RESUMO
Molecular dynamics (MD) simulations produce a substantial volume of high-dimensional data, and traditional methods for analyzing these data pose significant computational demands. Advances in MD simulation analysis combined with deep learning-based approaches have led to the understanding of specific structural changes observed in MD trajectories, including those induced by mutations. In this study, we model the trajectories resulting from MD simulations of the SARS-CoV-2 spike protein-ACE2, specifically the receptor-binding domain (RBD), as interresidue distance maps, and use deep convolutional neural networks to predict the functional impact of point mutations, related to the virus's infectivity and immunogenicity. Our model was successful in predicting mutant types that increase the affinity of the S protein for human receptors and reduce its immunogenicity, both based on MD trajectories (precision = 0.718; recall = 0.800; [Formula: see text] = 0.757; MCC = 0.488; AUC = 0.800) and their centroids. In an additional analysis, we also obtained a strong positive Pearson's correlation coefficient equal to 0.776, indicating a significant relationship between the average sigmoid probability for the MD trajectories and binding free energy (BFE) changes. Furthermore, we obtained a coefficient of determination of 0.602. Our 2D-RMSD analysis also corroborated predictions for more infectious and immune-evading mutants and revealed fluctuating regions within the receptor-binding motif (RBM), especially in the [Formula: see text] loop. This region presented a significant standard deviation for mutations that enable SARS-CoV-2 to evade the immune response, with RMSD values of 5Å in the simulation. This methodology offers an efficient alternative to identify potential strains of SARS-CoV-2, which may be potentially linked to more infectious and immune-evading mutations. Using clustering and deep learning techniques, our approach leverages information from the ensemble of MD trajectories to recognize a broad spectrum of multiple conformational patterns characteristic of mutant types. This represents a strategic advantage in identifying emerging variants, bypassing the need for long MD simulations. Furthermore, the present work tends to contribute substantially to the field of computational biology and virology, particularly to accelerate the design and optimization of new therapeutic agents and vaccines, offering a proactive stance against the constantly evolving threat of COVID-19 and potential future pandemics.
Assuntos
Enzima de Conversão de Angiotensina 2 , Aprendizado Profundo , Simulação de Dinâmica Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Ligação Proteica , Conformação Proteica , Mutação , Sítios de Ligação , Domínios ProteicosRESUMO
The role of ferroptosis and iron metabolism dysregulation in the pathophysiology of cardiovascular diseases is increasingly recognized. Conditions such as hypertension, cardiomyopathy, atherosclerosis, myocardial ischemia/reperfusion injury, heart failure, and cardiovascular complications associated with COVID-19 have been linked to these processes. Inflammation is central to these conditions, prompting exploration into the inflammatory and immunoregulatory molecular pathways that mediate ferroptosis and its contribution to cardiovascular disease progression. Notably, emerging evidence highlights interleukin-37 as a protective cytokine with the ability to activate the nuclear factor erythroid 2-related factor 2 pathway, inhibit macrophage ferroptosis, and attenuate atherosclerosis progression in murine models. However, a comprehensive review focusing on interleukin-37 and its protective role against ferroptosis in CVD is currently lacking. This review aims to fill this gap by summarizing existing knowledge on interleukin-37, including its regulatory functions and impact on ferroptosis in conditions such as atherosclerosis and myocardial infarction. We also explore experimental strategies and propose that targeting interleukin-37 to modulate ferroptosis presents a promising therapeutic approach for the prevention and treatment of cardiovascular diseases.
Assuntos
Doenças Cardiovasculares , Ferroptose , Interleucina-1 , Humanos , Interleucina-1/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , COVID-19/metabolismo , COVID-19/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , SARS-CoV-2/metabolismoRESUMO
Lipid droplets (LDs) are crucial for maintaining lipid and energy homeostasis within cells. LDs are highly dynamic organelles that present a phospholipid monolayer rich in neutral lipids. Additionally, LDs are associated with structural and nonstructural proteins, rapidly mobilizing lipids for various biological processes. Lipids play a pivotal role during viral infection, participating during viral membrane fusion, viral replication, and assembly, endocytosis, and exocytosis. SARS-CoV-2 infection often induces LD accumulation, which is used as a source of energy for the replicative process. These findings suggest that LDs are a hallmark of viral infection, including SARS-CoV-2 infection. Moreover, LDs participate in the inflammatory process and cell signaling, activating pathways related to innate immunity and cell death. Accumulating evidence demonstrates that LD induction by SARS-CoV-2 is a highly coordinated process, aiding replication and evading the immune system, and may contribute to the different cell death process observed in various studies. Nevertheless, recent research in the field of LDs suggests these organelles according to the pathogen and infection conditions may also play roles in immune and inflammatory responses, protecting the host against viral infection. Understanding how SARS-CoV-2 influences LD biogenesis is crucial for developing novel drugs or repurposing existing ones. By targeting host lipid metabolic pathways exploited by the virus, it is possible to impact viral replication and inflammatory responses. This review seeks to discuss and analyze the role of LDs during SARS-CoV-2 infection, specifically emphasizing their involvement in viral replication and the inflammatory response.
Assuntos
COVID-19 , Gotículas Lipídicas , Metabolismo dos Lipídeos , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , Gotículas Lipídicas/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Replicação Viral , Animais , Imunidade InataRESUMO
Protein ADP-ribosylation plays important but ill-defined roles in antiviral signalling cascades such as the interferon response. Several viruses of clinical interest, including coronaviruses, express hydrolases that reverse ADP-ribosylation catalysed by host enzymes, suggesting an important role for this modification in host-pathogen interactions. However, which ADP-ribosyltransferases mediate host ADP-ribosylation, what proteins and pathways they target and how these modifications affect viral infection and pathogenesis is currently unclear. Here we show that host ADP-ribosyltransferase activity induced by IFNγ signalling depends on PARP14 catalytic activity and that the PARP9/DTX3L complex is required to uphold PARP14 protein levels via post-translational mechanisms. Both the PARP9/DTX3L complex and PARP14 localise to IFNγ-induced cytoplasmic inclusions containing ADP-ribosylated proteins, and both PARP14 itself and DTX3L are likely targets of PARP14 ADP-ribosylation. We provide evidence that these modifications are hydrolysed by the SARS-CoV-2 Nsp3 macrodomain, shedding light on the intricate cross-regulation between IFN-induced ADP-ribosyltransferases and the potential roles of the coronavirus macrodomain in counteracting their activity.
Assuntos
ADP-Ribosilação , Interferon gama , Poli(ADP-Ribose) Polimerases , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Interferon gama/metabolismo , Interações Hospedeiro-Patógeno , Células HEK293 , ADP Ribose Transferases/metabolismo , ADP Ribose Transferases/genética , Processamento de Proteína Pós-Traducional , SARS-CoV-2/metabolismo , Proteínas de Neoplasias , Ubiquitina-Proteína LigasesRESUMO
The spike protein determines the host-range specificity of coronaviruses. In particular, the Receptor-Binding Motif in the spike protein from SARS-CoV-2 contains the amino acids involved in molecular recognition of the host Angiotensin Converting Enzyme 2. Therefore, to understand how SARS-CoV-2 acquired its capacity to infect humans it is necessary to reconstruct the evolution of this important motif. Early during the pandemic, it was proposed that the SARS-CoV-2 Receptor-Binding Domain was acquired via recombination with a pangolin infecting coronavirus. This proposal was challenged by an alternative explanation that suggested that the Receptor-Binding Domain from SARS-CoV-2 did not originated via recombination with a coronavirus from a pangolin. Instead, this alternative hypothesis proposed that the Receptor-Binding Motif from the bat coronavirus RaTG13, was acquired via recombination with an unidentified coronavirus. And as a consequence of this event, the Receptor-Binding Domain from the pangolin coronavirus appeared as phylogenetically closer to SARS-CoV-2. Recently, the genomes from coronaviruses from Cambodia (bat_RShST182/200) and Laos (BANAL-20-52/103/247) which are closely related to SARS-CoV-2 were reported. However, no detailed analysis of the evolution of the Receptor-Binding Motif from these coronaviruses was reported. Here we revisit the evolution of the Receptor-Binding Domain and Motif in the light of the novel coronavirus genome sequences. Specifically, we wanted to test whether the above coronaviruses from Cambodia and Laos were the source of the Receptor-Binding Domain from RaTG13. We found that the Receptor-Binding Motif from these coronaviruses is phylogenetically closer to SARS-CoV-2 than to RaTG13. Therefore, the source of the Receptor-Binding Domain from RaTG13 is still unidentified. In accordance with previous studies, our results are consistent with the hypothesis that the Receptor-Binding Motif from SARS-CoV-2 evolved by vertical inheritance from a bat-infecting population of coronaviruses.
Assuntos
Evolução Molecular , Filogenia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/química , Motivos de Aminoácidos , COVID-19/virologia , Ligação Proteica , Betacoronavirus/genética , Quirópteros/virologia , Pangolins/virologia , Sítios de Ligação , Genoma Viral , Receptores Virais/metabolismo , Receptores Virais/genética , Receptores Virais/químicaRESUMO
PDZ (PSD-95 [postsynaptic density protein 95]/Dlg [Discs large]/ZO-1 [zonula occludens-1]) domain-containing proteins constitute a large family of scaffolds involved in a wide range of cellular tasks and are mainly studied in polarity functions. Diverse host PDZ proteins can be targeted by viral pathogens that express proteins containing PDZ-binding motifs (PDZbms). Previously, we have identified host PDZ-based interactions with the SARS-CoV-2 E protein (2E) in human monocytes. Here, we deepen the study of these interactions by docking and molecular dynamics analyses to identify the most favorable PDZ-PDZbm interaction of 7 host PDZ proteins with the PDZbm of 2E. In addition, we analyzed changes in the expression of 3 of the PDZ proteins identified as 2E interactors in monocytes (syntenin, ZO-2, and interleukin-16), in human monocyte-derived macrophages and in dendritic cells upon stimulation. Our results suggest that these PDZ proteins may have important functions in professional antigen-presenting cells, and their targeting by the PDZbm of 2E, a central virulence determinant of SARS-CoV-2, supports the hypothesis that such PDZ-dependent interaction in immune cells may constitute a viral evasion mechanism. An inhibitor design based on the PDZbm of 2E in the development of drugs against a variety of diseases is discussed.
Assuntos
Proteínas do Envelope de Coronavírus , Células Dendríticas , Macrófagos , Domínios PDZ , SARS-CoV-2 , Humanos , Células Dendríticas/metabolismo , Células Dendríticas/virologia , SARS-CoV-2/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , COVID-19/metabolismo , COVID-19/virologia , Ligação Proteica , Simulação de Acoplamento Molecular , Simulação de Dinâmica MolecularRESUMO
COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.
Assuntos
COVID-19 , Proteases 3C de Coronavírus , Peptidomiméticos , Humanos , SARS-CoV-2/metabolismo , Peptidomiméticos/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Aminoácidos , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Antivirais/químicaRESUMO
We investigated the effects of obesity on metabolic, inflammatory, and oxidative stress parameters in the adipose tissue of patients with fatal COVID-19. Postmortem biopsies of subcutaneous adipose tissue were obtained from 25 unvaccinated inpatients who passed from COVID-19, stratified as nonobese (N-OB; body mass index [BMI], 26.5 ± 2.3 kg m-2) or obese (OB BMI 34.2 ± 5.1 kg m-2). Univariate and multivariate analyses revealed that body composition was responsible for most of the variations detected in the metabolome, with greater dispersion observed in the OB group. Fifteen metabolites were major segregation factors. Results from the OB group showed higher levels of creatinine, myo-inositol, O-acetylcholine, and succinate, and lower levels of sarcosine. The N-OB group showed lower levels of glutathione peroxidase activity, as well as higher content of IL-6 and adiponectin. We revealed significant changes in the metabolomic profile of the adipose tissue in fatal COVID-19 cases, with high adiposity playing a key role in these observed variations. These findings highlight the potential involvement of metabolic and inflammatory pathways, possibly dependent on hypoxia, shedding light on the impact of obesity on disease pathogenesis and suggesting avenues for further research and possible therapeutic targets.
Assuntos
Autopsia , COVID-19 , Metaboloma , Obesidade , Humanos , COVID-19/metabolismo , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Obesidade/metabolismo , Obesidade/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , SARS-CoV-2/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Metabolômica/métodos , Índice de Massa Corporal , Adulto , Estresse Oxidativo , Interleucina-6/metabolismoRESUMO
Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between ãENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.
Assuntos
COVID-19 , Canais Epiteliais de Sódio , Furina , Camundongos Transgênicos , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Canais Epiteliais de Sódio/metabolismo , Animais , Humanos , Camundongos , Furina/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Células HEK293RESUMO
Tubular proteinuria is a common feature in COVID-19 patients, even in the absence of established acute kidney injury. SARS-CoV-2 spike protein (S protein) was shown to inhibit megalin-mediated albumin endocytosis in proximal tubule epithelial cells (PTECs). Angiotensin-converting enzyme type 2 (ACE2) was not directly involved. Since Toll-like receptor 4 (TLR4) mediates S protein effects in various cell types, we hypothesized that TLR4 could be participating in the inhibition of PTECs albumin endocytosis elicited by S protein. Two different models of PTECs were used: porcine proximal tubule cells (LLC-PK1) and human embryonic kidney cells (HEK-293). S protein reduced Akt activity by specifically inhibiting of threonine 308 (Thr308) phosphorylation, a process mediated by phosphoinositide-dependent kinase 1 (PDK1). GSK2334470, a PDK1 inhibitor, decreased albumin endocytosis and megalin expression mimicking S protein effect. S protein did not change total TLR4 expression but decreased its surface expression. LPS-RS, a TLR4 antagonist, also counteracted the effects of the S protein on Akt phosphorylation at Thr308, albumin endocytosis, and megalin expression. Conversely, these effects of the S protein were replicated by LPS, an agonist of TLR4. Incubation of PTECs with a pseudovirus containing S protein inhibited albumin endocytosis. Null or VSV-G pseudovirus, used as control, had no effect. LPS-RS prevented the inhibitory impact of pseudovirus containing the S protein on albumin endocytosis but had no influence on virus internalization. Our findings demonstrate that the inhibitory effect of the S protein on albumin endocytosis in PTECs is mediated through TLR4, resulting from a reduction in megalin expression.
Assuntos
Endocitose , Túbulos Renais Proximais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/virologia , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Células HEK293 , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Albuminas/metabolismo , Células LLC-PK1 , Células Epiteliais/metabolismo , Células Epiteliais/virologiaRESUMO
Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.
Assuntos
Antivirais , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Antivirais/uso terapêutico , Endopeptidases , SARS-CoV-2/metabolismo , Proteases ViraisRESUMO
Respiratory viruses can cause life-threatening illnesses. The focus of treatment is on supportive therapies and direct antivirals. However, antivirals may cause resistance by exerting selective pressure. Modulating the host response has emerged as a viable therapeutic approach for treating respiratory infections. Additionally, considering the probable future respiratory virus outbreaks emphasizes the need for broad-spectrum therapies to be prepared for the next pandemics. One of the principal bioactive constituents found in the seed extract of Aesculus hippocastanum L. (AH) is ß-escin. The clinical therapeutic role of ß-escin and AH has been associated with their anti-inflammatory effects. Regarding their mechanism of action, we and others have shown that ß-escin and AH affect NF-κB signaling. Furthermore, we have reported the virucidal and broad-spectrum antiviral properties of ß-escin and AH against enveloped viruses such as RSV, in vitro and in vivo. In this study, we demonstrate that ß-escin and AH have antiviral and virucidal activities against SARS-CoV-2 and CCoV, revealing broad-spectrum antiviral activity against coronaviruses. Likewise, they exhibited NF-κB and cytokine modulating activities in epithelial and macrophage cell lines infected with coronaviruses in vitro. Hence, ß-escin and AH are promising broad-spectrum antiviral, immunomodulatory, and virucidal drugs against coronaviruses and respiratory viruses, including SARS-CoV-2.
Assuntos
Aesculus , COVID-19 , Vírus , Escina/farmacologia , SARS-CoV-2/metabolismo , Aesculus/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Vírus/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêuticoRESUMO
Antimicrobial peptides (AMPs) constitute a complex network of 10-100 amino acid sequence molecules widely distributed in nature. While over 300 AMPs have been described in mammals, cathelicidins and defensins remain the most extensively studied. Some publications have explored the role of AMPs in COVID-19, but these findings are preliminary, and in vivo studies are still lacking. In this study, we report the plasma levels of five AMPs (LL-37, α-defensin 1, α-defensin 3, ß-defensin 1, and ß-defensin 3), using the ELISA technique (MyBioSource, San Diego, CA, United States, kits MBS2601339 (beta-defensin 1), MBS2602513 (beta-defensin 3), MBS703879 (alpha-defensin 1), MBS706289 (alpha-defensin 3), MBS7234921 (LL37)), and the measurement of six cytokines (tumor necrosis factor-α, interleukin-1ß, interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1), through the magnetic bead immunoassay Milliplex® and the MAGPIX® System (MilliporeSigma, Darmstadt, Germany, kit HCYTOMAG-60 K (cytokines)), in 15 healthy volunteers, 36 COVID-19 patients without Acute Kidney Injury (AKI) and 17 COVID-19 patients with AKI. We found increased levels of α-defensin 1, α-defensin 3 and ß-defensin 3, in our COVID-19 population, when compared to healthy controls, along with higher levels of interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1. These findings suggest that these AMPs and cytokines may play a crucial role in the systemic inflammatory response and tissue damage characterizing severe COVID-19. The levels of α-defensin 1 and α-defensin 3 were significantly higher in COVID-19 AKI group in comparison to the non-AKI group. Furthermore, IL-10 and the product IL-10 × IL-1B showed excellent performance in discriminating AKI, with AUCs of 0.86 and 0.88, respectively. Among patients with COVID-19, AMPs may play a key role in the inflammation process and disease progression. Additionally, α-defensin 1 and α-defensin 3 may mediate the AKI process in these patients, representing an opportunity for further research and potential therapeutic alternatives in the future.
Assuntos
Injúria Renal Aguda , COVID-19 , alfa-Defensinas , beta-Defensinas , Animais , Humanos , beta-Defensinas/metabolismo , Interleucina-10 , Peptídeos Catiônicos Antimicrobianos/metabolismo , Quimiocina CCL2 , SARS-CoV-2/metabolismo , Peptídeos Antimicrobianos , Interleucina-6 , Interferon gama , Estado Terminal , Citocinas/metabolismo , Biomarcadores , Injúria Renal Aguda/diagnóstico , Mamíferos/metabolismoRESUMO
INTRODUCTION AND AIM: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing the current pandemic of acute respiratory disease known as COVID-19. Liver injury due to COVID-19 is defined as any liver injury occurring during the course of the disease and treatment of patients with COVID-19, with or without liver disease. The incidence of elevated liver transaminases, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), ranges from 2.5 to 76.3%. The aim of the present study was to describe the hepatic biochemical abnormalities, after a SARS-CoV-2-positive polymerase chain reaction (PCR) test, and the mortality rate in critically ill patients. MATERIALS AND METHODS: A retrospective study was conducted that included 70 patients seen at a private hospital in Mexico City, within the time frame of February-December 2021. Median patient age was 44.5 years (range: 37-57.2) and 43 (61.4%) of the patients were men. Liver function tests were performed on the patients at hospital admission. RESULTS: Gamma glutamyl transferase (GGT) levels were elevated (pâ¯=â¯0.032), as were those of AST (pâ¯=â¯0.011) and ALT (pâ¯=â¯0.021). The patients were stratified into age groups: 18-35, 36-50, and > 50 years of age. The 18 to 35-year-olds had the highest liver enzyme levels and transaminase levels were higher, the younger the patient. Due to the low mortality rate (one patient whose death did not coincide with a hepatic cause), the multivariate analysis showed an R2 association of 0.689, explained by AST, GGT, and C-reactive protein levels. CONCLUSIONS: Despite the increase in transaminases in our study population during the course of COVID-19, there was no increase in mortality. Nevertheless, hospitalized patient progression should be continuously followed.
Assuntos
COVID-19 , Hepatopatias , Masculino , Adulto , Humanos , Adolescente , Pessoa de Meia-Idade , Feminino , COVID-19/complicações , Estudos Retrospectivos , SARS-CoV-2/metabolismo , Estado Terminal , Hepatopatias/etiologia , Hepatopatias/epidemiologia , Aspartato Aminotransferases/metabolismoRESUMO
Severe COVID-19 is a systemic disorder involving excessive inflammatory response, metabolic dysfunction, multi-organ damage, and several clinical features. Here, we performed a transcriptome meta-analysis investigating genes and molecular mechanisms related to COVID-19 severity and outcomes. First, transcriptomic data of cellular models of SARS-CoV-2 infection were compiled to understand the first response to the infection. Then, transcriptomic data from lung autopsies of patients deceased due to COVID-19 were compiled to analyze altered genes of damaged lung tissue. These analyses were followed by functional enrichment analyses and gene-phenotype association. A biological network was constructed using the disturbed genes in the lung autopsy meta-analysis. Central genes were defined considering closeness and betweenness centrality degrees. A sub-network phenotype-gene interaction analysis was performed. The meta-analysis of cellular models found genes mainly associated with cytokine signaling and other pathogen response pathways. The meta-analysis of lung autopsy tissue found genes associated with coagulopathy, lung fibrosis, multi-organ damage, and long COVID-19. Only genes DNAH9 and FAM216B were found perturbed in both meta-analyses. BLNK, FABP4, GRIA1, ATF3, TREM2, TPPP, TPPP3, FOS, ALB, JUNB, LMNA, ADRB2, PPARG, TNNC1, and EGR1 were identified as central elements among perturbed genes in lung autopsy and were found associated with several clinical features of severe COVID-19. Central elements were suggested as interesting targets to investigate the relation with features of COVID-19 severity, such as coagulopathy, lung fibrosis, and organ damage.
Assuntos
COVID-19 , Fibrose Pulmonar , Humanos , Autopsia , Dineínas do Axonema/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/patologia , Perfilação da Expressão Gênica , Pulmão/metabolismo , Pulmão/patologia , Síndrome de COVID-19 Pós-Aguda , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , SARS-CoV-2/metabolismo , TranscriptomaRESUMO
During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.
Assuntos
COVID-19 , Saccharomycetales , Vacinas , Humanos , COVID-19/diagnóstico , COVID-19/prevenção & controle , Teste para COVID-19 , Pichia/genética , Pichia/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Recombinantes/química , Vacinas/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos AntiviraisRESUMO
OBJECTIVES: We investigated the expression of toll-like receptor (TLR)-4 on the cell surface of innate and adaptive cells from patients with COVID-19 carrying the rs4986790 GG genotype in the TLR4 gene and the functional profile of these cells. METHODS: We included 1169 hospitalized patients with COVID-19. The rs4986790 in TLR4 was identified by real-time polymerase chain reaction. Peripheral blood mononuclear cells were isolated and cultured to evaluate TLR-4 expression on immune cells. Supernatants recovered culture assays were stored, and we measured cytokines and cytotoxic molecules. RESULTS: We showed that the rs4986790 (GG) was significantly associated (P = 0.0310) with severe COVID-19. Cells of patients with COVID-19 carrying the GG genotype have increased the frequency of monocytes and activated naïve and non-switched B cells positive to TLR-4 when cells are stimulated with lipopolysaccharide and with spike protein of SARS-CoV-2. Also, cells from patients with GG COVID-19 cannot produce pro-inflammatory cytokines after lipopolysaccharide stimulus, but they are high producers of cytotoxic molecules at baseline. CONCLUSIONS: The rs4986790 GG genotype of the TLR4 is associated with the risk of COVID-19 and acute respiratory distress syndrome. Peripheral blood mononuclear cells of patients carrying the rs4986790 (TLR4) GG genotype had a limited delivery of pro-inflammatory cytokines compared to the AA and AG genotypes in which TLR-4 stimulation induces IL-10, IL-6, tumor necrosis factor-α, and Fas ligand production.
Assuntos
COVID-19 , Receptor 4 Toll-Like , Humanos , COVID-19/genética , Citocinas/genética , Citocinas/metabolismo , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , SARS-CoV-2/metabolismo , Receptor 4 Toll-Like/genética , Genótipo , Índice de Gravidade de DoençaRESUMO
SARS-CoV-2 cysteine proteases are essential nonstructural proteins due to their role in the formation of the virus multiple enzyme replication-transcription complex. As a result, those functional proteins are extremely relevant targets in the development of a new drug candidate to fight COVID-19. Based on this fact and guided by the bioisosterism strategy, the present work has selected 126 out of 1050 ligands from DrugBank website. Subsequently, 831 chemical analogs containing bioisosteres, some of which became structurally simplified, were created using the MB-Isoster software, and molecular docking simulations were performed using AutoDock Vina. Finally, a study of physicochemical properties, along with pharmacokinetic profiles, was carried out through SwissADME and ADMETlab 2.0 platforms. The promising results obtained with the molecules encoded as DB00549_BI_005, DB04868_BI_003, DB11984_BI_002, DB12364_BI_006 and DB12805_BI_004 must be confirmed by molecular dynamics studies, followed by in vitro and in vivo empirical tests that ratify the advocated in-silico results.
Assuntos
COVID-19 , Cisteína Proteases , Humanos , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Cisteína Proteases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica MolecularRESUMO
The presence of long COVID (LC) following SARS-CoV-2 infection is a common condition that affects the quality of life of patients and represents a diagnostic challenge due to the diversity of symptoms that may coexist. We still do not have accurate information regarding the pathophysiological pathways that generate the presence of LC, and so it is important to know the inflammatory and immunothrombotic biomarker profiles and their implications in order to characterize risk subgroups and establish early therapeutic strategies. We performed the determination of inflammatory and immunothrombotic biomarkers in volunteers with previous diagnoses of SARS-CoV-2. The inflammatory biomarkers were analyzed in plasma by flow cytometry, and we analyzed the von Willebrand factor (vWF) in the plasma samples using ELISA. The clinical variables and the presence or absence of long COVID symptoms were then analyzed. IL-6, sCD40L, p-Selectin, PSGL-1, PAI-1, tPA, D-Dimer, TF, and Factor IX levels were elevated in the groups with LC, especially in the subgroup of patients with metabolic syndrome (MetS). VWF levels were found to be increased in patients with sequelae and MetS. Our results confirmed the persistence of an active immunothrombotic state, and so it is important to identify the population at risk in order to provide adequate clinical follow-up.
Assuntos
COVID-19 , Síndrome Metabólica , Humanos , Fator de von Willebrand/metabolismo , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , Qualidade de Vida , SARS-CoV-2/metabolismo , Biomarcadores , Progressão da DoençaRESUMO
While SARS-CoV-2 infection causes a mild disease in most children, SARS-CoV-2 infection may be lethal in a few of them. In the defense against SARS-CoV-2, type I interferons are key players, and several studies have identified a defective or neutralized interferon response as the cause of overwhelming viral infection. However, inappropriate, untimely, or excessive interferon production may also be detrimental to the host. Here, we describe two patients with STAT1 gain-of-function (GOF), a known type I interferonopathy, who died of COVID-19. Whole-exome sequencing and interferon-gamma-activated sequence (GAS) and interferon-sensitive responsive element (ISRE) reporter assay were performed to identify and characterize STAT1 variants. Patient 1 developed hemophagocytic lymphohistiocytosis (HLH) in the context of COVID-19 infection and died in less than a week at the age of 4 years. Patient 2 developed a high fever, cough, and hypoxemia and succumbed to COVID-19 pneumonia at the age of 5 years. Two heterozygous missense variants, p.E563Q and p.K344E, in STAT1 were identified. Functional validation by reporter assay and immunoblot confirmed that both variants are gain-of-function (GOF). GOF variants transiently expressing cells exhibited enhanced upregulation of downstream genes, including ISG15, MX1, and OAS1, in response to IFN-α stimulation. A catastrophic course with HLH or acute respiratory failure is thought to be associated with inappropriate immunoregulatory mechanisms to handle SARS-CoV-2 in STAT1 GOF. While most patients with inborn errors of immunity who developed COVID-19 seem to handle it well, these cases suggest that patients with STAT1-GOF might be at risk of developing fatal complications due to SARS-CoV-2.