Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.725
Filtrar
1.
BMC Genomics ; 23(1): 38, 2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998383

RESUMO

BACKGROUND: The coronatine insensitive 1 (COI1) gene is the core member of jasmonate signaling pathway, which is closely related to plant biotic and abiotic resistance. However, there have been no reports on COI1 in sugarcane (Sacharum spp.). Hence, systematically investigating the characteristics of the COI1 multigene family in sugarcane can provide a means to study and manipulate the jasmonic acid signaling pathway. RESULTS: A total of 156 COI1 proteins were obtained from the genomes of 19 land plants, while none were obtained from five algae species. A phylogenetic tree demonstrated that these COI1 proteins were classified into four groups, while 31 proteins of SsCOI1 from Saccharum spontaneum, SbCOI1 from Sorghum bicolor, and ShCOI1 from Saccharum spp. hybrid cultivar R570 clustered into three groups. Synteny analysis and duplication patterns revealed that COI1 genes expanded through various genome replication events and could have experienced strong purifying selective pressure during evolution in S. spontaneum, S. bicolor, and R570. An investigation of cis-acting elements suggests that COI1 genes may be involved in plant growth and development and response to various stresses. Expression analysis implied that 21 SsCOI1 genes were constitutively expressed, and had positive responses to drought, cold, and Sporisorium scitamineum stresses with different expression patterns. Among them, seven SsCOI1 haplotype genes may play different roles in response to methyl jasmonate. Furthermore, the ShCOI1-4, ShCOI1-5, and ShCOI1-6 genes were cloned from Saccharum spp. hybrid cultivar ROC22. Real-time quantitative PCR (RT-qPCR) analysis demonstrated that these three ShCOI1 genes had divergent expression profiles in response to salicylic acid, abscisic acid, polyethylene glycol, cold, and S. scitamineum. CONCLUSIONS: These results suggest that COI1 genes may act in sugarcane growth, development, and response to various stresses via different regulatory mechanisms, which laying a foundation for the functional identification of the sugarcane COI1 gene.


Assuntos
Saccharum , Aminoácidos , Regulação da Expressão Gênica de Plantas , Indenos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo , Estresse Fisiológico/genética
2.
J Environ Manage ; 301: 113792, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607137

RESUMO

Jaggery is a kind of unrefined non-centrifugal sugar (NCS) used mainly in Asia, Africa, Latin America, and the Caribbean. Traditionally, jaggery is produced by concentrating sugarcane juice in open pans with the help of bagasse combustion. However, due to thermal energy loss with flue gases and an unscientific approach in plant construction, jaggery plants have a poor thermal efficiency of less than 25%, poor emission characteristics, and a high bagasse consumption rate. Advanced jaggery-making techniques use solar energy and heat pumps for jaggery production. However, these techniques are in the early stage of development, and the literature indicates that these techniques should be used in conjuction with traditional ones to improve the performance of jaggery making plants. This literature review describes advances in jaggery-making methods, critically analyzed them, and provides a qualitative comparison of these methods. Further, gaps in the existing literature are identified and reported for future research direction. In addition, efforts have been made to quantify and estimate the emissions reduction and bagasse consumption potentials from the traditional jaggery industry to make this rural industry a sustainable and profitable business for rural entrepreneurs. The comparison with the recently developed clean combustion device exhibits that the harmful emissions from the jaggery industry could be reduced drastically viz. 95%-98% of PM2.5; 92%-95% of CO, and 52-60% of CO2, while saving more than 35% of bagasse consumption. Implemented at a national scale, it may reduce nearly 3% of all harmful emissions in the country, which is equally applicable elsewhere.


Assuntos
Extratos Vegetais , Saccharum , Gases , Temperatura Alta
3.
J Plant Physiol ; 268: 153587, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34906795

RESUMO

Plant embryogenic cell culture allows mass propagation and genetic manipulation, but the mechanisms that determine the fate of these totipotent cells in somatic embryos have not yet been elucidated. Here, we performed label-free quantitative proteomics and phosphoproteomics analyses to determine signaling events related to sugarcane somatic embryo differentiation, especially those related to protein phosphorylation. Embryogenic calli were compared at multiplication (EC0, dedifferentiated cells) and after 14 days of maturation (EC14, onset of embryo differentiation). Metabolic pathway analysis showed enriched lysine degradation and starch/sucrose metabolism proteins during multiplication, whereas the differentiation of somatic embryos was found to involve the enrichment of energy metabolism, including the TCA cycle and oxidative phosphorylation. Multiplication-related phosphoproteins were associated with transcriptional regulation, including SNF1 kinase homolog 10 (KIN10), SEUSS (SEU), and LEUNIG_HOMOLOG (LUH). The regulation of multiple light harvesting complex photosystem II proteins and phytochrome interacting factor 3-LIKE 5 were predicted to promote bioenergetic metabolism and carbon fixation during the maturation stage. A motif analysis revealed 15 phosphorylation motifs. The [D-pS/T-x-D] motif was overrepresented during somatic embryo differentiation. A protein-protein network analysis predicted interactions among SNF1-related protein kinase 2 (SnRK2), abscisic acid-responsive element-binding factor 2 (ABF2), and KIN10, which indicated the role of these proteins in embryogenic competence. The predicted interactions between TOPLESS (TPL) and histone deacetylase 19 (HD19) may be involved in posttranslational protein regulation during somatic embryo differentiation. These results reveal the protein regulation dynamics of somatic embryogenesis and new players in somatic embryo differentiation, including their predicted phosphorylation motifs and phosphosites.


Assuntos
Fosforilação , Proteômica , Saccharum , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Saccharum/genética , Saccharum/metabolismo , Sementes
4.
Bioresour Technol ; 344(Pt B): 126189, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34748975

RESUMO

A coupled process of biomass pretreatment for increasing cellulose digestibility and direct conversion of biomass to electricity has been developed with ferric or ferricyanide ions as the anode electron carriers, and Fe(NO3)3 activated by HNO3 as the cathode electron carriers. Pretreated substrates are subjected to enzymatic hydrolysis for release of fermentable sugars, while the pretreatment liquor is employed as anolyte for electricity generation in a liquid flow fuel cell (LFFC). Pretreatment of sugarcane bagasse with 2 M FeCl3 in anode reactor removes âˆ¼ 100% hemicelluloses and obtains 76% enzymatic glucan conversion (EGC), while pretreatment with 0.1 M K3[Fe(CN)6] in 0.5 M KOH achieves 78% lignin removal, 95.8% EGC and 85.1% xylan conversion. From 1000 g bagasse, 171.3 g fermentable sugars is produced with co-generation of 101.4 W·h electricity based on FeCl3 pretreatment, while 519 g fermentable sugars and 28.9 W·h electricity are obtained based on K3[Fe(CN)6] pretreatment.


Assuntos
Lignina , Saccharum , Biomassa , Eletricidade , Elétrons , Hidrólise , Íons , Ferro
5.
Bioresour Technol ; 344(Pt B): 126319, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775054

RESUMO

This comparative study investigated the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse (SCB) and rice straw (RS) and their impact on probiotic growth. Generally, CbXyn10C produced more xylose and a higher total phenolic content than Xyn11A. Interestingly, XOS obtained from SCB with CbXyn10C contained significantly more gallic acid than that produced by Xn11A. All selected probiotics thrived in RS-derived XOS, regardless of the enzyme used. However, probiotics grew differently on SCB-derived XOS depending on the enzyme used. All probiotics thrived in Xyn11A-derived XOS from SCB. Only Lactobacillus plantarum thrived on CbXyn10C-derived XOS, while the other two were inhibited. Gallic acid in CbXyn10C-derived XOS from SCB has been linked to probiotic retardation, and gallic acid-enriched broth has been found to inhibit Bifidobacterium longum and Bacillus subtilis, but not L. plantarum. Consequently, the selection of enzymes and plant biomass is crucial for XOS properties and prebiotic effects.


Assuntos
Oryza , Probióticos , Saccharum , Celulose , Glucuronatos , Oligossacarídeos
6.
J Sci Food Agric ; 102(1): 312-321, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34096072

RESUMO

BACKGROUND: Sugarcane straw is an available but largely ignored lignocellulosic biomass to obtain cellulose nanocrystals (CNCs) with highly crystalline, tunable surface chemistries and a wide-ranging adaptability. Herein, we utilized sugarcane straw to obtain pure cellulose via purification processes, followed by subsequent preparation of CNCs via sulfuric acid hydrolysis. The properties of the purified fibers and obtained CNCs were assessed by their composition, morphology, chemical structure, crystallinity and thermal stability. RESULTS: After the purification process, alkali-treated fibers (ATFs) contained 886.33 ± 1.25 g kg-1 cellulose, and its morphological analysis revealed a smooth and slender fibrous structure. The CNCs obtained by treatment with 64 wt% sulfuric acid at 45 °C for 60 min were isolated in a yield of 21.8%, with a diameter and length of 6 to 10 nm and 160 to 200 nm, respectively. Moreover, crystallinity index of these CNCs reached 62.66%, and thermal stability underwent a two-step degradation. Short-term ultrasonication after hydrolysis was employed to enhance isolation of the CNC particles and improve the anionic charge with higher value -38.00 mV. CONCLUSION: Overall, isolation and characterization results indicated the potential for CNCs preparation using sugarcane straw, in addition to offering a fundamental understanding of this material and indicating potential applications. © 2021 Society of Chemical Industry.


Assuntos
Celulose/química , Celulose/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Saccharum/química , Resíduos/análise , Hidrólise , Nanopartículas/química , Caules de Planta/química , Ácidos Sulfúricos
7.
Food Chem ; 367: 130669, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365252

RESUMO

Analysis of digital images by smartphone was used for copper quantification in sugarcane spirit (cachaça) samples through the formation of blue complex between copper and cuprizone. An experimental design was carried out to evaluate the best complexation reaction conditions. Moreover, different image acquisition procedures (external camera coupled to a smartphone or the smartphone camera) with different regions of interest sizes, distances in image acquisition, and concentration ranges of the calibration curve and the influence of processing the curve in univariate and multivariate modes, by PLS, were evaluated. The results obtained in three real samples and two spikes were compared with those of UV-Vis spectrophotometry, used as a reference method, and they show the potential of the proposed method for the accurate determination of copper. When compared to traditional techniques, the proposed method has the advantages of portability and low cost in addition to requiring a smaller amount of reagents.


Assuntos
Cobre , Saccharum , Grão Comestível , Projetos de Pesquisa , Smartphone
8.
Food Chem ; 367: 130657, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388631

RESUMO

Non-centrifugal cane sugar (NCS) is the second most important Colombian agribusiness in social importance. However, the sugar cane industry is facing some challenges caused by the controversial nutritional and safety attributes of NCS. Some Colombian NCS producers employ natural mucilages as clarifiers; but the uncontrolled application of these components has caused a risk of extinction in the mucilage source plants. Other producers employ acrylamide as a clarifier. Health consequences have generated concerns from the consumers and demanded control from the food authorities. Efforts are being made to develop a standard manufacturing methodology to increase NCS productivity and improve its quality, hygiene, and storability. The application of better clarifiers, which provide the best clarifying activity and minimize the toxicity while conserving NCS's natural attributes, is one of the outstanding challenges as well. This study is a proposal which looks for sustainable, natural, nontoxic, and economical clarifiers for the Colombian NCS producers.


Assuntos
Saccharum , Açúcares , Acrilamida , Polissacarídeos
9.
Food Chem ; 368: 130731, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34404003

RESUMO

Rapadura is an artisanal candy obtained from concentrated sugarcane juice. In this study, a differentiation between South American rapadura producers has been tried using a Kurtosis-based projection pursuit analysis (kPPA) concerning essential minerals, acrylamide, moisture contents, pH, and color. These parameters revealed significant inter- and intra-country differences. Based on the employed measurements, a multivariate exploration with kPPA extracted information from rapadura even though it is a very artisanal product and was effective in separating classes, especially Brazilian and Ecuadorian rapadura, where principal component analysis failed. Moreover, ellipse confidence regions showed significant differences between non-organic and organic rapadura from Colombia and Peru in granulated form. From a chemometric point of view, the application of kPPA can be used in cases when other metrics (as based on the variance) fail and can be useful in the exploratory analysis of complex multivariate chemical data.


Assuntos
Acrilamida , Saccharum , Brasil , Minerais , Análise de Componente Principal
10.
Sci Total Environ ; 806(Pt 2): 150503, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600204

RESUMO

The management of sugarcane ripening is essential to ensuring the supply of high-quality raw material for the sugar-alcohol industry; chemical ripeners are frequently used to accelerate sucrose accumulation in the stalks during harvesting. The potential ripening effect of a low dose of glyphosate was evaluated in sugarcane, along with its impact on productivity and sprouting in the next crop cycle. A field experiment was conducted in 2015 and 2016 using a randomized block design with eight replicates in a split-plot scheme, with the following treatments: (1) control with only water application, (2) glyphosate at a low dose of 1.8 g a.e. ha-1 (corresponding to 0.005 L ha-1 of the commercial product (cp)), and (3) glyphosate at the commercially recommended dose for a ripener at 180 g a.e. ha-1 (corresponding to 0.50 L ha-1 of the cp) applied at 60, 45, 30, and 15 days before harvest (DBH). The harvest was performed on May 25, 2016 (0 DBH), and a total of five periods were evaluated. This study showed that the application of a hormetic dose of glyphosate to stimulate sugarcane ripening is promising, despite the limited duration of the effect. The application of the hormetic dose (1.8 g a.e. ha-1) at 30 DBH improved the technological quality of sugarcane in terms of Brix% juice, pol% cane, purity% juice, moisture% cane, reducing sugars, total reducing sugars, and total recoverable sugar. Additionally, it increased pol productivity, and did not affect ratoon sprouting in the subsequent cycle. Thus, this study provides a strategy for ripening management with a low environmental impact for sugarcane producers through a low (hormetic) dose of glyphosate.


Assuntos
Saccharum , Grão Comestível , Glicina/análogos & derivados , Hormese
11.
J Environ Manage ; 302(Pt A): 113948, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34678541

RESUMO

Biological pre-treatment is the removal of recalcitrant lignin from lignocellulose through the action of lignin degrading organisms and/or their ligninolytic enzymes system. Despite numerous environmental benefits, biological pre-treatment has been side-lined due to its prolonged periods of fermentation, ascribed to the slow growth rate of lignin degrading organisms. Thus, the present work adopted a dual phase statistical optimization approach for the biological pre-treatment of sugarcane bagasse, with Pycnoporus coccineus MScMS1, using Taguchi Orthogonal Array, in conjunction with Response Surface Methodology, to address this issue. Amplification of the organism's functioning resulted in an enhancement of sugar productivity and yield accompanied by a significant reduction in fermentation time. Optimized sugar concentration was approx. 18 g/L within 4 days of pre-treatment, with productivity of 4.5 g/(L.day). Substrate compositional analysis revealed significant (p < 0.05) reduction of lignin by 70% in the biologically pre-treated substrate, along with significantly (p < 0.05) higher quantities of water soluble components (35 ± 0.95 g) and cellulose content (33 ± 0.18 g), as compared to the untreated substrate. Appreciable levels of xylose, arabinose, glucose and galactose were detected in hydrolysates from biologically pre-treated bagasse. Furthermore, Bacillus megaterium Ti3, a potent polyhydroxyalkanoates (PHA) producer, was grown on these sugar-rich hydrolysates and generated 0.58 g/L PHA in 24 h of fermentation accompanied by 0.88 g/L dry cell weight and 65% PHA accumulation. These results were comparable with those from a glucose medium. Thus, the present study was successful in optimizing the biological pre-treatment of sugarcane bagasse and utilizing the resultant sugar-rich hydrolysates, as inexpensive and renewable raw materials, for PHA production.


Assuntos
Poli-Hidroxialcanoatos , Saccharum , Celulose , Polyporaceae
12.
Food Chem ; 373(Pt A): 131396, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34710683

RESUMO

Sugarcane contains various anthocyanins, which are responsible for the colors present in sugarcane. In this study, the color intensification of the major anthocyanin, cyanidin-3-O-glucoside, by phenolic acids/aldehydes (ferulic acid, vanillic acid, p-coumaric acid, syringic aldehyde and vanillic aldehyde) was investigated. The color enhancement of cyanidin-3-O-glucoside (hyperchromic effect and bathochromic shift) was affected by the temperature and concentration of phenolic acids/aldehydes present. Reactions were spontaneous and exothermic, as determined using different thermodynamic parameters (ΔG0, ΔH0, ΔS0). Quantum chemical calculations demonstrated their intermolecular interaction differences, and AIM analysis indicated that hydrogen bonds and van der Waals force interactions contributed to color. Pyranoanthocyanins derived from cyanidin-3-O-glucoside and ferulic/p-coumaric acids during storage were recognized as cyanidin-3-O-glucoside-vinylphenol and cyanidin-3-O-glucoside-vinylguaiacol, respectively, by UPLC-ESI-QTOF-MS/MS. The electron-donating substituents on the aromatic ring of ferulic/p-coumaric acids stabilized the intermediately formed carbenium ion. Decarboxylation and further oxidation of the pyran moieties to the aromatic heterocycles resulted in the final products.


Assuntos
Antocianinas , Saccharum , Aldeídos , Cor , Glucosídeos , Espectrometria de Massas em Tandem
13.
Sci Total Environ ; 803: 150019, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500267

RESUMO

Reducing nitrogen (N) losses from cropping systems to aquatic ecosystems is a global priority. In Australia, N losses from sugarcane production in catchments adjacent to the Great Barrier Reef (GBR) are threatening the health of this World Heritage-listed coral reef ecosystem. N losses from sugarcane can be reduced by improving fertiliser management. However, little is known about the contribution of organic sources of N, such as mill mud. We used more than 10 years of data from two of the main Australian sugarcane regions, a high (Wet Tropics) and moderate (Mackay Whitsundays) rainfall area, to calibrate and validate a model to predict dissolved inorganic nitrogen (DIN) losses in runoff from both inorganic and organic fertilisers. DIN losses in runoff were well simulated (RMSE = 0.37 and 2.0 kg N ha-1 for the Wet Tropics and Mackay Whitsunday regions, respectively). Long-term simulations of rate and fertiliser deductions to account for N from organic sources showed that adopting best management practices for organic fertiliser (applying ≤50 wet t ha-1 mill mud) can significantly reduce DIN in runoff losses compared with applications of 150 wet t ha-1. Simulations of typical farmer practices in relation to fallow management (bare fallow vs. legume fallow) and organic fertiliser placement (buried in a fallow but surface applied to a green cane trash blanket in ratoons) showed that inorganic fertiliser rates need to be adjusted to account for N inputs from both mill mud and legume crops. Rates of application of organic N had a larger impact on DIN runoff losses than placement or timing of application. This work presents a DIN in runoff modelling algorithm that can be coupled with nitrogen models readily available in agricultural models to assess the impact of nutrient management on the quality of water leaving agricultural systems.


Assuntos
Nitrogênio , Saccharum , Agricultura , Algoritmos , Austrália , Ecossistema , Monitoramento Ambiental , Nitrogênio/análise , Nutrientes , Fósforo/análise
14.
Environ Pollut ; 292(Pt A): 118267, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601036

RESUMO

Distillery sludge is a major source of aquatic pollution, but little is known about their microbial community and their association with the organic and metal pollutants. Sugarcane molasses-based distillery is an important industry in India, although the waste is usually treated prior to disposal, the treatment is often inadequate. The adverse effects of the organic and metal pollutants in sugarcane molasses-based distillery sludge on the microbial biodiversity and abundance in the disposal site have not been elucidated. This study aims to address this gap of knowledge. Samples were collected from the discharge point, 1 and 2 km downstream (D1, D2, and D3, respectively) of a sugarcane distillery in Uttar Pradesh, India, and their physico-chemical properties characterised. Using QIIME, taxonomic assignment for the V3 and V4 hypervariable regions of 16 S rRNA was performed. The phyla Proteobacteria (28-39%), Firmicutes (20-28%), Bacteriodetes (9-10%), Actinobacteria (5-10%), Tenericutes (1-9%) and Patescibacteria (2%) were the predominant bacteria in all three sites. Euryechaeota, were detected in sites D1 and D2 (1-2%) but absent in D3. Spirochaetes (5%), Sinergistetes (2%) and Cloacimonetes (1%) were only detected in samples from site D1. Shannon, Simpson, Chao1, and Observed-species indices indicated that site D1 (10.18, 0.0013, 36706.55 and 45653.84, respectively) has higher bacterial diversity and richness than D2 (6.66, 0.0001, 25987.71 and 49655.89, respectively) and D3 (8.31, 0.002, 30345.53 and 30654.88, respectively), suggesting the organic and metal pollutants provided the stressors to favour the survival of microbial community that can biodegrade and detoxify them in the distillery sludge. This study confirmed that the treatment of the distillery waste was not sufficiently effective and provided new metagenomic information on its impact on the surrounding microbial community. It also offered new insights into potential bioremediation candidates.


Assuntos
Poluentes Ambientais , Microbiota , Saccharum , Melaço , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
15.
Cells ; 10(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34943959

RESUMO

To reduce the potentially irreversible environmental impacts caused by fossil fuels, the use of renewable energy sources must be increased on a global scale. One promising source of biomass and bioenergy is sugarcane. The study of this crop's development in different planting seasons can aid in successfully cultivating it in global climate change scenarios. The sugarcane variety SP80-3280 was field grown under two planting seasons with different climatic conditions. A systems biology approach was taken to study the changes on physiological, morphological, agrotechnological, transcriptomics, and metabolomics levels in the leaf +1, and immature, intermediate and mature internodes. Most of the variation found within the transcriptomics and metabolomics profiles is attributed to the differences among the distinct tissues. However, the integration of both transcriptomics and metabolomics data highlighted three main metabolic categories as the principal sources of variation across tissues: amino acid metabolism, biosynthesis of secondary metabolites, and xenobiotics biodegradation and metabolism. Differences in ripening and metabolite levels mainly in leaves and mature internodes may reflect the impact of contrasting environmental conditions on sugarcane development. In general, the same metabolites are found in mature internodes from both "one-year" and "one-and-a-half-year sugarcane", however, some metabolites (i.e., phenylpropanoids with economic value) and natural antisense transcript expression are only detected in the leaves of "one-year" sugarcane.


Assuntos
Desenvolvimento Vegetal/genética , RNA Antissenso/genética , Saccharum/genética , Transcrição Genética , Transcriptoma/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo , Metabolismo Secundário/genética
16.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948367

RESUMO

Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics analysis in two sugarcane genotypes (Badila: susceptible to SCMV and B-48: SCMV resistant). Using Saccharum spontaneum L. genome as a reference, we identified the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) that participate in sugar metabolism, transport of their metabolites, and Carbohydrate Activating enZYmes (CAZymes). Sequencing data revealed 287 DEGs directly or indirectly involved in sugar metabolism, transport, and storage, while 323 DEGs are associated with CAZymes. Significant upregulation of glucose, sucrose, fructose, starch, and SWEET-related transcripts was observed in the Badila after infection of SCMV. B-48 showed resistance against SCMV with a limited number of sugar transcripts up-regulation at the post-infection stage. For CAZymes, only glycosyltransferase (GT)1 and glycosyl hydrolase (GH)17 were upregulated in B-48. Regulation of DEGs was analyzed at the proteomics level as well. Starch, fructose, glucose, GT1, and GH17 transcripts were expressed at the post-translational level. We verified our transcriptomic results with proteomics and qPCR data. Comprehensively, this study proved that Badila upregulated sugar metabolizing and transporting transcripts and proteins, which enhance virus multiplication and infectionl.


Assuntos
Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Potyvirus/fisiologia , Saccharum/metabolismo , Saccharum/virologia , Açúcares/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Metaboloma , Doenças das Plantas/genética , Proteínas de Plantas/genética , Potyvirus/patogenicidade , Proteômica , Saccharum/genética , Transcriptoma
17.
Arch Microbiol ; 204(1): 23, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34918191

RESUMO

The production of useful phenolic flavor compounds by utilizing Lactobacillus acidophilus MTCC 10307 was studied. Ferulic acid, vanillic acid and vanillin were obtained as the significant phenolic acids from the fermentation medium. The compounds were identified and quantified by high-performance thin-layer chromatography. The phenolic acids were detected for 15 days. A maximum quantity of ferulic acid was quantified on the 9th day of incubation and the quantity decreased on further incubation. While the utmost amounts of vanillic acid and vanillin were detected on the 12th day of incubation. The concentration of carbohydrates from the de-starched bagasse was also estimated and was contrasted with that of the original (control) bagasse. The growth pattern of the microorganism was also studied. The quantity of ferulic acid measured per kg of sugarcane bagasse on the 9th day of incubation was determined to be approximately 275 mg whereas 18 mg and 15 mg of vanillic acid and vanillin, respectively, were measured per kg of bagasse on the 12th day of incubation. Ferulic acid esterase was isolated and the fermentation conditions such as pH, temperature and incubation period were standardized for the maximum recovery of the enzyme. The results revealed that in optimized condition, ferulic acid esterase yield was found to be 2.2 U ml-1 at 35 °C, whereas ferulic acid esterase yield was 2.3 U ml-1 at 6.5 pH and 2.4 U ml-1 after 60 h of the incubation period.


Assuntos
Lactobacillus acidophilus , Saccharum , Celulose
18.
BMC Plant Biol ; 21(1): 589, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903178

RESUMO

BACKGROUND: Plasma membrane intrinsic proteins (PIPs) are plant channel proteins involved in water deficit and salinity tolerance. PIPs play a major role in plant cell water balance and responses to salt stress. Although sugarcane is prone to high salt stress, there is no report on PIPs in sugarcane. RESULTS: In the present study, eight PIP family genes, termed ScPIP1-1, ScPIP1-2, ScPIP1-3, ScPIP1-4, ScPIP2-1, ScPIP2-2, ScPIP2-4 and ScPIP2-5, were obtained based on the sugarcane transcriptome database. Then, ScPIP2-1 in sugarcane was cloned and characterized. Confocal microscopy observation indicated that ScPIP2-1 was located in the plasma membrane and cytoplasm. A yeast two-hybridization experiment revealed that ScPIP2-1 does not have transcriptional activity. Real time quantitative PCR (RT-qPCR) analysis showed that ScPIP2-1 was mainly expressed in the leaf, root and bud, and its expression levels in both below- and aboveground tissues of ROC22 were up-regulated by abscisic acid (ABA), polyethylene glycol (PEG) 6000 and sodium chloride (NaCl) stresses. The chlorophyll content and ion leakage measurement suggested that ScPIP2-1 played a significant role in salt stress resistance in Nicotiana benthamiana through the transient expression test. Overexpression of ScPIP2-1 in Arabidopsis thaliana proved that this gene enhanced the salt tolerance of transgenic plants at the phenotypic (healthier state, more stable relative water content and longer root length), physiologic (more stable ion leakage, lower malondialdehyde content, higher proline content and superoxide dismutase activity) and molecular levels (higher expression levels of AtKIN2, AtP5CS1, AtP5CS2, AtDREB2, AtRD29A, AtNHX1, AtSOS1 and AtHKT1 genes and a lower expression level of the AtTRX5 gene). CONCLUSIONS: This study revealed that the ScPIP2-1-mediated osmotic stress signaling cascade played a positive role in plant response to salt stress.


Assuntos
Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Tolerância ao Sal/genética , Transdução de Sinais , Ácido Abscísico/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Clorofila/metabolismo , Citoplasma/metabolismo , Expressão Gênica , Malondialdeído/metabolismo , Pressão Osmótica , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Prolina/metabolismo , Saccharum/fisiologia , Estresse Salino , Tabaco/genética , Tabaco/fisiologia
19.
Braz J Biol ; 83: e242603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34932612

RESUMO

Transcription factors (TF) are a wide class of genes in plants, and these can regulate the expression of other genes in response to various environmental stresses (biotic and abiotic). In the current study, transcription factor activity in sugarcane was examined during cold stress. Initially, RNA transcript reads of two sugarcane cultivars (ROC22 and GT08-1108) under cold stress were downloaded from SRA NCBI database. The reads were aligned into a reference genome and the differential expression analyses were performed with the R/Bioconductor edgeR package. Based on our analyses in the ROC22 cultivar, 963 TF genes were significantly upregulated under cold stress among a total of 5649 upregulated genes, while 293 TF genes were downregulated among a total of 3,289 downregulated genes. In the GT08-1108 cultivar, 974 TF genes were identified among 5,649 upregulated genes and 283 TF genes were found among 3,289 downregulated genes. Most transcription factors were annotated with GO categories related to protein binding, transcription factor binding, DNA-sequence-specific binding, transcription factor complex, transcription factor activity in RNA polymerase II, the activity of nucleic acid binding transcription factor, transcription corepressor activity, sequence-specific regulatory region, the activity of transcription factor of RNA polymerase II, transcription factor cofactor activity, transcription factor activity from plastid promoter, transcription factor activity from RNA polymerase I promoter, polymerase II and RNA polymerase III. The findings of above results will help to identify differentially expressed transcription factors during cold stress. It also provides a comprehensive analysis of the regulation of the transcription activity of many genes. Therefore, this study provides the molecular basis for improving cold tolerance in sugarcane and other economically important grasses.


Assuntos
Resposta ao Choque Frio , Saccharum , Temperatura Baixa , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Saccharum/genética , Saccharum/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
PLoS One ; 16(12): e0236852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34910729

RESUMO

Sugarcane is one of the main alternative sources of biomass for the biofuel sector, and its large-scale production has considerable environmental impact. Organomineral fertilizers formulated with potential environmental contaminants, such as filter cake and sewage sludge, positively influence plant growth and development. The objective of the present study was to evaluate the chemical and physical characteristics of sugarcane fertilized with pelletized organomineral fertilizers based on filter cake or sewage sludge. Eight field treatments were applied, based on three organomineral fertilizer compositions (50%, 100%, and 150%) associated with two organic matter (OM) sources (filter cake or sewage sludge), in addition to a control with 100% mineral fertilizer application, and a no-fertilization control (0%). Sugarcane attributes were evaluated during two consecutive harvests. The weights of stalks per hectare (ton ha-1), sugarcane productivity (ton ha-1), quantity of sugar per hectare (TSH, ton ha-1), and physicochemical properties of sugarcane juice (pol [%], Brix [%], purity [%], and fiber [%]) were evaluated. There were no significant differences in the attributes between OM sources or organomineral fertilization treatments and the exclusive mineral fertilization. The organomineral fertilizer application rate recommended for maximum quantitative and qualitative sugarcane in the first sugarcane harvest was between 2 and 9% above the regular recommendation for mineral fertilizer, regardless of the OM source. In the second harvest, the sewage sludge source increased total sugar and sugarcane per hectare by 4.68 and 4.19%, respectively, compared to the sugarcane filter cake source. Sewage sludge and sugarcane filter cake are viable alternatives for organomineral composition and could improve economic returns and minimize negative environmental impacts in sugarcane cultivation systems.


Assuntos
Biomassa , Fertilizantes , Saccharum , Esgotos , Solo/química , Saccharum/química , Saccharum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...