Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.060
Filtrar
1.
J Environ Manage ; 365: 121603, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963967

RESUMO

Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.


Assuntos
Membranas Artificiais , Silanos , Poluentes Químicos da Água , Purificação da Água , Purificação da Água/métodos , Silanos/química , Poluentes Químicos da Água/química , Metais/química , Óleos/química , Propilaminas/química , Sais/química , Interações Hidrofóbicas e Hidrofílicas , Íons , Polivinil/química
2.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930989

RESUMO

The crystal structures of two newly synthesized nitrilotriacetate oxidovanadium(IV) salts, namely [QH][VO(nta)(H2O)](H2O)2 (I) and [(acr)H][VO(nta)(H2O)](H2O)2 (II), were determined. Additionally, the cytotoxic effects of four N-heterocyclic nitrilotriacetate oxidovanadium(IV) salts-1,10-phenanthrolinium, [(phen)H][VO(nta)(H2O)](H2O)0.5 (III), 2,2'-bipyridinium [(bpy)H][VO(nta)(H2O)](H2O) (IV), and two newly synthesized compounds (I) and (II)-were evaluated against prostate cancer (PC3) and breast cancer (MCF-7) cells. All the compounds exhibited strong cytotoxic effects on cancer cells and normal cells (HaCaT human keratinocytes). The structure-activity relationship analysis revealed that the number and arrangement of conjugated aromatic rings in the counterion had an impact on the antitumor effect. The compound (III), the 1,10-phenanthrolinium analogue, exhibited the greatest activity, whereas the acridinium salt (II), with a different arrangement of three conjugated aromatic rings, showed the lowest toxicity. The increased concentrations of the compounds resulted in alterations to the cell cycle distribution with different effects in MCF-7 and PC3 cells. In MCF-7 cells, compounds I and II were observed to block the G2/M phase, while compounds III and IV were found to arrest the cell cycle in the G0/G1 phase. In PC3 cells, all compounds increased the rates of cells in the G0/G1 phase.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Masculino , Feminino , Células MCF-7 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/análogos & derivados , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Vanádio/química , Vanádio/farmacologia , Células PC-3 , Ciclo Celular/efeitos dos fármacos , Estrutura Molecular , Sais/química , Sais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
3.
Mol Pharm ; 21(7): 3375-3382, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885189

RESUMO

Recent work has shown that an amorphous drug-polymer salt can be highly stable against crystallization under hot and humid storage conditions (e.g., 40 °C/75% RH) and provide fast release and that these advantages depend on the degree of salt formation. Here, we investigate the salt formation between the basic drug lumefantrine (LMF) and several acidic polymers: poly(acrylic acid) (PAA), hypromellose phthalate (HPMCP), hypromellose acetate succinate (HPMCAS), cellulose acetate phthalate (CAP), Eudragit L100, and Eudragit L100-55. Salt formation was performed by "slurry synthesis" where dry components were mixed at room temperature in the presence of a small quantity of an organic solvent, which was subsequently removed. This method achieved more complete salt formation than the conventional methods of hot-melt extrusion and rotary evaporation. The acidic group density of a polymer was determined by nonaqueous titration in the same solvent used for slurry synthesis; the degree of LMF protonation was determined by X-ray photoelectron spectroscopy. The polymers studied show very different abilities to protonate LMF when compared at a common drug loading, following the order PAA > (HPMCP ∼ CAP ∼ L100 ∼ L100-55) > HPMCAS, but the difference largely disappears when the degree of protonation is plotted against the concentration of the available acidic groups for reaction. This indicates that the extent of salt formation is mainly controlled by the acidic group density and is less sensitive to the polymer architecture. Our results are relevant for selecting the optimal polymer to control the degree of ionization in amorphous solid dispersions.


Assuntos
Polímeros , Polímeros/química , Metilcelulose/química , Metilcelulose/análogos & derivados , Cristalização/métodos , Celulose/química , Celulose/análogos & derivados , Resinas Acrílicas/química , Sais/química , Derivados da Hipromelose/química , Solubilidade
4.
Pharm Res ; 41(6): 1257-1270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844745

RESUMO

PURPOSE: Cinchoninze hydrochloride solves the problem of the low solubility of cinchonine, but it is unstable and susceptible to deliquescence. In this study, we designed and prepared cinchonine cocrystal salts or cinchonine salts with better stability, solubility and antioxidant activity than cinchonine. METHOD: We successfully synthesized and characterized three cinchonine salts, namely, cinchonine-fumaric acid, cinchonine-isoferulic acid, and cinchonine-malic acid. The high humidity (92.5% RH) and high temperature (60°C) tests were conducted to determine the physical stability and hygroscopicity of cinchonine hydrochloride, cinchonine and three cinchonine salts. And the ultraviolet spectrophotometry was conducted to determine the equilibrium solubility and intrinsic dissolution rate of cinchonine and salts. Moreover, the DPPH, ABTS, and FRAP assays determined the antioxidant activity of cinchonine and salts. RESULT: Compared with cinchonine hydrochloride and cinchonine, all three cinchonine salts exhibited good physical stability over 15 days under high humidity (92.5% RH) and high temperature (60°C) conditions. While cinchonine and cinchonine hydrochloride are categorized as hygroscopic and deliquescent, respectively, three cinchonine salts are classified as slightly hygroscopic, meaning that they have a lower hygroscopicity than cinchonine and cinchonine hydrochloride. And three cinchonine salts had higher equilibrium solubility, faster intrinsic dissolution rates, and higher antioxidant activity in comparison to cinchonine. Moreover, they showed a "spring and parachute" pattern in the phosphate buffer (pH = 6.8). CONCLUSION: Cocrystallization technology is a viable option for improving cinchonine's poor physicochemical qualities.


Assuntos
Antioxidantes , Cristalização , Estabilidade de Medicamentos , Solubilidade , Antioxidantes/química , Antioxidantes/farmacologia , Molhabilidade , Química Farmacêutica/métodos , Umidade , Sais/química
5.
Pestic Biochem Physiol ; 202: 105967, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879344

RESUMO

Coumarin is a natural product known for its diverse biological activities. While its antifungal properties in agricultural chemistry have been extensively studied, there is limited research on its antibacterial potential. In this study, we developed several novel coumarin derivatives by combining coumarin with pyridinium salt through molecular hybridization and chemical synthesis. Our findings reveal that most of these derivatives exhibit promising antibacterial activity. Among them, derivative A25 has been identified as the most effective compound based on three-dimensional quantitative structure-activity relationships. It demonstrates significant in vitro and in vivo activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicola (Xoc), and Xanthomonas campestris pv. citri (Xac), outperforming the commercially available thiediazole copper. Initial investigations into its mechanism of action suggest that A25 disrupts the cell membranes of Xoc and Xoo, thereby inhibiting bacterial growth. Additionally, A25 enhances the activity of defense enzymes in rice and modulates the expression of proteins related to the pyruvate metabolism pathway. This dual action contributes to rice's resistance against bacterial infestation. We anticipate that this study will serve as a foundation for the development of coumarin-based bactericides.


Assuntos
Antibacterianos , Cumarínicos , Testes de Sensibilidade Microbiana , Oryza , Xanthomonas , Cumarínicos/farmacologia , Cumarínicos/síntese química , Cumarínicos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Xanthomonas/efeitos dos fármacos , Oryza/microbiologia , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química , Compostos de Piridínio/síntese química , Xanthomonas campestris/efeitos dos fármacos , Desenho de Fármacos , Sais/farmacologia , Sais/química , Relação Estrutura-Atividade
6.
Org Lett ; 26(25): 5318-5322, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38888237

RESUMO

Herein we report the discovery of an azabicyclo[2.1.1]hexane piperazinium methanesulfonate salt from an unexpected rearrangement reaction in the preparation of ligand-directed degraders (LDDs). This bench-stable compound was found to be a versatile electrophile in a ring-opening reaction with various types of nucleophiles. Its utility as a versatile medicinal chemistry building block is further demonstrated in the synthesis of an LDD compound targeting degradation of the androgen receptor.


Assuntos
Compostos Azabicíclicos , Piperazinas , Estrutura Molecular , Piperazinas/química , Piperazinas/síntese química , Compostos Azabicíclicos/química , Compostos Azabicíclicos/síntese química , Química Farmacêutica , Ligantes , Sais/química
7.
J Pharm Biomed Anal ; 248: 116319, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908235

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants of great concern due to their carcinogenicity and mutagenicity. Their determination in human serum, particularly in at-risk populations, is necessary but difficult because they are distributed over a wide range of polarity and are present at trace level. A new method combining salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction with solidification of floating organic drop (DLLME-SFO) adapted to a reduced volume of sample (100 µl) was developed to determine 24 PAHs in human serum. Some key parameters of DLLME-SFO (volume of extraction solvent, ratio of extraction/dispersive solvent volumes, and salt addition) were first studied by applying it to spiked pure water. For its application to serum, a sample treatment step involving SALLE was optimized in terms of nature and content of salts and applied upstream of DLLME-SFO. It was applied to the extraction of 24 regulated PAHs from spiked serum followed by an analysis by liquid chromatography coupled with UV and fluorescence detection. The extraction recoveries ranged from 48.2 and 116.0 % (relative standard deviations: 2.0-14.6 %, n=5-9), leading to limits of quantification of PAHs in human serum from 0.04 to 1.03 µg/L using fluorescence detection and from 10 to 40 µg/L using UV detection. This final method combining SALLE and DLLME-SFO showed numerous advantages such as no evaporation step, high efficiency and low solvent-consumption and will be useful for monitoring PAHs in low volumes of serum.


Assuntos
Microextração em Fase Líquida , Extração Líquido-Líquido , Hidrocarbonetos Policíclicos Aromáticos , Solventes , Humanos , Microextração em Fase Líquida/métodos , Hidrocarbonetos Policíclicos Aromáticos/sangue , Hidrocarbonetos Policíclicos Aromáticos/análise , Solventes/química , Extração Líquido-Líquido/métodos , Limite de Detecção , Sais/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos
8.
J Contam Hydrol ; 265: 104393, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38945075

RESUMO

Geological carbon sequestration is a promising technique to reduce atmospheric greenhouse gas emissions. The Washita-Fredericksburg formation in the southeastern United States is being considered as a prospective storage formation. This requires understanding the geochemical impact of CO2 injection on the formation, which is the focus of this work. Here, sandstone samples from the Washita-Fredericksburg formation are analyzed to understand their overall mineralogical composition and the potential geochemical processes that might occur following CO2 injection. Powder X-ray diffraction (XRD) analysis, Scanning Electron Microscopy (SEM) imaging, and image analysis were used to identify mineral phases. SEM images were processed to create a segmented mineral map, which was then used to calculate mineral volume fractions and porosity. Results show that the sample has a porosity of 20% and is mainly composed of quartz, K-feldspar, muscovite, and clays. Accessory minerals such as titanite were also found. Reactive transport models were constructed to assess potential CO2-brine-mineral interactions following CO2 injection. Simulation results suggest that the overall extent of mineral dissolution and precipitation reactions over 10,000 days is limited, with muscovite dissolution increasing porosity to 22%. Limited mineral reactions suggest more injected CO2 will exist in free and dissolved forms, which may require more extensive long-term monitoring.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Dióxido de Carbono/análise , Dióxido de Carbono/química , Porosidade , Microscopia Eletrônica de Varredura , Minerais/química , Minerais/análise , Difração de Raios X , Sais/química
9.
Dalton Trans ; 53(29): 12080-12089, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38869456

RESUMO

The new water-soluble di-anionic bi-sodium salt of tetracycline (TC), an antibiotic in clinical use, with the formula {[TC]2-[Na+(MeOH)(H2O)] [Na+]·(H2O)}n (TCNa) was synthesized. The compound was characterized by m.p., attenuated total reflectance-Fourier transform infra-red (ATR-FTIR) spectroscopy, and ultraviolet (UV) and proton nuclear magnetic resonance (1H NMR) spectroscopy in the solid state and in solution. The molecular weight (MW) was determined by cryoscopy. The crystal structure of TCNa was also determined by X-ray crystallography. The antibacterial activity of TCNa was evaluated against the bacterial species Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) by means of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and inhibition zones (IZs). Moreover, the ability of the compound to eradicate biofilm formation was also evaluated. The results are compared with those obtained for the commercially available drug TCH2. The in vitro and in vivo toxicities of TCNa were tested against human corneal epithelial cells (HCECs) and Artemia salina.


