Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.945
Filtrar
1.
Nat Commun ; 15(1): 5503, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951531

RESUMO

Proline is widely known as the only proteogenic amino acid with a secondary amine. In addition to its crucial role in protein structure, the secondary amino acid modulates neurotransmission and regulates the kinetics of signaling proteins. To understand the structural basis of proline import, we solved the structure of the proline transporter SIT1 in complex with the COVID-19 viral receptor ACE2 by cryo-electron microscopy. The structure of pipecolate-bound SIT1 reveals the specific sequence requirements for proline transport in the SLC6 family and how this protein excludes amino acids with extended side chains. By comparing apo and substrate-bound SIT1 states, we also identify the structural changes that link substrate release and opening of the cytoplasmic gate and provide an explanation for how a missense mutation in the transporter causes iminoglycinuria.


Assuntos
Enzima de Conversão de Angiotensina 2 , Microscopia Crioeletrônica , Prolina , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Prolina/metabolismo , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , COVID-19/virologia , COVID-19/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/química , Modelos Moleculares
2.
Cell Commun Signal ; 22(1): 349, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965547

RESUMO

T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.


Assuntos
Basigina , COVID-19 , Linfopenia , SARS-CoV-2 , Humanos , Linfopenia/imunologia , Linfopenia/virologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , SARS-CoV-2/metabolismo , Basigina/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Síndrome da Liberação de Citocina/imunologia , Animais
3.
J Gene Med ; 26(7): e3710, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967229

RESUMO

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) are susceptible to coronavirus disease-2019 (COVID-19), but current treatments are limited. Icariside II (IS), a flavonoid compound derived from the plant epimedin, showed anti-cancer,anti-inflammation and immunoregulation effects. The present study aimed to evaluate the possible effect and underlying mechanisms of IS on NSCLC patients with COVID-19 (NSCLC/COVID-19). METHODS: NSCLC/COVID-19 targets were defined as the common targets of NSCLC (collected from The Cancer Genome Atlas database) and COVID-19 targets (collected from disease database of Genecards, OMIM, and NCBI). The correlations of NSCLC/COVID-19 targets and survival rates in patients with NSCLC were analyzed using the survival R package. Prognostic analyses were performed using univariate and multivariate Cox proportional hazards regression models. Furthermore, the targets in IS treatment of NSCLC/COVID-19 were defined as the overlapping targets of IS (predicted from drug database of TMSCP, HERBs, SwissTarget Prediction) and NSCLC/COVID-19 targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of these treatment targets were performed aiming to understand the biological process, cellular component, molecular function and signaling pathway. The hub targets were analyzed by a protein-protein interaction network and the binding capacity with IS was characterized by molecular docking. RESULTS: The hub targets for IS in the treatment of NSCLC/COVID-19 includes F2, SELE, MMP1, MMP2, AGTR1 and AGTR2, and the molecular docking results showed that the above target proteins had a good binding degree to IS. Network pharmacology showed that IS might affect the leucocytes migration, inflammation response and active oxygen species metabolic process, as well as regulate the interleukin-17, tumor necrosus factor and hypoxia-inducible factor-1 signaling pathway in NSCLC/COVID-19. CONCLUSIONS: IS may enhance the therapeutic efficacy of current clinical anti-inflammatory and anti-cancer therapy to benefit patients with NSCLC combined with COVID-19.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Flavonoides , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , COVID-19/virologia , COVID-19/metabolismo , Flavonoides/uso terapêutico , Flavonoides/química , Flavonoides/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19 , Mapas de Interação de Proteínas/efeitos dos fármacos , Prognóstico
4.
Cell Mol Life Sci ; 81(1): 296, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992165

RESUMO

Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Linfócitos T CD4-Positivos , COVID-19 , Antígenos de Histocompatibilidade Classe II , Oxirredutases Intramoleculares , Ativação Linfocitária , Fatores Inibidores da Migração de Macrófagos , SARS-CoV-2 , Humanos , Antígenos de Diferenciação de Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Ativação Linfocitária/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/patologia , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/genética , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Movimento Celular , Masculino , Feminino , Pessoa de Meia-Idade , Receptores Imunológicos
5.
Front Cell Infect Microbiol ; 14: 1371837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994005

RESUMO

Virus receptors determine the tissue tropism of viruses and have a certain relationship with the clinical outcomes caused by viral infection, which is of great importance for the identification of virus receptors to understand the infection mechanism of viruses and to develop entry inhibitor. Proximity labeling (PL) is a new technique for studying protein-protein interactions, but it has not yet been applied to the identification of virus receptors or co-receptors. Here, we attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was employed as a bait and conjugated to TurboID, and a A549 cell line with stable expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were incubated with ACE2-TurboID stably expressed cell lines in the presence of biotin and ATP, which could initiate the catalytic activity of TurboID and tag adjacent endogenous proteins with biotin. Subsequently, the biotinylated proteins were harvested and identified by mass spectrometry. We identified a membrane protein, AXL, that has been functionally shown to mediate SARS-CoV-2 entry into host cells. Our data suggest that PL could be used to identify co-receptors for virus entry.


Assuntos
Enzima de Conversão de Angiotensina 2 , Receptores Virais , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Células A549 , Receptores Virais/metabolismo , Receptor Tirosina Quinase Axl , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Coloração e Rotulagem/métodos , Células HEK293 , Biotinilação , Mapeamento de Interação de Proteínas , Biotina/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000276

RESUMO

Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer's pathology. Studies in brain organoids revealed that SARS-CoV-2 alters the phosphorylation and distribution of Tau in infected neurons, but the mechanisms are currently unknown. We hypothesize that these pathological changes are due to the recruitment of Tau into stress granules (SGs) operated by the nucleocapsid protein (NCAP) of SARS-CoV-2. To test this hypothesis, we investigated whether NCAP interacts with Tau and localizes to SGs in hippocampal neurons in vitro and in vivo. Mechanistically, we tested whether SUMOylation, a posttranslational modification of NCAP and Tau, modulates their distribution in SGs and their pathological interaction. We found that NCAP and Tau colocalize and physically interact. We also found that NCAP induces hyperphosphorylation of Tau and causes cognitive impairment in mice infected with NCAP in their hippocampus. Finally, we found that SUMOylation modulates NCAP SG formation in vitro and cognitive performance in infected mice. Our data demonstrate that NCAP induces Tau pathological changes both in vitro and in vivo. Moreover, we demonstrate that SUMO2 ameliorates NCAP-induced Tau pathology, highlighting the importance of the SUMOylation pathway as a target of intervention against neurotoxic insults, such as Tau oligomers and viral infection.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Hipocampo , Neurônios , SARS-CoV-2 , Sumoilação , Proteínas tau , Proteínas tau/metabolismo , Animais , Camundongos , Humanos , Hipocampo/metabolismo , Hipocampo/patologia , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/metabolismo , Fosforilação , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Grânulos de Estresse/metabolismo , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Masculino , Proteínas do Nucleocapsídeo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/virologia
7.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000451

RESUMO

The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral structural protein that is abundant in the circulation of infected individuals. Previous published studies reported controversial data about the role of the N protein in the activation of the complement system. It was suggested that the N protein directly interacts with mannose-binding lectin-associated serine protease-2 (MASP-2) and stimulates lectin pathway overactivation/activity. In order to check these data and to reveal the mechanism of activation, we examined the effect of the N protein on lectin pathway activation. We found that the N protein does not bind to MASP-2 and MASP-1 and it does not stimulate lectin pathway activity in normal human serum. Furthermore, the N protein does not facilitate the activation of zymogen MASP-2, which is MASP-1 dependent. Moreover, the N protein does not boost the enzymatic activity of MASP-2 either on synthetic or on protein substrates. In some of our experiments, we observed that MASP-2 digests the N protein. However, it is questionable, whether this activity is biologically relevant. Although surface-bound N protein did not activate the lectin pathway, it did trigger the alternative pathway in 10% human serum. Additionally, we detected some classical pathway activation by the N protein. Nevertheless, we demonstrated that this activation was induced by the bound nucleic acid, rather than by the N protein itself.


Assuntos
Lectina de Ligação a Manose da Via do Complemento , Proteínas do Nucleocapsídeo de Coronavírus , Serina Proteases Associadas a Proteína de Ligação a Manose , SARS-CoV-2 , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , SARS-CoV-2/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/metabolismo , COVID-19/imunologia , Fosfoproteínas/metabolismo , Ligação Proteica , Ativação do Complemento
8.
Proc Natl Acad Sci U S A ; 121(31): e2406615121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042676

RESUMO

Suggested edit: SARS-CoV-2infection can induce multisystem inflammatory syndrome in children, which resembles superantigen-induced toxic shock syndrome. Recent work has suggested that the SARS-CoV-2 spike (S) protein could act as a superantigen by binding T cell receptors (TCRs) and inducing broad antigen-independent T cell responses. Structure-based computational modeling identified potential TCR-binding sites near the S receptor-binding domain, in addition to a site with homology to known neurotoxins. We experimentally examined the mechanism underpinning this theory-the direct interaction between the TCR and S protein. Surface plasmon resonance of recombinantly expressed S protein and TCR revealed no detectable binding. Orthogonally, we pseudotyped lentiviruses with SARS-CoV-2 S in both wild-type and prefusion-stabilized forms, demonstrated their functionality in a cell line assay, and observed no transduction, activation, or stimulation of proliferation of CD8+ T cells. We conclude that it is unlikely that the SARS-CoV-2 spike protein engages nonspecifically with TCRs or has superantigenic character.


Assuntos
Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , COVID-19/imunologia , COVID-19/virologia , Ativação Linfocitária/imunologia , Ligação Proteica , Linfócitos T/imunologia , Linfócitos T/metabolismo , Sítios de Ligação , Células HEK293
9.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998974

RESUMO

Considering the high evolutionary rate and great harmfulness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is imperative to develop new pharmacological antagonists. Human angiotensin-converting enzyme-2 (ACE2) functions as a primary receptor for the spike protein (S protein) of SARS-CoV-2. Thus, a novel functional peptide, KYPAY (K5), with a boomerang structure, was developed to inhibit the interaction between ACE2 and the S protein by attaching to the ACE2 ligand-binding domain (LBD). The inhibition property of K5 was evaluated via molecular simulations, cell experiments, and adsorption kinetics analysis. The molecular simulations showed that K5 had a high affinity for ACE2 but a low affinity for the cell membrane. The umbrella sampling (US) simulations revealed a significant enhancement in the binding potential of this functional peptide to ACE2. The fluorescence microscopy and cytotoxicity experiments showed that K5 effectively prevented the interaction between ACE2 and the S protein without causing any noticeable harm to cells. Further flow cytometry research indicated that K5 successfully hindered the interaction between ACE2 and the S protein, resulting in 78% inhibition at a concentration of 100 µM. This work offers an innovative perspective on the development of functional peptides for the prevention and therapy of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Peptídeos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Simulação de Dinâmica Molecular , COVID-19/virologia , COVID-19/metabolismo , Tratamento Farmacológico da COVID-19 , Antivirais/química , Antivirais/farmacologia , Cinética
10.
J Cell Biochem ; 125(7): e30624, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946063

RESUMO

The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.


Assuntos
Proteínas 14-3-3 , COVID-19 , Neoplasias , Doenças Neurodegenerativas , Proteínas 14-3-3/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/virologia , Neoplasias/metabolismo , Neoplasias/virologia , Neoplasias/genética , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Viroses/metabolismo , Viroses/virologia , Viroses/genética
11.
Sci Rep ; 14(1): 15789, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982195

RESUMO

Red blood cells (RBCs) express the nucleic acid-binding toll-like receptor 9 (TLR9) and bind CpG-containing DNA. However, whether human RBCs express other nucleic acid-binding TLRs is unknown. Here we show that human RBCs express the RNA sensor TLR7. TLR7 is present on the red cell membrane and is associated with the RBC membrane protein Band 3. In patients with SARS-CoV2-associated sepsis, TLR7-Band 3 interactions in the RBC membrane are increased when compared with healthy controls. In vitro, RBCs bind synthetic ssRNA and RNA from ssRNA viruses. Thus, RBCs may serve as a previously unrecognized sink for exogenous RNA, expanding the repertoire of non-gas exchanging functions performed by RBCs.


Assuntos
COVID-19 , Eritrócitos , SARS-CoV-2 , Receptor 7 Toll-Like , Humanos , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Eritrócitos/metabolismo , COVID-19/virologia , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Sepse/metabolismo , Sepse/sangue , Sepse/genética , Membrana Eritrocítica/metabolismo , Masculino , RNA/metabolismo , RNA/genética , Feminino
12.
Commun Biol ; 7(1): 865, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009807

RESUMO

Long-acting passive immunization strategies are needed to protect immunosuppressed vulnerable groups from infectious diseases. To further explore this concept for COVID-19, we constructed Adeno-associated viral (AAV) vectors encoding the human variable regions of the SARS-CoV-2 neutralizing antibody, TRES6, fused to murine constant regions. An optimized vector construct was packaged in hepatotropic (AAV8) or myotropic (AAVMYO) AAV capsids and injected intravenously into syngeneic TRIANNI-mice. The highest TRES6 serum concentrations (511 µg/ml) were detected 24 weeks after injection of the myotropic vector particles and mean TRES6 serum concentrations remained above 100 µg/ml for at least one year. Anti-drug antibodies or TRES6-specific T cells were not detectable. After injection of the AAV8 particles, vector mRNA was detected in the liver, while the AAVMYO particles led to high vector mRNA levels in the heart and skeletal muscle. The analysis of the Fc-glycosylation pattern of the TRES6 serum antibodies revealed critical differences between the capsids that coincided with different binding activities to murine Fc-γ-receptors. Concomitantly, the vector-based immune prophylaxis led to protection against SARS-CoV-2 infection in K18-hACE2 mice. High and long-lasting expression levels, absence of anti-drug antibodies and favourable Fc-γ-receptor binding activities warrant further exploration of myotropic AAV vector-based delivery of antibodies and other biologicals.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Dependovirus , Vetores Genéticos , Receptores de IgG , SARS-CoV-2 , Animais , Dependovirus/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Camundongos , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Vetores Genéticos/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Receptores de IgG/metabolismo , Receptores de IgG/genética , Receptores de IgG/imunologia , Tropismo Viral , Imunização Passiva
13.
Sci Adv ; 10(29): eadk4920, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018397

RESUMO

Conformational dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S) mediate exposure of the binding site for the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The N-terminal domain (NTD) of S binds terminal sialic acid (SA) moieties on the cell surface, but the functional role of this interaction in virus entry is unknown. Here, we report that NTD-SA interaction enhances both S-mediated virus attachment and ACE2 binding. Through single-molecule Förster resonance energy transfer imaging of individual S trimers, we demonstrate that SA binding to the NTD allosterically shifts the S conformational equilibrium, favoring enhanced exposure of the ACE2-binding site. Antibodies that target the NTD block SA binding, which contributes to their mechanism of neutralization. These findings inform on mechanisms of S activation at the cell surface.


Assuntos
Enzima de Conversão de Angiotensina 2 , Ácido N-Acetilneuramínico , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/química , Sítios de Ligação , Imagem Individual de Molécula , COVID-19/virologia , COVID-19/metabolismo , Regulação Alostérica , Internalização do Vírus , Transferência Ressonante de Energia de Fluorescência , Domínios Proteicos , Ligação Viral
14.
Protein Sci ; 33(8): e5109, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38989563

RESUMO

Understanding how proteins evolve under selective pressure is a longstanding challenge. The immensity of the search space has limited efforts to systematically evaluate the impact of multiple simultaneous mutations, so mutations have typically been assessed individually. However, epistasis, or the way in which mutations interact, prevents accurate prediction of combinatorial mutations based on measurements of individual mutations. Here, we use artificial intelligence to define the entire functional sequence landscape of a protein binding site in silico, and we call this approach Complete Combinatorial Mutational Enumeration (CCME). By leveraging CCME, we are able to construct a comprehensive map of the evolutionary connectivity within this functional sequence landscape. As a proof of concept, we applied CCME to the ACE2 binding site of the SARS-CoV-2 spike protein receptor binding domain. We selected representative variants from across the functional sequence landscape for testing in the laboratory. We identified variants that retained functionality to bind ACE2 despite changing over 40% of evaluated residue positions, and the variants now escape binding and neutralization by monoclonal antibodies. This work represents a crucial initial stride toward achieving precise predictions of pathogen evolution, opening avenues for proactive mitigation.


Assuntos
Enzima de Conversão de Angiotensina 2 , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Humanos , Sítios de Ligação , COVID-19/virologia , COVID-19/genética , Ligação Proteica , Inteligência Artificial
15.
Proc Natl Acad Sci U S A ; 121(29): e2317977121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990941

RESUMO

In a recent characterization of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variability present in 30 diagnostic samples from patients of the first COVID-19 pandemic wave, 41 amino acid substitutions were documented in the RNA-dependent RNA polymerase (RdRp) nsp12. Eight substitutions were selected in this work to determine whether they had an impact on the RdRp activity of the SARS-CoV-2 nsp12-nsp8-nsp7 replication complex. Three of these substitutions were found around the polymerase central cavity, in the template entry channel (D499G and M668V), and within the motif B (V560A), and they showed polymerization rates similar to the wild type RdRp. The remaining five mutations (P323L, L372F, L372P, V373A, and L527H) were placed near the nsp12-nsp8F contact surface; residues L372, V373, and L527 participated in a large hydrophobic cluster involving contacts between two helices in the nsp12 fingers and the long α-helix of nsp8F. The presence of any of these five amino acid substitutions resulted in important alterations in the RNA polymerization activity. Comparative primer elongation assays showed different behavior depending on the hydrophobicity of their side chains. The substitution of L by the bulkier F side chain at position 372 slightly promoted RdRp activity. However, this activity was dramatically reduced with the L372P, and L527H mutations, and to a lesser extent with V373A, all of which weaken the hydrophobic interactions within the cluster. Additional mutations, specifically designed to disrupt the nsp12-nsp8F interactions (nsp12-V330S, nsp12-V341S, and nsp8-R111A/D112A), also resulted in an impaired RdRp activity, further illustrating the importance of this contact interface in the regulation of RNA synthesis.


Assuntos
Mutação Puntual , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , RNA Viral/genética , RNA Viral/metabolismo , Humanos , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Polimerização , COVID-19/virologia , Substituição de Aminoácidos , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Modelos Moleculares
16.
Arch Biochem Biophys ; 758: 110080, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960345

RESUMO

Glycyrrhizinic acid (GA) is one of the active substances in licorice root. It exhibits antiviral activity against various enveloped viruses, for example, SARS-CoV-2. GA derivatives are promising biologically active compounds from perspective of developing broad-spectrum antiviral agents. Given that GA nicotinate derivatives (Glycyvir) demonstrate activity against various DNA- and RNA-viruses, a search for a possible mechanism of action of these compounds is required. In the present paper, the interaction of Glycyvir with the transmembrane domain of the SARS-CoV-2 E-protein (ETM) in a model lipid membrane was investigated by NMR spectroscopy and molecular dynamics simulation. The lipid-mediated influence on localization of the SARS-CoV-2 E-protein by Glycyvir was observed. The presence of Glycyvir leads to deeper immersion of the ETM in lipid bilayer. Taking into account that E-protein plays a significant role in virus production and takes part in virion assembly and budding, the data on the effect of potential antiviral agents on ETM localization and structure in the lipid environment may provide a basis for further studies of potential coronavirus E-protein inhibitors.


Assuntos
Antivirais , Ácido Glicirrízico , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , SARS-CoV-2 , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Antivirais/química , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/química , Humanos , Domínios Proteicos , Tratamento Farmacológico da COVID-19
17.
Cell Rep Methods ; 4(7): 100818, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986614

RESUMO

Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.


Assuntos
Peptídeos , Proteômica , SARS-CoV-2 , Proteômica/métodos , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Peptídeos/metabolismo , Peptídeos/química , COVID-19/metabolismo , COVID-19/virologia , Células HEK293 , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Plasmídeos/genética , Plasmídeos/metabolismo , Espectrometria de Massas/métodos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Mapeamento de Interação de Proteínas/métodos
18.
Elife ; 132024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941236

RESUMO

Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also observe functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.


Like other types of RNA viruses, the genetic material of SARS-CoV-2 (the agent responsible for COVID-19) is formed of an RNA molecule which is prone to accumulating mutations. This gives SARS-CoV-2 the ability to evolve quickly, and often to remain one step ahead of treatments. Understanding how these mutations shape the behavior of RNA viruses is therefore crucial to keep diseases such as COVID-19 under control. The gene that codes for the protein that 'packages' the genetic information inside SARS-CoV-2 is particularly prone to mutations. This nucleocapsid (N) protein participates in many key processes during the life cycle of the virus, including potentially interfering with the immune response. Exactly how the physical properties of the N-Protein are impacted by the mutations in its genetic sequence remains unclear. To investigate this question, Nguyen et al. predicted the various biophysical properties of different regions of the N-protein based on a computer-based analysis of SARS-CoV-2 genetic databases. This allowed them to determine if specific protein regions were positively or negatively charged in different mutants. The analyses showed that some domains exhibited great variability in their charge between protein variants ­ reflecting the fact that the corresponding genetic sequences showed high levels of plasticity. Other regions remained conserved, however, including across related coronaviruses. Nguyen et al. also conducted biochemical experiments on a range of N-proteins obtained from clinically relevant SARS-CoV-2 variants. Their results highlighted the importance of protein segments with no fixed three-dimensional structure. Mutations in the related sequences created high levels of variation in the physical properties of these 'intrinsically disordered' regions, which had wide-ranging consequences. Some of these genetic changes even gave individual N-proteins the ability to interact with each other in a completely new way. These results shed new light on the relationship between genetic mutations and the variable physical properties of RNA virus proteins. Nguyen et al. hope that this knowledge will eventually help to develop more effective treatments for viral infections.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Mutação , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/química , Termodinâmica , Estabilidade Proteica
19.
Int J Biol Macromol ; 273(Pt 2): 133167, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885868

RESUMO

The Nucleocapsid (N) protein of SARS-CoV-2 plays a crucial role in viral replication and pathogenesis, making it an attractive target for developing antiviral therapeutics. In this study, we used differential scanning fluorimetry to establish a high-throughput screening method for identifying high-affinity ligands of N-terminal domain of the N protein (N-NTD). We screened an FDA-approved drug library of 1813 compounds and identified 102 compounds interacting with N-NTD. The screened compounds were further investigated for their ability to inhibit the nucleic-acid binding activity of the N protein using electrophoretic mobility-shift assays. We have identified three inhibitors, Ceftazidime, Sennoside A, and Tannic acid, that disrupt the N protein's interaction with RNA probe. Ceftazidime and Sennoside A exhibited nano-molar range binding affinities with N protein, determined through surface plasmon resonance. The binding sites of Ceftazidime and Sennoside A were investigated using [1H, 15N]-heteronuclear single quantum coherence (HSQC) NMR spectroscopy. Ceftazidime and Sennoside A bind to the putative RNA binding site of the N protein, thus providing insights into the inhibitory mechanism of these compounds. These findings will contribute to the development of novel antiviral agents targeting the N protein of SARS-CoV-2.


Assuntos
Antivirais , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Sítios de Ligação , Humanos , Ligação Proteica , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/antagonistas & inibidores , Taninos/química , Taninos/farmacologia , Tratamento Farmacológico da COVID-19 , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/antagonistas & inibidores , Proteínas do Nucleocapsídeo/metabolismo
20.
J Cell Mol Med ; 28(12): e18490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923119

RESUMO

Studies have reported variable effects of sex hormones on serious diseases. Severe disease and mortality rates in COVID-19 show marked gender differences that may be related to sex hormones. Sex hormones regulate the expression of the viral receptors ACE2 and TMPRSS2, which affect the extent of viral infection and consequently cause variable outcomes. In addition, sex hormones have complex regulatory mechanisms that affect the immune response to viruses. These hormones also affect metabolism, leading to visceral obesity and severe disease can result from complications such as thrombosis. This review presents the latest researches on the regulatory functions of hormones in viral receptors, immune responses, complications as well as their role in COVID-19 progression. It also discusses the therapeutic possibilities of these hormones by reviewing the recent findings of clinical and assay studies.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Hormônios Esteroides Gonadais , SARS-CoV-2 , Serina Endopeptidases , Humanos , COVID-19/virologia , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/patologia , Hormônios Esteroides Gonadais/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Feminino , Índice de Gravidade de Doença , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA