications in sustainable synthetic biology. These proteins exhibit remarkable photochemical properties, undergoing conformational changes upon light absorption that drive a variety of biological processes. Exploiting rhodopsin's natural properties could pave the way for creating sustainable and energy-efficient technologies. Rhodopsin-based light-harvesting systems offer innovative solutions to a few key challenges in sustainable engineering, from bioproduction to renewable energy conversion. In this opinion article, we explore the recent advancements and future possibilities of employing rhodopsins for sustainable engineering, underscoring the transformative potential of these biomolecules.


Assuntos
Rodopsina , Biologia Sintética , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/química , Rodopsina/metabolismo , Rodopsina/química , Rodopsina/genética , Biologia Sintética/métodos
2.
Commun Biol ; 7(1): 789, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951607

RESUMO

Light is a significant factor for living organisms with photosystems, like microbial rhodopsin-a retinal protein that functions as an ion pump, channel, and sensory transduction. Gloeobacter violaceus PCC7421, has a proton-pumping rhodopsin gene, the Gloeobacter rhodopsin (GR). The helix-turn-helix family of transcriptional regulators has various motifs, and they regulate gene expression in the presence of various metal ions. Here, we report that active proton outward pumping rhodopsin interacted with the helix-turn-helix transcription regulator and regulated gene expression. This interaction is confirmed using ITC analysis (KD of 8 µM) and determined the charged residues required. During in vitro experiments using fluorescent and luciferase reporter systems, ATP-binding cassette (ABC) transporters and the self-regulation of G. violaceus transcriptional regulator (GvTcR) are regulated by light, and gene regulation is observed in G. violaceus using the real-time polymerase chain reaction. These results expand our understanding of the natural potential and limitations of microbial rhodopsin function.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Regulação Bacteriana da Expressão Gênica , Luz , Fatores de Transcrição , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cianobactérias/metabolismo , Cianobactérias/genética , Bombas de Próton/metabolismo , Bombas de Próton/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/genética , Rodopsina/metabolismo , Rodopsina/genética
3.
Brain Nerve ; 76(7): 835-842, 2024 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-38970320

RESUMO

All-optical methods that provide deeper understanding of neural activity are currently being developed. Optogenetics is a biological technique useful to control neuronal activity or life phenomena using light. Microbial rhodopsins are light-activated membrane proteins used as optogenetic tools. Microbial rhodopsins such as channelrhodopsin2 (ChR2) consist of seven-pass transmembrane proteins with a covalently bound retinal. Light absorption is followed by photoisomerization of the all-trans retinal to a 13-cis configuration and subsequent conformational changes in the molecule, with consequent permeability of the channel structure to ions. Recent studies have reported the discovery of microbial rhodopsins with novel functions. Microbial rhodopsin diversity has also increased. We describe the characteristics of microbial rhodopsins used as optogenetic tools and the latest research in this domain.


Assuntos
Optogenética , Optogenética/métodos , Humanos , Animais , Luz , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Rodopsinas Microbianas/metabolismo , Rodopsina/metabolismo , Rodopsina/genética
4.
Proc Natl Acad Sci U S A ; 121(31): e2406814121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042699

RESUMO

Animal vision depends on opsins, a category of G protein-coupled receptor (GPCR) that achieves light sensitivity by covalent attachment to retinal. Typically binding as an inverse agonist, 11-cis retinal photoisomerizes to the all-trans isomer and activates the receptor, initiating downstream signaling cascades. Retinal bound to bistable opsins isomerizes back to the 11-cis state after absorption of a second photon, inactivating the receptor. Bistable opsins are essential for invertebrate vision and nonvisual light perception across the animal kingdom. While crystal structures are available for bistable opsins in the inactive state, it has proven difficult to form homogeneous populations of activated bistable opsins either via illumination or reconstitution with all-trans retinal. Here, we show that a nonnatural retinal analog, all-trans retinal 6.11 (ATR6.11), can be reconstituted with the invertebrate bistable opsin, Jumping Spider Rhodopsin-1 (JSR1). Biochemical activity assays demonstrate that ATR6.11 functions as a JSR1 agonist. ATR6.11 binding also enables complex formation between JSR1 and signaling partners. Our findings demonstrate the utility of retinal analogs for biophysical characterization of bistable opsins, which will deepen our understanding of light perception in animals.


Assuntos
Opsinas , Retinaldeído , Animais , Retinaldeído/metabolismo , Retinaldeído/química , Retinaldeído/análogos & derivados , Opsinas/metabolismo , Opsinas/química , Rodopsina/metabolismo , Rodopsina/química , Aranhas/metabolismo , Humanos
5.
J Chem Inf Model ; 64(12): 4630-4639, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38829021

RESUMO

Microbial rhodopsins (MRs) are a diverse and abundant family of photoactive membrane proteins that serve as model systems for biophysical techniques. Optogenetics utilizes genetic engineering to insert specialized proteins into specific neurons or brain regions, allowing for manipulation of their activity through light and enabling the mapping and control of specific brain areas in living organisms. The obstacle of optogenetics lies in the fact that light has a limited ability to penetrate biological tissues, particularly blue light in the visible spectrum. Despite this challenge, most optogenetic systems rely on blue light due to the scarcity of red-shifted opsins. Finding additional red-shifted rhodopsins would represent a major breakthrough in overcoming the challenge of limited light penetration in optogenetics. However, determining the wavelength absorption maxima for rhodopsins based on their protein sequence is a significant hurdle. Current experimental methods are time-consuming, while computational methods lack accuracy. The paper introduces a new computational approach called RhoMax that utilizes structure-based geometric deep learning to predict the absorption wavelength of rhodopsins solely based on their sequences. The method takes advantage of AlphaFold2 for accurate modeling of rhodopsin structures. Once trained on a balanced train set, RhoMax rapidly and precisely predicted the maximum absorption wavelength of more than half of the sequences in our test set with an accuracy of 0.03 eV. By leveraging computational methods for absorption maxima determination, we can drastically reduce the time needed for designing new red-shifted microbial rhodopsins, thereby facilitating advances in the field of optogenetics.


Assuntos
Aprendizado Profundo , Rodopsina , Rodopsina/química , Rodopsina/metabolismo , Modelos Moleculares , Sequência de Aminoácidos , Conformação Proteica , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Optogenética/métodos
6.
Proc Natl Acad Sci U S A ; 121(27): e2400964121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917005

RESUMO

To survive adverse environments, many animals enter a dormant state such as hibernation, dauer, or diapause. Various Drosophila species undergo adult reproductive diapause in response to cool temperatures and/or short day-length. While flies are less active during diapause, it is unclear how adverse environmental conditions affect circadian rhythms and sleep. Here we show that in diapause-inducing cool temperatures, Drosophila melanogaster exhibit altered circadian activity profiles, including severely reduced morning activity and an advanced evening activity peak. Consequently, the flies have a single activity peak at a time similar to when nondiapausing flies take a siesta. Temperatures ≤15 °C, rather than photoperiod, primarily drive this behavior. At cool temperatures, flies rapidly enter a deep-sleep state that lacks the sleep cycles of flies at higher temperatures and require high levels of stimulation for arousal. Furthermore, we show that at 25 °C, flies prefer to siesta in the shade, a preference that is virtually eliminated at 10 °C. Resting in the shade is driven by an aversion to blue light that is sensed by Rhodopsin 7 outside of the eyes. Flies at 10 °C show neuronal markers of elevated sleep pressure, including increased expression of Bruchpilot and elevated Ca2+ in the R5 ellipsoid body neurons. Therefore, sleep pressure might overcome blue light aversion. Thus, at the same temperatures that cause reproductive arrest, preserve germline stem cells, and extend lifespan, D. melanogaster are prone to deep sleep and exhibit dramatically altered, yet rhythmic, daily activity patterns.


Assuntos
Ritmo Circadiano , Proteínas de Drosophila , Drosophila melanogaster , Rodopsina , Sono , Animais , Drosophila melanogaster/fisiologia , Sono/fisiologia , Ritmo Circadiano/fisiologia , Rodopsina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fotoperíodo , Temperatura , Luz , Diapausa de Inseto/fisiologia
7.
Nat Commun ; 15(1): 4756, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834544

RESUMO

Given the absence of approved treatments for pathogenic variants in Peripherin-2 (PRPH2), it is imperative to identify a universally effective therapeutic target for PRPH2 pathogenic variants. To test the hypothesis that formation of the elongated discs in presence of PRPH2 pathogenic variants is due to the presence of the full complement of rhodopsin in absence of the required amounts of functional PRPH2. Here we demonstrate the therapeutic potential of reducing rhodopsin levels in ameliorating disease phenotype in knockin models for p.Lys154del (c.458-460del) and p.Tyr141Cys (c.422 A > G) in PRPH2. Reducing rhodopsin levels improves physiological function, mitigates the severity of disc abnormalities, and decreases retinal gliosis. Additionally, intravitreal injections of a rhodopsin-specific antisense oligonucleotide successfully enhance the physiological function of photoreceptors and improves the ultrastructure of discs in mutant mice. Presented findings shows that reducing rhodopsin levels is an effective therapeutic strategy for the treatment of inherited retinal degeneration associated with PRPH2 pathogenic variants.


Assuntos
Periferinas , Rodopsina , Periferinas/genética , Periferinas/metabolismo , Animais , Rodopsina/genética , Rodopsina/metabolismo , Camundongos , Humanos , Modelos Animais de Doenças , Regulação para Baixo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/terapia , Oligonucleotídeos Antissenso/genética , Retina/metabolismo , Retina/patologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Doenças Retinianas/terapia , Camundongos Endogâmicos C57BL , Mutação , Feminino , Técnicas de Introdução de Genes , Masculino
8.
PLoS One ; 19(6): e0303882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848405

RESUMO

Activated GPCRs are phosphorylated and internalized mostly via clathrin-mediated endocytosis (CME), which are then sorted for recycling or degradation. We investigated how differential activation of the same GPCR affects its endocytic trafficking in vivo using rhodopsin as a model in pupal photoreceptors of flies expressing mCherry-tagged rhodopsin 1 (Rh1-mC) or GFP-tagged arrestin 1 (Arr1-GFP). Upon blue light stimulation, activated Rh1 recruited Arr1-GFP to the rhabdomere, which became co-internalized and accumulated in cytoplasmic vesicles of photoreceptors. This internalization was eliminated in shits1 mutants affecting dynamin. Moreover, it was blocked by either rdgA or rdgB mutations affecting the PIP2 biosynthesis. Together, the blue light-initiated internalization of Rh1 and Arr1 belongs to CME. Green light stimulation also triggered the internalization and accumulation of activated Rh1-mC in the cytoplasm but with faster kinetics. Importantly, Arr1-GFP was also recruited to the rhabdomere but not co-internalized with Rh1-mC. This endocytosis was not affected in shits1 nor rdgA mutants, indicating it is not CME. We explored the fate of internalized Rh1-mC following CME and observed it remained in cytoplasmic vesicles following 30 min of dark adaptation. In contrast, in the non-CME Rh1-mC appeared readily recycled back to the rhabdomere within five min of dark treatment. This faster recycling may be regulated by rhodopsin phosphatase, RdgC. Together, we demonstrate two distinct endocytic and recycling mechanisms of Rh1 via two light stimulations. It appears that each stimulation triggers a distinct conformation leading to different phosphorylation patterns of Rh1 capable of recruiting Arr1 to rhabdomeres. However, a more stable interaction leads to the co-internalization of Arr1 that orchestrates CME. A stronger Arr1 association appears to impede the recycling of the phosphorylated Rh1 by preventing the recruitment of RdgC. We conclude that conformations of activated rhodopsin determine the downstream outputs upon phosphorylation that confers differential protein-protein interactions.


Assuntos
Endocitose , Rodopsina , Rodopsina/metabolismo , Rodopsina/genética , Animais , Fosforilação , Transporte Proteico , Luz , Mutação , Células Fotorreceptoras de Invertebrados/metabolismo , Drosophila melanogaster/metabolismo , Clatrina/metabolismo
9.
Biophys J ; 123(12): 1735-1750, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762755

RESUMO

The light-gated anion channelrhodopsin GtACR1 is an important optogenetic tool for neuronal silencing. Its photochemistry, including its photointermediates, is poorly understood. The current mechanistic view presumes BR-like kinetics and assigns the open channel to a blue-absorbing L intermediate. Based on time-resolved absorption and electrophysiological data, we recently proposed a red-absorbing spectral form for the open channel state. Here, we report the results of a comprehensive kinetic analysis of the spectroscopic data combined with channel current information. The time evolutions of the spectral forms derived from the spectroscopic data are inconsistent with the single chain mechanism and are analyzed within the concept of parallel photocycles. The spectral forms partitioned into conductive and nonconductive parallel cycles are assigned to intermediate states. Rejecting reversible connections between conductive and nonconductive channel states leads to kinetic schemes with two independent conductive states corresponding to the fast- and slow-decaying current components. The conductive cycle is discussed in terms of a single cycle and two parallel cycles. The reaction mechanisms and reaction rates for the wild-type protein, the A75E, and the low-conductance D234N and S97E protein variants are derived. The parallel cycles of channelrhodopsin kinetics, its relation to BR photocycle, and the role of the M intermediate in channel closure are discussed.


Assuntos
Ativação do Canal Iônico , Cinética , Rodopsina/metabolismo , Rodopsina/química , Rodopsina/genética , Animais , Ânions/metabolismo , Luz , Modelos Biológicos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/química
10.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743626

RESUMO

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Assuntos
Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Rodopsina , Animais , Cegueira Noturna/genética , Cegueira Noturna/metabolismo , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/metabolismo , Camundongos , Rodopsina/genética , Rodopsina/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/genética , Miopia/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Escuridão , Transducina/genética , Transducina/metabolismo , Técnicas de Introdução de Genes , Modelos Animais de Doenças
11.
Sci Rep ; 14(1): 10498, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714794

RESUMO

Prominin 1 (PROM1) is a pentaspan transmembrane glycoprotein localized on the nascent photoreceptor discs. Mutations in PROM1 are linked to various retinal diseases. In this study, we assessed the role of PROM1 in photoreceptor biology and physiology using the PROM1 knockout murine model (rd19). Our study found that PROM1 is essential for vision and photoreceptor development. We found an early reduction in photoreceptor response beginning at post-natal day 12 (P12) before eye opening in the absence of PROM1 with no apparent loss in photoreceptor cells. However, at this stage, we observed an increased glial cell activation, indicative of cell damage. Contrary to our expectations, dark rearing did not mitigate photoreceptor degeneration or vision loss in PROM1 knockout mice. In addition to physiological defects seen in PROM1 knockout mice, ultrastructural analysis revealed malformed outer segments characterized by whorl-like continuous membranes instead of stacked disks. In parallel to the reduced rod response at P12, proteomics revealed a significant reduction in the levels of protocadherin, a known interactor of PROM1, and rod photoreceptor outer segment proteins, including rhodopsin. Overall, our results underscore the indispensable role of PROM1 in photoreceptor development and maintenance of healthy vision.


Assuntos
Antígeno AC133 , Animais , Camundongos , Antígeno AC133/metabolismo , Antígeno AC133/genética , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/metabolismo , Rodopsina/genética
13.
Nat Commun ; 15(1): 3119, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600129

RESUMO

Light-driven sodium pumps (NaRs) are unique ion-transporting microbial rhodopsins. The major group of NaRs is characterized by an NDQ motif and has two aspartic acid residues in the central region essential for sodium transport. Here we identify a subgroup of the NDQ rhodopsins bearing an additional glutamic acid residue in the close vicinity to the retinal Schiff base. We thoroughly characterize a member of this subgroup, namely the protein ErNaR from Erythrobacter sp. HL-111 and show that the additional glutamic acid results in almost complete loss of pH sensitivity for sodium-pumping activity, which is in contrast to previously studied NaRs. ErNaR is capable of transporting sodium efficiently even at acidic pH levels. X-ray crystallography and single particle cryo-electron microscopy reveal that the additional glutamic acid residue mediates the connection between the other two Schiff base counterions and strongly interacts with the aspartic acid of the characteristic NDQ motif. Hence, it reduces its pKa. Our findings shed light on a subgroup of NaRs and might serve as a basis for their rational optimization for optogenetics.


Assuntos
Bases de Schiff , ATPase Trocadora de Sódio-Potássio , ATPase Trocadora de Sódio-Potássio/metabolismo , Bases de Schiff/química , Ácido Aspártico , Microscopia Crioeletrônica , Ácido Glutâmico , Rodopsinas Microbianas/metabolismo , Sódio/metabolismo , Rodopsina/química
14.
FASEB J ; 38(8): e23606, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648465

RESUMO

Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.


Assuntos
Modelos Animais de Doenças , Técnicas de Introdução de Genes , Células Fotorreceptoras Retinianas Bastonetes , Retinose Pigmentar , Rodopsina , Animais , Rodopsina/metabolismo , Rodopsina/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Camundongos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Cílios/metabolismo , Cílios/patologia
15.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673863

RESUMO

In this review, we outline our current understanding of the mechanisms involved in the absorption, storage, and transport of dietary vitamin A to the eye, and the trafficking of rhodopsin protein to the photoreceptor outer segments, which encompasses the logistical backbone required for photoreceptor cell function. Two key mechanisms of this process are emphasized in this manuscript: ocular and systemic vitamin A membrane transporters, and rhodopsin transporters. Understanding the complementary mechanisms responsible for the generation and proper transport of the retinylidene protein to the photoreceptor outer segment will eventually shed light on the importance of genes encoded by these proteins, and their relationship on normal visual function and in the pathophysiology of retinal degenerative diseases.


Assuntos
Rodopsina , Vitamina A , Rodopsina/metabolismo , Rodopsina/genética , Humanos , Vitamina A/metabolismo , Animais , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras/metabolismo , Transporte Biológico
16.
Elife ; 122024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661530

RESUMO

Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.


Assuntos
Variações do Número de Cópias de DNA , Retinose Pigmentar , Rodopsina , Idoso , Humanos , Masculino , Organoides/metabolismo , Organoides/efeitos dos fármacos , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
17.
Exp Eye Res ; 242: 109879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570182

RESUMO

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Assuntos
Modelos Animais de Doenças , Eletrorretinografia , Iodatos , Camundongos Endogâmicos C57BL , Degeneração Retiniana , Tamoxifeno , Tomografia de Coerência Óptica , Animais , Iodatos/toxicidade , Camundongos , Tomografia de Coerência Óptica/métodos , Tamoxifeno/farmacologia , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Reação em Cadeia da Polimerase em Tempo Real , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Rodopsina/metabolismo , Rodopsina/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , RNA Mensageiro/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Opsinas de Bastonetes/metabolismo
18.
Phys Chem Chem Phys ; 26(13): 10343-10356, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501246

RESUMO

Rhodopsins are light-responsive proteins forming two vast and evolutionary distinct superfamilies whose functions are invariably triggered by the photoisomerization of a single retinal chromophore. In 2018 a third widespread superfamily of rhodopsins called heliorhodopsins was discovered using functional metagenomics. Heliorhodopsins, with their markedly different structural features with respect to the animal and microbial superfamilies, offer an opportunity to study how evolution has manipulated the chromophore photoisomerization to achieve adaptation. One question is related to the mechanism of such a reaction and how it differs from that of animal and microbial rhodopsins. To address this question, we use hundreds of quantum-classical trajectories to simulate the spectroscopically documented picosecond light-induced dynamics of a heliorhodopsin from the archaea thermoplasmatales archaeon (TaHeR). We show that, consistently with the observations, the trajectories reveal two excited state decay channels. However, inconsistently with previous hypotheses, only one channel is associated with the -C13C14- rotation of microbial rhodopsins while the second channel is characterized by the -C11C12- rotation typical of animal rhodopsins. The fact that such -C11C12- rotation is aborted upon decay and ground state relaxation, explains why illumination of TaHeR only produces the 13-cis isomer with a low quantum efficiency. We argue that the documented lack of regioselectivity in double-bond excited state twisting motion is the result of an "adaptation" that could be completely lost via specific residue substitutions modulating the steric hindrance experienced along the isomerization motion.


Assuntos
Rodopsina , Rodopsinas Microbianas , Animais , Isomerismo , Rodopsinas Microbianas/química , Rodopsina/química , Rotação
19.
Genome Biol Evol ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451738

RESUMO

Evolutionary convergences are observed at all levels, from phenotype to DNA and protein sequences, and changes at these different levels tend to be correlated. Notably, convergent mutations can lead to convergent changes in phenotype, such as changes in metabolism, drug resistance, and other adaptations to changing environments. We propose a two-component approach to detect mutations subject to convergent evolution in protein alignments. The "Emergence" component selects mutations that emerge more often than expected, while the "Correlation" component selects mutations that correlate with the convergent phenotype under study. With regard to Emergence, a phylogeny deduced from the alignment is provided by the user and is used to simulate the evolution of each alignment position. These simulations allow us to estimate the expected number of mutations in a neutral model, which is compared to the observed number of mutations in the data studied. In Correlation, a comparative phylogenetic approach, is used to measure whether the presence of each of the observed mutations is correlated with the convergent phenotype. Each component can be used on its own, for example Emergence when no phenotype is available. Our method is implemented in a standalone workflow and a webserver, called ConDor. We evaluate the properties of ConDor using simulated data, and we apply it to three real datasets: sedge PEPC proteins, HIV reverse transcriptase, and fish rhodopsin. The results show that the two components of ConDor complement each other, with an overall accuracy that compares favorably to other available tools, especially on large datasets.


Assuntos
Evolução Molecular , Peixes , Animais , Filogenia , Peixes/genética , Rodopsina/genética , Mutação
20.
Biochemistry ; 63(7): 843-854, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38458614

RESUMO

Ligand-triggered activation of G protein-coupled receptors (GPCRs) relies on the phenomenon of loose allosteric coupling, which involves conformational alterations spanning from the extracellular ligand-binding domain to the cytoplasmic region, where interactions with G proteins occur. During the GPCR activation process, several intermediate and equilibrium states orchestrate the movement of the flexible and rigid transmembrane (TM) segments of the GPCR. Monitoring early conformational changes is important in unraveling the structural intricacies of the loose allosteric coupling. Here, we focus on the lumi intermediate formed by thermal relaxation from the initial photointermediate, batho in primate green cone pigment (MG), a light-sensitive GPCR responsible for color vision. Our findings from light-induced Fourier transform infrared difference spectroscopy reveal its similarity with rhodopsin, which mediates twilight vision, specifically involving the flip motion of the ß-ionone ring, the relaxation of the torsional structure of the retinal, and local perturbations in the α-helix upon lumi intermediate formation. Conversely, we observe a hydrogen bond modification specific to MG's protonated carboxylic acid, identifying its origin as Glu1022.53 situated in TM2. The weakening of the hydrogen bond strength at Glu1022.53 during the transition from the batho to the lumi intermediates corresponds to a slight outward movement of TM2. Additionally, within the X-ray crystal structure of the rhodopsin lumi intermediate, we note the relocation of the Met862.53 side chain in TM2, expanding the volume of the retinal binding pocket. Consequently, the position of 2.53 emerges as the early step in the conformational shift toward light-induced activation. Moreover, given the prevalence of IR-insensitive hydrophobic amino acids at position 2.53 in many rhodopsin-like GPCRs, including rhodopsin, the hydrogen bond alteration in the C═O stretching band at Glu1022.53 of MG can be used as a probe for tracing conformational changes during the GPCR activation process.


Assuntos
Receptores Acoplados a Proteínas G , Rodopsina , Animais , Rodopsina/química , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA