RESUMO
Abstract The lower lignin content in plants species with energy potential results in easier cellulose breakdown, making glucose available for ethanol generation. However, higher lignin levels can increase resistance to insect attack. The objective of this work was to evaluate the susceptibility of a bmr-6 biomass sorghum (a mutant genotype with a lower concentration of lignin) to important pests of energy sorghum, Diatraea saccharalis and Spodoptera frugiperda. Experiments were performed in the laboratory and greenhouse to evaluate the development of these pests on the biomass sorghum bmr hybrids BR007, BR008, and TX635 and their respective conventional near-isogenic genotypes (without the bmr gene). The lignin content was higher in non-bmr hybrids, but the evaluated insect variables varied between treatments, not being consistent in just one hybrid or because it is bmr or not. The lowest survival of S. frugiperda was observed in the BR008 hybrid, both bmr and non-bmr. The S. frugiperda injury scores on plants in the greenhouse were high (>7) in all treatments. For D. saccharalis, there was no difference in larval survival in the laboratory, but in the greenhouse, the BR007 hybrid, both bmr and non-bmr, provided greater survival. Due the need to diversify the energy matrix and the fact that greater susceptibility of the bmr hybrids to either pests was not found in this study, these results hold promise for cultivation of these biomass sorghum hybrids for the production of biofuels.
Resumo O menor teor de lignina em espécies de plantas com potencial energético resulta na maior facilidade de quebra da celulose, disponibilizando glicose para geração de etanol. Porém, maiores teores de lignina representa um fator de resistência ao ataque de insetos. O objetivo deste trabalho foi avaliar como importantes pragas do sorgo energia, Diatraea saccharalis e Spodoptera frugiperda, se comportam quanto à alimentação e desempenho em sorgo bmr-6, um genótipo mutante com menor concentração de lignina. Foram realizados experimentos em laboratório e casa de vegetação, avaliando o desenvolvimento destas pragas nos híbridos de sorgo biomassa bmr 007, 008, TX635 e seus respectivos genótipos isogênicos convencionais (sem o gene bmr). O teor de lignina foi maior nos híbridos não bmr, mas nos parâmetros avaliados nos insetos, houve variação entre os tratamentos, não sendo consistente em apenas um híbrido e nem por ser ou não bmr. A menor sobrevivência de S. frugiperda foi verificada no híbrido BR008 tanto bmr quanto não bmr. As notas de injúria por S. frugiperda no sorgo em casa de vegetação foram altas (>7) em todos os tratamentos. Para D. saccharalis, não houve diferença significativa para a sobrevivência larval em laboratório, mas em casa de vegetação o híbrido BR007 tanto bmr quanto não bmr proporcionaram maior sobrevivência. Diante da necessidade de diversificar a matriz energética e o fato de que não foi comprovada neste estudo maior suscetibilidade dos híbridos bmr a ambas as pragas, estes resultados são promissores para o cultivo desses híbridos de sorgo biomassa para produção de biocombustíveis.
Assuntos
Animais , Saccharum/genética , Sorghum/genética , Mariposas , Spodoptera , LarvaRESUMO
Sugarcane crops Saccharum spp. (Poales: Poaceae) produces different derivatives to the world: sugar, ethanol and bioenergy. Despite the application of pesticides, insect pests still cause economic losses, among these the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) causing direct and indirect damage to the plant. This study assess the virulence of three entomopathogenic nematodes (EPNs) species and their symbiont bacteria against the pink sugarcane mealybug, under laboratory conditions. Fourteen treatments represented by control (distilled water), Heterorhabditis bacteriophora Poinar, 1976 (HB EN01) (Rhabditida: Heterorhabditidae), Steinernema rarum (Doucet, 1986) (PAM25) and Steinernema carpocapsae Weiser, 1955 (All) (Rhabditida: Steinermatidae) at concentrations of 25, 50, 75 and 100 infective juveniles (IJs)/insect, and the standard chemical product, thiamethoxam, were assayed. In a second experiment, the bacteria Photorhabdus luminescens (Thomas and Poinar, 1979), Xenorhabdus szentirmaii Lengyel, 2005 and Xenorhabdus nematophila (Poinar and Thomas, 1965) (Enterobacterales: Morganellaceae) at 3.0 x 109 cells/ml were assessed for each treatment. Ten replications were stablished, each one counting ten females/mealybugs inside a 10 cm Petri dish, amounting 100 individuals/treatment. All treatments were kept under stable conditions (25±1 ºC, H 70±10%, in the dark). All nematodes species infected S. sacchari. Steinerma rarum (PAM25) provided the highest mortality against the pink sugarcane mealybug (79.25%), followed by H. bacteriophora (HB EN01) (58.25%) and S. carpocapsae (All) (42.50%) (P<0.001). The mortality rate caused by X. szentirmaii, P. luminescens and X. nematophila were 40, 45 and 20%, respectively. Steinerma rarum (PAM25) has conditions to be a potential agent to be incorporate into the integrated pest management in sugarcane.
A cultura da cana-de-açúcar Saccharum spp. (Poales: Poaceae) produz diferentes derivados para o mundo: açúcar, etanol e bioenergia. Apesar da aplicação de pesticidas, os insetos-praga ainda causam prejuízos econômicos, dentre eles a cochonilha rosada da cana-de-açúcar Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) causando danos diretos e indiretos à planta. Este estudo avaliou a virulência de três espécies de nematoides entomopatogênicos (NEPs) e suas bactérias simbiontes contra a cochonilha rosada da cana-de-açúcar, em condições de laboratório. Quatorze tratamentos representados pelo controle (água destilada), Heterorhabditis bacteriophora Poinar, 1976 (HB EN01) (Rhabditida: Heterorhabditidae), Steinernema rarum (Doucet, 1986) (PAM25) e Steinernema carpocapsae Weiser, 1955 (All) (Rhabditida: Steinermatidae) nas concentrações de 25, 50, 75 e 100 juvenis infectantes (JIs)/inseto, e o produto químico padrão, tiametoxam, foram testados. Em um segundo experimento, a bactéria Photorhabdus luminescens (Thomas e Poinar, 1979), Xenorhabdus szentirmaii Lengyel, 2005 e Xenorhabdus nematophila (Poinar e Thomas, 1965) (Enterobacterales: Morganellaceae) em 3,0 x 109 células/ml foram avaliadas para cada tratamento. Dez repetições foram estabelecidas, cada uma contendo dez fêmeas/cochonilhas dentro de uma placa de Petri de 10 cm, totalizando 100 indivíduos/tratamento. Todos os tratamentos foram mantidos em condições estáveis (25±1 ºC, U 70±10%, no escuro). Todas as espécies de nematoides infectaram S. sacchari. Steinerma rarum (PAM25) proporcionou a maior mortalidade contra a cochonilha rosada da cana-de-açúcar (79,25%), seguida por H. bacteriophora (HB EN01) (58,25%) e S. carpocapsae (All) (42,50%) (P<0,001). As taxas de mortalidade causada por X. szentirmaii, P. luminescens e X. nematophila foram de 40, 45 e 20%, respectivamente. Steinerma rarum (PAM25) tem condições de ser um agente potencial a ser incorporado ao manejo integrado de pragas da cana-de-açúcar.
Assuntos
Animais , Controle Biológico de Vetores , Saccharum , Agricultura , Hemípteros , NematoidesRESUMO
A new N-doped biochar derived from sugarcane bagasse (NSB) was prepared by one-pot pyrolysis with sugarcane bagasse as feedstock, melamine as nitrogen source and NaHCO3 as pore-forming agent, and then NSB was used to adsorb ciprofloxacin (CIP) in water. The optimal preparation conditions of NSB were determined based on the evaluation index of adsorbability of NSB for CIP. SEM, EDS, XRD, FTIR, XPS and BET characterizations were used to analyze the physicochemical properties of the synthetic NSB. It was found that the prepared NSB had excellent pore structure, high specific surface area and more nitrogenous functional groups. Meanwhile, it was demonstrated that the synergistic interaction between melamine and NaHCO3 increased the pores of NSB and the largest surface area of NSB was 1712.19 m2/g. The CIP adsorption capacity of 212 mg/g was obtained under optimal parameters as follows: NSB amount 0.125 g/L, initial pH 6.58, adsorption temperature 30 °C, CIP initial concentration 30 mg/L and adsorption time 1 h. The isotherm and kinetics studies elucidated that the adsorption of CIP conformed both D-R model and Pseudo-second-order kinetic model. The high CIP adsorption capacity of NSB for CIP was due to the combined filling pore, π-π conjugation and hydrogen bonding. All results demonstrated that adsorption of CIP by the low-cost N-doped biochar of NSB is a reliable technology for the disposal of CIP wastewater.
Assuntos
Saccharum , Poluentes Químicos da Água , Ciprofloxacina/química , Celulose , Adsorção , Porosidade , Poluentes Químicos da Água/química , Carvão Vegetal/química , CinéticaRESUMO
Sugarcane is an important food and bioenergy crop, and although the residual biomass is potentially available for biorefinery and biofuels production the complex plant cell wall matrix requires pretreatment prior to enzymatic hydrolysis. Arabinoxylans require multiple enzymes for xylose backbone and saccharide side-branch hydrolysis to release xylooligosaccharides and pentoses. The effect of arabinoxylan structure on xylooligosaccharide release by combinations of up to five xylanolytic enzymes was studied using three arabinoxylan fractions extracted from sugarcane culms by sodium chlorite, DMSO and alkaline treatments. Reducing sugar release and LC-MS detection with chemometric analysis identified different xylooligosaccharide profiles between extracts following enzyme treatments. The position and degree of side-branch decorations are determinants of enzyme activity and xylooligosaccharide diversity with the alkaline and postsodium chlorite extracts as the most accessible and most recalcitrant, respectively, indicating acetyl substituents as a major recalcitrance factor. The complex xylooligosaccharide profile with the DMSO extract suggests regions with different levels of branching. Chemometric analysis identified GH10 xylanase hydrolysis products that act as substrates for other enzymes, such as α-glucuronidase. The strategy reported here can identify specific enzyme combinations to overcome barriers for biomass processing such as pretreatment selection, recalcitrance to enzyme digestion and optimization of reducing sugar release.
Assuntos
Saccharum , Endo-1,4-beta-Xilanases/química , Dimetil Sulfóxido , Glicômica , Xilanos/química , Hidrólise , Xilose/químicaRESUMO
The objective of this study was to evaluate the effects of sugarcane tops (STs) and napiergrass (NG) silage on fermentative quality, nutritional value and milk yield in water buffaloes. Silage were prepared either conventionally without ST (C) or mixed with 25% (S1), 50% (S2), and 75% (S3) ST based on fresh matter. Twenty-eight lactating buffaloes were divided into four groups with seven replicates and fed four experimental diets containing the corresponding silages. The S3 silage fermented well with a higher (P < 0.05) lactic acid content and lower (P < 0.05) pH and ammonia-N level than those of other mixed silage. Silage with increasing ST proportions showed a significant increase (P < 0.05) in the apparent digestibility of dry matter, crude protein, organic matter, and gross energy. As a result, water buffalo fed S3 silage increased dry matter intake (P < 0.05) and tended to have higher milk yield and feed efficiency as compared with the C group. Our study indicates that adding ST improves NG silage fermentation and enhances the nutrient digestibility and milk production in water buffaloes, and mixing ratio of 25%NG and 75%ST had the highest lactate fermentation quality and presented a high feed value.
Assuntos
Leite , Saccharum , Feminino , Animais , Leite/metabolismo , Silagem/análise , Búfalos , Lactação , Fermentação , Dieta , Grão Comestível , Valor Nutritivo , Zea mays , Digestão , Rúmen/metabolismoRESUMO
The structural diversity of monomethyl branched-chain fatty acids (mBCFAs) expanded their application in biolubricants, biofuels for enhancing cold flow and thermo-oxidative properties. Current study focuses on mBCFAs production from sugarcane bagasse hydrolysate in biorefinery approach with halophilic Lentibacillus salarius BPIITR. Halophilic bacterium exhibited tolerance towards furan aldehydes up to 150 mM in minimal medium and produced 3.40 ± 0.13 and 2.47 ± 0.15 gL-1 lipid rich in mBCFAs, in xylose and glucose rich non-detoxified hydrolysate, respectively at bench-scale bioreactor. In addition, 2,5-furandicarboxylic acid and 2-furancarboxylic acids were co-produced as value-added products up to 41.34 ± 4.73 and 59.84 ± 5.17 mM, respectively. The biosynthesized bacterial oil exhibited onset oxidation temperature of 319.5 °C and low temperature viscosity ratio of 2.92. The accumulated lipid was rich in triacylglycerol content more than 67 % with 12-methyl tetradecanoic acid as major fatty acid.
Assuntos
Celulose , Saccharum , Celulose/química , Saccharum/química , Ácidos Graxos , FuranosRESUMO
Lignin has been suggested as a promising candidate for cosmetic applications due to its remarkable potential to absorb ultraviolet rays and distinctive antioxidant activity. This study aims at evaluating the performance of lignin from sugarcane bagasse (SCB) as natural UV blocker, antioxidant, and pigment. Lignin was extracted from SCB, characterized and incorporated into a blemish balm (BB) cream. The biological potential, concretely, in vitro and in vivo sun protection factor (SPF) and in vitro UVA-PF, and safety were assessed. A high-purity SCB lignin (>92 %) was obtained by a mild alkaline extraction process. The results of cytotoxicity, mutagenicity, skin sensitization and in vivo acute cutaneous irritation demonstrated that SCB lignin is safe for topical applications. Lignin showed capacity to scavenge both ABTS and DPPH radicals, which were preserved after its incorporation into the cosmetic formulation. Notable results were achieved in terms of in vitro and in vivo SPF of 9.5 ± 2.9 and 9.6 ± 0.8, respectively. Furthermore, the tested lignin-based BB cream revealed a broad-spectrum UV protection (critical wavelength of 378 ± 0.5 nm). These results suggest SCB lignin as multifunctional and safe ingredient for use in cosmetic products.
Assuntos
Cosméticos , Saccharum , Lignina/farmacologia , Lignina/química , Protetores Solares/química , Celulose , Pele , Cosméticos/farmacologia , Raios Ultravioleta , Antioxidantes/farmacologia , Antioxidantes/químicaRESUMO
BACKGROUND: B-box (BBX) zinc-finger transcription factors play crucial roles in plant growth, development, and abiotic stress responses. Nevertheless, little information is available on sugarcane (Saccharum spp.) BBX genes and their expression profiles. RESULTS: In the present study, we characterized 25 SsBBX genes in the Saccharum spontaneum genome database. The phylogenetic relationships, gene structures, and expression patterns of these genes during plant growth and under low-nitrogen conditions were systematically analyzed. The SsBBXs were divided into five groups based on phylogenetic analysis. The evolutionary analysis further revealed that whole-genome duplications or segmental duplications were the main driving force for the expansion of the SsBBX gene family. The expression data suggested that many BBX genes (e.g., SsBBX1 and SsBBX13) may be helpful in both plant growth and low-nitrogen stress tolerance. CONCLUSIONS: The results of this study offer new evolutionary insight into the BBX family members in how sugarcane grows and responds to stress, which will facilitate their utilization in cultivated sugarcane breeding.
Assuntos
Saccharum , Saccharum/genética , Saccharum/metabolismo , Filogenia , Melhoramento Vegetal , Desenvolvimento Vegetal , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Saccharum ravannae, known as "Ekra" in the Northeast region of India, is an elephant grass species that abundantly grows in the natural habitat of Assam. This study aims to utilize this wild grass species and extract alkaline lignin of high purity through KOH-mediated alkaline hydrothermal pretreatment using the Oil bath process. Lignin recovery was optimized using RSM (response surface methodology) combined with a central composite model. Three process parameters, namely KOH concentration (1-3 %), reaction time (50-200 min), and solid loading (5-15 %), varied to optimize the combined effect of these parameters. RSM predicted a maximum lignin recovery of 15.38 g/100 g of raw biomass at optimum conditions (2.4 % KOH, 6.41 % solid loading, 176.57 min). Three experimental runs were performed at optimum conditions, and 15.81 ± 0.32 g/100 g lignin recovery was obtained, thus verifying the predicted result. Maximum 93.7 % purity of extracted lignin was achieved in a different operating condition (3 % KOH, 10 % solid loading, 125 min). The commercial and extracted alkaline lignin with maximum purity was characterized by Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The extracted lignin shows higher phenolic content and more functional groups than commercial lignin and can be used for future applications.
Assuntos
Lignina , Saccharum , Lignina/química , Fenóis , Biomassa , Espectroscopia de Infravermelho com Transformada de Fourier , HidróliseRESUMO
The goal of this study is to isolate cellulose nanocrystals (CNC) from sugarcane leaves (SCL) and fabricate filter membranes. Filter membranes consisting of the CNC and varying amount graphene oxide (GO) were fabricated using vacuum filtration technique. The α-cellulose content increased from 53.56 ± 0.49 % in untreated SCL to 78.44 ± 0.56 % and 84.99 ± 0.44 % in steam-exploded and bleached fibers, respectively. Atomic force microscopy (AFM) and transmission electron microscope (TEM) of CNC isolated from SCL indicated nanosized particles in the range of 7.3 nm and 150 nm for diameter and length, respectively. Morphologies of the fiber and CNC/GO membranes were determined by scanning electron microscopy (SEM) and crystallinity by X-ray diffraction (XRD) analysis of crystal lattice. The crystallinity index of CNC decreased with the addition of GO into the membranes. The CNC/GO-2 recorded the highest tensile index of 3.001 MPa. The removal efficiency increases with increasing GO content. The highest removal efficiency of 98.08 % was recorded for CNC/GO-2. CNC/GO-2 membrane reduced growth of Escherichia coli to 65 CFU compared to >300 CFU of control sample. SCL is a potential bioresource for isolation of cellulose nanocrystals and fabrication of high-efficiency filter membrane for particulate matter removal and inhibition of bacteria.
Assuntos
Nanopartículas , Saccharum , Celulose/química , Material Particulado , Nanopartículas/químicaRESUMO
Lignocellulosic biomass is a promising substrate for biogas production. However, its recalcitrant structure limits conversion efficiency. This study aims to design a microbial consortium (MC) capable of producing the cellulolytic enzyme and exploring the taxonomic and genetic aspects of lignocellulose degradation. A diverse range of lignocellulolytic bacteria and degrading enzymes from various habitats were enriched for a known KKU-MC1. The KKU-MC1 was found to be abundant in Bacteroidetes (51%), Proteobacteria (29%), Firmicutes (10%), and other phyla (8% unknown, 0.4% unclassified, 0.6% archaea, and the remaining 1% other bacteria with low predominance). Carbohydrate-active enzyme (CAZyme) annotation revealed that the genera Bacteroides, Ruminiclostridium, Enterococcus, and Parabacteroides encoded a diverse set of cellulose and hemicellulose degradation enzymes. Furthermore, the gene families associated with lignin deconstruction were more abundant in the Pseudomonas genera. Subsequently, the effects of MC on methane production from various biomasses were studied in two ways: bioaugmentation and pre-hydrolysis. Methane yield (MY) of pre-hydrolysis cassava bagasse (CB), Napier grass (NG), and sugarcane bagasse (SB) with KKU-MC1 for 5 days improved by 38-56% compared to non-prehydrolysis substrates, while MY of prehydrolysed filter cake (FC) for 15 days improved by 56% compared to raw FC. The MY of CB, NG, and SB (at 4% initial volatile solid concentration (IVC)) with KKU-MC1 augmentation improved by 29-42% compared to the non-augmentation treatment. FC (1% IVC) had 17% higher MY than the non-augmentation treatment. These findings demonstrated that KKU-MC1 released the cellulolytic enzyme capable of decomposing various lignocellulosic biomasses, resulting in increased biogas production.
Assuntos
Celulose , Saccharum , Celulose/metabolismo , Consórcios Microbianos , Biocombustíveis/microbiologia , Saccharum/metabolismo , Lignina/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Metano/metabolismo , BiomassaRESUMO
Caldicellulosiruptor species are proficient at solubilizing carbohydrates in lignocellulosic biomass through surface (S)-layer bound and secretomic glycoside hydrolases. Tapirins, surface-associated, non-catalytic binding proteins in Caldicellulosiruptor species, bind tightly to microcrystalline cellulose, and likely play a key role in natural environments for scavenging scarce carbohydrates in hot springs. However, the question arises: If tapirin concentration on Caldicellulosiruptor cell walls increased above native levels, would this offer any benefit to lignocellulose carbohydrate hydrolysis and, hence, biomass solubilization? This question was addressed by engineering the genes for tight-binding, non-native tapirins into C. bescii. The engineered C. bescii strains bound more tightly to microcrystalline cellulose (Avicel) and biomass compared to the parent. However, tapirin overexpression did not significantly improve solubilization or conversion for wheat straw or sugarcane bagasse. When incubated with poplar, the tapirin-engineered strains increased solubilization by 10% compared to the parent, and corresponding acetate production, a measure of carbohydrate fermentation intensity, was 28% higher for the Calkr_0826 expression strain and 18.5% higher for the Calhy_0908 expression strain. These results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products.
Assuntos
Celulose , Saccharum , Celulose/metabolismo , Biomassa , Saccharum/metabolismo , Caldicellulosiruptor/metabolismo , Clostridiales/metabolismo , Plantas , Archaea/metabolismoRESUMO
The gram-positive bacterium Clostridium thermocellum contains a set of carbohydrate-active enzymes that can potentially be employed to generate high-value-added products from lignocellulose. In this study, the gene expression profiling of C. thermocellum B8 was provided during growth in the presence of sugarcane bagasse and straw as a carbon source in comparison to growth using microcrystalline cellulose. A total of 625 and 509 genes were up-regulated for growth in the presence of bagasse and straw, respectively. These genes were mainly grouped into carbohydrate-active enzymes (CAZymes), cell motility, chemotaxis, quorum sensing pathway and expression control of glycoside hydrolases. These results show that type of carbon source modulates the gene expression profiling of carbohydrate-active enzymes. In addition, highlight the importance of cell motility, attachment to the substrate and communication in deconstructing complex substrates. This present work may contribute to the development of enzymatic cocktails and industrial strains for biorefineries based on sugarcane residues as feedstock.
Assuntos
Clostridium thermocellum , Saccharum , Celulose/metabolismo , Saccharum/química , CarboidratosRESUMO
BACKGROUND: Poly-γ-glutamic acid (γ-PGA) is biodegradable, water-soluble, environment-friendly, and edible. Consequently, it has a variety of industrial applications. It is crucial to control production cost and increase output for industrial production γ-PGA. RESULTS: Here γ-PGA production from sugarcane molasses by Bacillus licheniformis CGMCC NO. 23967 was studied in shake-flasks and bioreactors, the results indicate that the yield of γ-PGA could reach 40.668 g/L in a 5L stirred tank fermenter. Further study found that γ-PGA production reached 70.436 g/L, γ-PGA production and cell growth increased by 73.20% and 55.44%, respectively, after FeSO4·7H2O was added. Therefore, we investigated the metabolomic and transcriptomic changes following FeSO4·7H2O addition. This addition resulted in increased abundance of intracellular metabolites, including amino acids, organic acids, and key TCA cycle intermediates, as well as upregulation of the glycolysis pathway and TCA cycle. CONCLUSIONS: These results compare favorably with those obtained from glucose and other forms of biomass feedstock, confirming that sugarcane molasses can be used as an economical substrate without any pretreatment. The addition of FeSO4·7H2O to sugarcane molasses may increase the efficiency of γ-PGA production in intracellular.
Assuntos
Bacillus licheniformis , Saccharum , Bacillus licheniformis/metabolismo , Saccharum/metabolismo , Fermentação , Melaço , Ácido Poliglutâmico , Ácido Glutâmico/metabolismoRESUMO
Policosanols from various sources, such as sugar cane, rice bran, and insects, have been marketed to prevent dyslipidemia, diabetes, and hypertension by increasing the blood high-density lipoproteins cholesterol (HDL-C) levels. On the other hand, there has been no study on how each policosanol influences the quality of HDL particles and their functionality. Reconstituted high-density lipoproteins (rHDLs) with apolipoprotein (apo) A-I and each policosanol were synthesized using the sodium cholate dialysis method to compare the policosanols in lipoprotein metabolism. Each rHDL was compared regarding the particle size and shape, antioxidant activity, and anti-inflammatory activity in vitro and in zebrafish embryos. This study compared four policosanols including one policosanol from Cuba (Raydel® policosanol) and three policosanols from China (Xi'an Natural sugar cane, Xi'an Realin sugar cane, and Shaanxi rice bran). The synthesis of rHDLs with various policosanols (PCO) from Cuba or China using a molar ratio of 95:5:1:1 with palmitoyloleoyl phosphatidylcholine (POPC): free cholesterol (FC): apoA-I:PCO (wt:wt) showed that rHDL containing Cuban policosanol (rHDL-1) showed the largest particle size and the most distinct particle shape. The rHDL-1 showed a 23% larger particle diameter and increased apoA-I molecular weight with a 1.9 nm blue shift of the maximum wavelength fluorescence than rHDL alone (rHDL-0). Other rHDLs containing Chinese policosanols (rHDL-2, rHDL-3, and rHDL-4) showed similar particle sizes with an rHDL-0 and 1.1-1.3 nm blue shift of wavelength maximum fluorescence (WMF). Among all rHDLs, the rHDL-1 showed the strongest antioxidant ability to inhibit cupric ion-mediated LDL oxidation. The rHDL-1-treated LDL showed the most distinct band intensity and particle morphology compared with the other rHDLs. The rHDL-1 also exerted the highest anti-glycation activity to inhibit the fructose-mediated glycation of human HDL2 with the protection of apoA-I from proteolytic degradation. At the same time, other rHDLs showed a loss of anti-glycation activity with severe degradation. A microinjection of each rHDL alone showed that rHDL-1 had the highest survivability of approximately 85 ± 3%, with the fastest developmental speed and morphology. In contrast, rHDL-3 showed the lowest survivability, around 71 ± 5%, with the slowest developmental speed. A microinjection of carboxymethyllysine (CML), a pro-inflammatory advanced glycated end product, into zebrafish embryos resulted in severe embryo death of approximately 30 ± 3% and developmental defects with the slowest developmental speed. On the other hand, the phosphate buffered saline (PBS)-injected embryo showed 83 ± 3% survivability. A co-injection of CML and each rHDL into adult zebrafish showed that rHDL-1 (Cuban policosanol) induced the highest survivability, around 85 ± 3%, while rHDL-0 showed 67 ± 7% survivability. In addition, rHDL-2, rHDL-3, and rHDL-4 showed 67 ± 5%, 62 ± 37, and 71 ± 6% survivability, respectively, with a slower developmental speed and morphology. In conclusion, Cuban policosanol showed the strongest ability to form rHDLs with the most distinct morphology and the largest size. The rHDL-containing Cuban policosanol (rHDL-1) showed the strongest antioxidant ability against LDL oxidation, anti-glycation activity to protect apoA-I from degradation, and the highest anti-inflammatory activity to protect embryo death under the presence of CML.
Assuntos
Antioxidantes , Saccharum , Animais , Humanos , Anti-Inflamatórios , Antioxidantes/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Perda do Embrião , Etanol , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Saccharum/metabolismo , Álcoois Açúcares , Peixe-Zebra/metabolismoRESUMO
Sugarcane smut caused by Sporisorium scitamineum is one of the most devastating sugarcane diseases. Furthermore, Rhizoctonia solani causes severe diseases in various crops including rice, tomato, potato, sugar beet, tobacco, and torenia. However, effective disease-resistant genes against these pathogens have not been identified in target crops. Therefore, the transgenic approach can be used since conventional cross-breeding is not applicable. Herein, the overexpression of BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice receptor-like cytoplasmic kinase, was conducted in sugarcane, tomato and torenia. BSR1-overexpressing tomatoes exhibited resistance to the bacteria Pseudomonas syringae pv. tomato DC3000 and the fungus R. solani, whereas BSR1-overexpressing torenia showed resistance to R. solani in the growth room. Additionally, BSR1 overexpression conferred resistance to sugarcane smut in the greenhouse. These three BSR1-overexpressing crops exhibited normal growth and morphologies except in the case of exceedingly high levels of overexpression. These results indicate that BSR1 overexpression is a simple and effective tool for conferring broad-spectrum disease resistance to many crops.
Assuntos
Infecções Bacterianas , Oryza , Saccharum , Solanum lycopersicum , Ustilaginales , Oryza/genética , Saccharum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de PlantasRESUMO
Sugarcane (Saccharum spp. hybrid) is frequently affected by seasonal drought, which causes substantial declines in quality and yield. To understand the drought resistance mechanisms of S. officinarum, the main species of modern sugarcane, at a molecular level, we carried out a comparative analysis of transcriptome and metabolome profiling of the sugarcane variety Badila under drought stress (DS). Compared with control group (CG) plants, plants exposed to DS had 13,744 (6663 up-regulated and 7081 down-regulated) differentially expressed genes (DEGs). GO and KEGG analysis showed that the DEGs were enriched in photosynthesis-related pathways and most DEGs had down-regulated expression. Moreover, the chlorophyll content, photosynthesis (Photo), stomatal conductance (Cond), intercellular carbon dioxide concentration (Ci) and transpiration rate (Trmmol) were sharply decreased under DS. These results indicate that DS has a significant negative influence on photosynthesis in sugarcane. Metabolome analysis identified 166 (37 down-regulated and 129 up-regulated) significantly regulated metabolites (SRMs). Over 50% of SRMs were alkaloids, amino acids and their derivatives, and lipids. The five most significantly enriched KEGG pathways among SRMs were Aminoacyl-tRNA biosynthesis, 2-Oxocarboxylic acid metabolism, Biosynthesis of amino acids, Phenylalanine metabolism, and Arginine and proline metabolism (p < 0.05). Comparing CG with DS for transcriptome and metabolome profiling (T_CG/DS and M_CG/DS, respectively), we found three of the same KEGG-enriched pathways, namely Biosynthesis of amino acids, Phenylalanine metabolism and Arginine and proline metabolism. The potential importance of Phenylalanine metabolism and Arginine and proline metabolism was further analyzed for response to DS in sugarcane. Seven SRMs (five up-regulated and two down-regulated) and 60 DEGs (17 up-regulated and 43 down-regulated) were enriched in Phenylalanine metabolism under DS, of which novel.31261, Sspon.04G0008060-1A, Sspon.04G0008060-2B and Sspon.04G0008060-3C were significantly correlated with 7 SRMs. In Arginine and proline metabolism, eight SRMs (seven up-regulated and one down-regulated) and 63 DEGs (32 up-regulated and 31 down-regulated) were enriched, of which Sspon.01G0026110-1A (OAT) and Sspon.03G0002750-3D (P5CS) were strongly associated with proline (r > 0.99). These findings present the dynamic changes and possible molecular mechanisms of Phenylalanine metabolism as well as Arginine and proline metabolism under DS and provide a foundation for future research and sugarcane improvement.
Assuntos
Saccharum , Transcriptoma , Saccharum/genética , Secas , Aminoácidos/metabolismo , Prolina/metabolismo , Metaboloma , Arginina/metabolismo , Fenilalanina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genéticaRESUMO
A novel methylotrophic bacterium designated as NMS14P was isolated from the root of an organic coffee plant (Coffea arabica) in Thailand. The 16S rRNA sequence analysis revealed that this new isolate belongs to the genus Methylobacterium, and its novelty was clarified by genomic and comparative genomic analyses, in which NMS14P exhibited low levels of relatedness with other Methylobacterium-type strains. NMS14P genome consists of a 6,268,579 bp chromosome, accompanied by a 542,519 bp megaplasmid and a 66,590 bp plasmid, namely pNMS14P1 and pNMS14P2, respectively. Several genes conferring plant growth promotion are aggregated on both chromosome and plasmids, including phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, cytokinins (CKs) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, sulfur-oxidizing activity, trehalose synthesis, and urea metabolism. Furthermore, pangenome analysis showed that NMS14P possessed the highest number of strain-specific genes accounting for 1408 genes, particularly those that are essential for colonization and survival in a wide array of host environments, such as ABC transporter, chemotaxis, quorum sensing, biofilm formation, and biosynthesis of secondary metabolites. In vivo tests have supported that NMS14P significantly promoted the growth and development of maize, chili, and sugarcane. Collectively, NMS14P is proposed as a novel plant growth-promoting Methylobacterium that could potentially be applied to a broad range of host plants as Methylobacterium-based biofertilizers to reduce and ultimately substitute the use of synthetic agrochemicals for sustainable agriculture.