Assuntos
Antibacterianos , Artemia , Testes de Sensibilidade Microbiana , Solubilidade , Tetraciclina , Água , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Artemia/efeitos dos fármacos , Água/química , Animais , Tetraciclina/farmacologia , Tetraciclina/química , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sais/química , Sais/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Cristalografia por Raios X , Ânions/química , Ânions/farmacologia , Sódio/química , Estrutura Molecular
10.
Bioresour Technol ; 406: 130995, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885720

RESUMO

The seed germination index (GI) serves as the principal determinant that impedes the integration of aerobic composting products into agricultural lands. The current research work predominantly focuses on exploring the correlation between physical and chemical indicators of the compost products and GI, neglecting the fundamental cause. This study systematically analyzed the composition of GI aqueous extracts from compost products derived from kitchen waste under various composting methodologies, with nitrogen, carbon, and inorganic salt as critical factors. The analytical work concluded that acetic acid, formic acid, and ammonium were the inhibitory factors influencing GI. Validation experiments introduced inhibitory factors, yielding a functional relationship formula depicting GI variations due to a single influential factor. This study conclusively identified acetic acid as the primary constraint, establishing that its inhibitory concentration corresponded to 70 % GI stands at 85 mg/L. This study will provide guidelines for the future research on enhancing aerobic composting techniques.


Assuntos
Carbono , Compostagem , Germinação , Nitrogênio , Sementes , Germinação/efeitos dos fármacos , Sementes/química , Compostagem/métodos , Solubilidade , Sais/química , Resíduos , Eliminação de Resíduos/métodos , Solo/química , Ácido Acético/farmacologia
11.
J Environ Manage ; 365: 121517, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908153

RESUMO

In this study, treated wastewater and Multi-Stage Flash (MSF) brine were integrated into the Forward Osmosis (FO) system using pressure stimuli-responsive Nanofiltration (PSRNF) membranes to dilute magnesium, calcium, and sulfate MSF plant brine reject. The deposition of magnesium sulfate and calcium sulfate in the heat exchanger is one of the main issues affecting the performance and efficiency of MSF thermal desalination plants. Reducing the concentration of the divalent ions can minimize scale formation and deposition to a level that allows the MSF plant to operate at high top brine temperature (TBT) and without scale problems. The PSRNF membranes were chosen in the FO process because of their high water permeability, rejection of divalent and monovalent ions, small structure parameter (S), and inexpensiveness compared to commercial FO membranes. Three PSRNF membranes were tested in the FO process with the feed solution facing the active membrane layer to avoid active layer delamination. Although the PSRNF membrane exhibited negligible water flux at 0 bar, it increased when a 2-4 bar was applied to the feed solution. The wastewater temperature was set at 25 °C while 40 °C was the brine operational temperature to mimic the field situation. A maximum average water flux of 39.5 L/m2h was recorded at 4 bar feed pressure when the PSRNF membrane was used for the brine dilution, achieving up to 42% divalent ions dilution at 0.02 kWh/m3 specific power consumption. The average water flux in the PRSNF membrane was 35% higher than that in the commercial TFC FO membrane. Notably, the PSRNF membrane is ten times cheaper than commercial FO membranes. Notably, the PSRNF membrane is ten times cheaper than commercial FO membranes, achieving substantial cost reductions and pioneering advancements in FO purification technology.


Assuntos
Membranas Artificiais , Osmose , Esgotos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Sais/química , Filtração , Temperatura
12.
Food Res Int ; 188: 114501, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823874

RESUMO

This study investigated the effects of different pickle brines and glycine additions on biogenic amine formation in pickle fermentation. The results showed that the brines with higher biogenic amine content led to the production of more biogenic amines in the simulated pickle fermentation system. This was related to the abundance of biogenic amine-producing microorganisms in the microbial communities of the brines. Metagenome analysis of the brines and metatranscriptome analysis of the fermentation systems showed that putrescine was primarily from Lactobacillus, Oenococcus, and Pichia, while histamine and tyramine were primarily from Lactobacillus and Tetragenococcus. Addition of glycine significantly reduced the accumulation of biogenic amines in the simulated pickle fermentation system by as much as 70 %. The addition of glycine had no inhibitory effect on the amine-producing microorganisms, but it down-regulated the transcription levels of the genes for enzymes related to putrescine synthesis in Pichia, Lactobacillus, and Oenococcus, as well as the histidine decarboxylase genes in Lactobacillus and Tetragenococcus. Catalytic reaction assay using crude solutions of amino acid decarboxylase extracted from Lactobacillus brevis showed that the addition of glycine inhibited 45 %-55 % of ornithine decarboxylase and tyrosine decarboxylase activities. This study may provide a reference for the study and control of the mechanism of biogenic amine formation in pickle fermentation.


Assuntos
Aminas Biogênicas , Fermentação , Glicina , Glicina/metabolismo , Aminas Biogênicas/metabolismo , Sais , Putrescina/metabolismo , Tiramina/metabolismo , Microbiologia de Alimentos , Lactobacillus/metabolismo , Lactobacillus/genética , Alimentos Fermentados/microbiologia , Pichia/metabolismo , Pichia/genética
13.
Front Cell Infect Microbiol ; 14: 1335189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895735

RESUMO

Background: Chikungunya virus (CHIKV), which causes chikungunya fever, is an arbovirus of public health concern with no approved antiviral therapies. A significant proportion of patients develop chronic arthritis after an infection. Zinc and magnesium salts help the immune system respond effectively against viral infections. This study explored the antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV infection. Methods: The highest non-toxic concentration of the salts (100 µM) was used to assess the prophylactic, virucidal, and therapeutic anti-CHIKV activities. Dose-dependent antiviral effects were investigated to find out the 50% inhibitory concentration of the salts. Entry bypass assay was conducted to find out whether the salts affect virus entry or post entry stages. Virus output in all these experiments was estimated using a focus-forming unit assay, real-time RT-PCR, and immunofluorescence assay. Results: Different time- and temperature-dependent assays revealed the therapeutic antiviral activity of zinc and magnesium salts against CHIKV. A minimum exposure of 4 hours and treatment initiation within 1 to 2 hours of infection are required for inhibition of CHIKV. Entry assays revealed that zinc salt affected virus-entry. Entry bypass assays suggested that both salts affected post-entry stages of CHIKV. In infected C57BL6 mice orally fed with zinc and magnesium salts, a reduction in viral RNA copy number was observed. Conclusion: The study results suggest zinc salts exert anti-CHIKV activity at entry and post entry stages of the virus life cycle, while magnesium salt affect CHIKV at post entry stages. Overall, the study highlights the significant antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV, which can be exploited in designing potential therapeutic strategies for early treatment of chikungunya patients, thereby reducing the virus-associated persistent arthritis.


Assuntos
Antivirais , Febre de Chikungunya , Vírus Chikungunya , Acetato de Zinco , Sulfato de Zinco , Vírus Chikungunya/efeitos dos fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Acetato de Zinco/farmacologia , Acetato de Zinco/uso terapêutico , Sulfato de Zinco/farmacologia , Chlorocebus aethiops , Células Vero , Internalização do Vírus/efeitos dos fármacos , Camundongos , Zinco/farmacologia , Zinco/uso terapêutico , Humanos , Sulfato de Magnésio/farmacologia , Magnésio/farmacologia , Replicação Viral/efeitos dos fármacos , Concentração Inibidora 50 , Sais/farmacologia , Linhagem Celular
14.
mSystems ; 9(7): e0053824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38934645

RESUMO

Hypersaline ecosystems display taxonomically similar assemblages with low diversities and highly dense accompanying viromes. The ecological implications of viral infection on natural microbial populations remain poorly understood, especially at finer scales of diversity. Here, we sought to investigate the influence of changes in environmental physicochemical conditions and viral predation pressure by autochthonous and allochthonous viruses on host dynamics. For this purpose, we transplanted two microbiomes coming from distant hypersaline systems (solar salterns of Es Trenc in Spain and the thalassohaline lake of Aran-Bidgol lake in Iran), by exchanging the cellular fractions with the sterile-filtered accompanying brines with and without the free extracellular virus fraction. The midterm exposure (1 month) of the microbiomes to the new conditions showed that at the supraspecific taxonomic range, the assemblies from the solar saltern brine more strongly resisted the environmental changes and viral predation than that of the lake. The metagenome-assembled genomes (MAGs) analysis revealed an intraspecific transition at the ecotype level, mainly driven by changes in viral predation pressure, by both autochthonous and allochthonous viruses. IMPORTANCE: Viruses greatly influence succession and diversification of their hosts, yet the effects of viral infection on the ecological dynamics of natural microbial populations remain poorly understood, especially at finer scales of diversity. By manipulating the viral predation pressure by autochthonous and allochthonous viruses, we uncovered potential phage-host interaction, and their important role in structuring the prokaryote community at an ecotype level.


Assuntos
Lagos , Microbiota , Lagos/microbiologia , Lagos/virologia , Espanha , Humanos , Sais/química , Salinidade , Irã (Geográfico) , Metagenoma , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação
15.
J Mass Spectrom ; 59(6): e5037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752484

RESUMO

Bacillus cereus is responsible for foodborne outbreaks worldwide. Among the produced toxins, cereulide induces nausea and vomiting after 30 min to 6 h following the consumption of contaminated foods. Cereulide, a cyclodepsipeptide, is an ionophore selective to K+ in solution. In electrospray, the selectivity is reduced as [M + Li]+; [M + Na]+ and [M + NH4]+ can also be detected without adding corresponding salts. Two forms are possible for alkali-cationized ions: charge-solvated (CS) that exclusively dissociates by releasing a bare alkali ion and protonated salt (PS), yielding alkali product ions by covalent bond cleavages (CBC) promoted by mobile proton. Based on a modified peptide cleavage nomenclature, the PS product ion series (b, a, [b + H2O] and [b + CnH2nO] [n = 4, 5]) are produced by Na+/Li+/K+-cationized cereulide species that specifically open at ester linkages followed by proton mobilization promoting competitive ester CBC as evidenced under resonant collision activation. What is more, unlike the sodiated or lithiated cereulide, which regenerates little or no alkali cation, the potassiated forms lead to an abundant K+ regeneration. This occurs by splitting of (i) the potassiated CS forms with an appearance threshold close to that of the PS first fragment ion generation and (ii) eight to four potassiated residue product ions from the PS forms. Since from Na+/Li+-cationized cereulide, (i) the negligible Na+/Li+ regeneration results in a higher sensibility than that of potassiated forms that abundantly releasing K+, and (ii) a better sequence recovering, the use of Na+ (or Li+) should be more pertinent to sequence isocereulides and other cyclodepsipeptides.


Assuntos
Cátions , Depsipeptídeos , Prótons , Espectrometria de Massas por Ionização por Electrospray , Depsipeptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cátions/química , Álcalis/química , Bacillus cereus/química , Sais/química
16.
J Med Chem ; 67(11): 8642-8666, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38748608

RESUMO

There is an urgent need for nonopioid treatments for chronic and neuropathic pain to provide effective alternatives amid the escalating opioid crisis. This study introduces novel compounds targeting the α9 nicotinic acetylcholine receptor (nAChR) subunit, which is crucial for pain regulation, inflammation, and inner ear functions. Specifically, it identifies novel substituted carbamoyl/amido/heteroaryl dialkylpiperazinium iodides as potent agonists selective for human α9 and α9α10 over α7 nAChRs, particularly compounds 3f, 3h, and 3j. Compound 3h (GAT2711) demonstrated a 230 nM potency as a full agonist at α9 nAChRs, being 340-fold selective over α7. Compound 3c was 10-fold selective for α9α10 over α9 nAChR. Compounds 2, 3f, and 3h inhibited ATP-induced interleukin-1ß release in THP-1 cells. The analgesic activity of 3h was fully retained in α7 knockout mice, suggesting that analgesic effects were potentially mediated through α9* nAChRs. Our findings provide a blueprint for developing α9*-specific therapeutics for pain.


Assuntos
Analgésicos , Inflamação , Piperazinas , Receptores Nicotínicos , Animais , Humanos , Masculino , Camundongos , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/síntese química , Analgésicos/uso terapêutico , Inflamação/tratamento farmacológico , Camundongos Knockout , Agonistas Nicotínicos/farmacologia , Agonistas Nicotínicos/química , Agonistas Nicotínicos/uso terapêutico , Agonistas Nicotínicos/síntese química , Dor/tratamento farmacológico , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Piperazinas/uso terapêutico , Receptores Nicotínicos/metabolismo , Sais/química , Sais/farmacologia , Relação Estrutura-Atividade , Iodetos/química
17.
Int J Biol Macromol ; 272(Pt 1): 132446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795898

RESUMO

Type IV collagen, a principal constituent of basement membranes, consists of six distinct α chains that assemble into both ABC and AAB-type heterotrimers. While collagen-like peptides have been investigated for heterotrimer formation, the construction of ABC-type heterotrimeric collagen mimetic peptides remains a formidable challenge, primarily due to the intricate composition and arrangement of the chains. We have herein for the first time reported the development of a versatile triblock peptide system to mimic ABC-type heterotrimeric collagen stabilized by salt bridges. The triblock peptides A, B, and C incorporate functional natural type IV collagen sequences in the center, along with charged amino acids at their N and C-terminals. By leveraging electrostatic repulsion at these charged termini, the formation of homotrimers is effectively inhibited, while stable ABC-type heterotrimers are generated through the establishment of salt bridges between oppositely charged terminals. Circular dichroism (CD) spectroscopy demonstrated that peptides A, B, and C existed as individual monomers, while they effectively formed stable ABC-type heterotrimers upon being mixed at a molar ratio of 1:1:1. Additionally, fluorescence quenching results indicated that fluorescence-labeled peptides A', B', and C' formed ABC-type heterotrimer, exhibiting comparable thermal stability as determined by CD spectroscopy. Molecular dynamics simulations elucidated the role of salt bridges between arginine and aspartic acid residues at N- and C-terminals in maintaining a unique chain register in the ABC-type heterotrimers. These triblock peptides offer a robust approach for replicating the structural and functional characteristics of type IV collagen, with promising applications in elucidating the biological roles and pathologies associated with heterotrimeric collagen.


Assuntos
Peptídeos , Peptídeos/química , Multimerização Proteica , Colágeno Tipo IV/química , Sais/química , Sequência de Aminoácidos , Estabilidade Proteica , Colágeno/química , Dicroísmo Circular , Simulação de Dinâmica Molecular
18.
Environ Sci Technol ; 58(23): 10347-10356, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38808621

RESUMO

Hydrogen-tuned 185 nm vacuum ultraviolet (VUV/H2) photolysis is an emerging technology to destroy per- and polyfluoroalkyl substance (PFAS) in brine. This study discovered the promotive effects of two major brine anions, i.e., chloride and sulfate in VUV/H2 photolysis on the hydrated electron (eaq-) generation and perfluorocarboxylates (PFCAs) destruction and established a kinetics model to elucidate the promotive effects on the steady-state concentration of eaq- ([eaq-]ss). Results showed that VUV/H2 achieved near-complete defluorination of perfluorooctanoic acid (PFOA) in the presence of up to 1000 mM chloride or sulfate at pH 12. The defluorination rate constant (kdeF) of PFOA peaked with a chloride concentration at 100 mM and with a sulfate concentration at 500 mM. The promotive effects of chloride and sulfate were attributed to an enhanced generation of eaq- via their direct VUV photolysis and conversion of additionally generated hydroxyl radical to eaq- by H2, which was supported by a linear correlation between the predicted [eaq-]ss and experimentally observed kdeF. The kdeF value increased from pH 9 to 12, which was attributed to the speciation of the H·/eaq- pair. Furthermore, the VUV system achieved >95% defluorination and ≥99% parent compound degradation of a concentrated PFCAs mixture in a synthetic brine, without generating any toxic perchlorate or chlorate.


Assuntos
Cloretos , Fluorocarbonos , Hidrogênio , Fotólise , Sulfatos , Raios Ultravioleta , Cinética , Fluorocarbonos/química , Sulfatos/química , Hidrogênio/química , Cloretos/química , Sais/química , Poluentes Químicos da Água/química , Caprilatos
19.
J Environ Manage ; 359: 121057, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718606

RESUMO

Brine, a by-product of desalination and industrial facilities, is becoming more and more of an environmental issue. This comprehensive techno-economic assessment (TEA), focusing on the technical and economic aspects, investigates the performance and viability of a novel hybrid desalination brine treatment system known as zero liquid discharge (ZLD). Notably, this research represents the first instance of evaluating the feasibility and effectiveness of integrating three distinct desalination processes, namely brine concentrator (BC), high-pressure reverse osmosis (HPRO), and membrane-promoted crystallization (MPC), within a ZLD framework. The findings of this study demonstrate an exceptional water recovery rate of 97.04%, while the energy requirements stand at a reasonable level of 17.53 kWh/m3. Financially, the ZLD system proves to be at least 3.28 times more cost-effective than conventional evaporation ponds and offers comparable cost efficiency to alternatives such as land application and deep-well injection. Moreover, the ZLD system exhibits profitability potential by marketing both drinking water and solid salt or solely desalinated water. The daily profit from the sale of generated water varies from US$194.08 to US$281.41, with Greece and Cyprus attaining the lowest and highest profit, respectively. When considering the sale of both salt and water, the profit rises by 8% across all locations.


Assuntos
Purificação da Água , Purificação da Água/métodos , Purificação da Água/economia , Osmose , Sais/química
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124403, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38710138

RESUMO

In order to make novel breakthroughs in molecular salt studies of BCS class-IV antifungal medication bifonazole (BIF), a salification-driven strategy towards ameliorating attributes and aiding augment efficiency is raised. This strategy fully harnesses structural characters together attributes and benefits of caffeic acid (CAF) to concurrently enhance dissolvability and permeability of BIF by introducing the two ingredients into the identical molecular salt lattice through the salification reaction, which, coupled with the aroused potential activity of CAF significantly amplifies the antifungal efficacy of BIF. Guided by this route, the first BIF-organic molecular salt, BIF-CAF, is directionally designed and synthesized with satisfactorily structural characterizations and integrated theoretical and experimental explorations on the pharmaceutical properties. Single-crystal X-ray diffraction resolving confirms that there is a lipid-water amphiphilic sandwich structure constructed by robust charge-assistant hydrogen bonds in the salt crystal, endowing the molecular salt with the potential to enhance both dissolvability and permeability relative to the parent drug, which is validated by experimental evaluations. Remarkably, the comprehensive DFT-based theoretical investigations covering frontier molecular orbital, molecular electrostatic potential, Hirshfeld surface analysis, reduced density gradient, topology, sphericity and planarity analysis strongly support these observations, thereby allowing some positive relationships between macroscopic properties and microstructures of the molecular salt can be made. Intriguingly, the optimal properties, together with the stimulated activity of CAF markedly augment in vitro antifungal ability of the molecular salt, with magnifying inhibition zones and reducing minimum inhibitory concentrations. These findings fill in the gaps on researches of BIF-organic molecular salt, and adequately exemplify the feasibility and validity by integrating theoretical and experimental approaches to resolve BIF's problems via the salification-driven tactic.


Assuntos
Antifúngicos , Ácidos Cafeicos , Imidazóis , Antifúngicos/farmacologia , Antifúngicos/química , Imidazóis/química , Imidazóis/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Sais/química , Teoria Quântica , Modelos Moleculares , Testes de Sensibilidade Microbiana , Cristalografia por Raios X , Ligação de Hidrogênio , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA