Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.764
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 481-487, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38952086

RESUMO

Objective To elucidate the role of chaperone-mediated autophagy (CMA) in alleviating emotional dysfunction in mice with sepsis-associated encephalopathy (SAE). Methods The SAE mouse model was established by cecal ligation and perforation (CLP). The severity of sepsis was assessed using the sepsis severity score (MSS). Emotional function in SAE mice was assessed by the open-field test and elevated plus-maze. The expression levels of cognitive heat shock cognate protein 70 (HSC70), lysosomal-associated membrane protein 2A (LAMP2A) and high mobility group box 1 protein B1 (HMGB1) were detected using Western blotting. Co-localization of LAMP2A in the hippocampal neurons was observed by immunofluorescence. The release of inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) was measured using ELISA. Following 12 hours post-CLP, mice were orally administered resveratrol at a dose of 30 mg/kg once daily until day 14. Results The mortality rate of CLP mice was 45.83% 24 days post CLP, and all surviving mice exhibited emotional disturbances. 24 hours after CLP, a significant decrease in HSC70 and LAMP2A expression in hippocampal neurons was observed, indicating impaired CMA activity. Meanwhile, HMGB1 and inflammatory cytokines (IL-6 and TNF-α) levels increased. After resveratrol treatment, an increase of HSC70 and LAMP2A expression, and a decrease of HMGB1 expression and inflammatory cytokine release were observed, suggesting enhanced CMA activity and reduced neuroinflammation. Behavioral tests showed that emotional dysfunction was improved in SAE mice after resveratrol treatment. Conclusion CMA activity of hippocampal neurons in SAE mice is significantly reduced, leading to emotional dysfunction. Resveratrol can alleviate neuroinflammation and emotional dysfunction in SAE mice by promoting CMA and inhibiting the expression of HMGB1 and the release of inflammatory factors.


Assuntos
Autofagia Mediada por Chaperonas , Proteína HMGB1 , Resveratrol , Encefalopatia Associada a Sepse , Animais , Camundongos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/fisiopatologia , Encefalopatia Associada a Sepse/metabolismo , Masculino , Resveratrol/farmacologia , Proteína HMGB1/metabolismo , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Interleucina-6/metabolismo , Estilbenos/farmacologia , Proteínas de Choque Térmico HSC70/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/fisiopatologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Front Immunol ; 15: 1397722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957471

RESUMO

Rationale: Sepsis is a life-threatening organ dysfunction and lack of effective measures in the current. Exosomes from mesenchymal stem cells (MSCs) reported to alleviate inflammation during sepsis, and the preconditioning of MSCs could enhance their paracrine potential. Therefore, this study investigated whether exosomes secreted by lipopolysaccharide (LPS)-pretreated MSCs exert superior antiseptic effects, and explored the underlying molecular mechanisms. Methods: Exosomes were isolated and characterized from the supernatants of MSCs. The therapeutic efficacy of normal exosomes (Exo) and LPS-pretreated exosomes (LPS-Exo) were evaluated in terms of survival rates, inflammatory response, and organ damage in an LPS-induced sepsis model. Macrophages were stimulated with LPS and treated with Exo or LPS-Exo to confirm the results of the in vivo studies, and to explain the potential mechanisms. Results: LPS-Exo were shown to inhibit aberrant pro-inflammatory cytokines, prevent organ damages, and improve survival rates of the septic mice to a greater extent than Exo. In vitro, LPS-Exo significantly promoted the M2 polarization of macrophages exposed to inflammation. miRNA sequencing and qRT-PCR analysis identified the remarkable expression of miR-150-5p in LPS-Exo compared to that in Exo, and exosomal miR-150-5p was transferred into recipient macrophages and mediated macrophage polarization. Further investigation demonstrated that miR-150-5p targets Irs1 in recipient macrophages and subsequently modulates macrophage plasticity by down-regulating the PI3K/Akt/mTOR pathway. Conclusion: The current findings highly suggest that exosomes derived from LPS pre-conditioned MSCs represent a promising cell-free therapeutic method and highlight miR-150-5p as a novel molecular target for regulating immune hyperactivation during sepsis.


Assuntos
Exossomos , Proteínas Substratos do Receptor de Insulina , Lipopolissacarídeos , Macrófagos , Células-Tronco Mesenquimais , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sepse , Transdução de Sinais , Serina-Treonina Quinases TOR , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sepse/metabolismo , Sepse/imunologia , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ativação de Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças
3.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 597-603, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38991958

RESUMO

OBJECTIVE: To investigate the protective effect of berberine hydrochloride on intestinal mucosal barrier damage in sepsis rats and its mechanism. METHODS: Forty-eight male SD rats were divided into a control group (Sham group, 6 cases), a sepsis model group (LPS group, 14 cases), a berberine hydrochloride intervention group (Ber group, 14 cases), and a Notch signaling pathway inhibition group (DAPT group, 14 cases) according to random number table method. The DAPT group was intraperitoneally injected with 5 mg/kg Notch signaling pathway inhibition DAPT 2 hours before modeling. The sepsis model was established by intraperitoneal injection of 10 mg/kg lipopolysaccharide (LPS); Sham group was injected with an equal amount of saline (2 mL). The Ber group and DAPT group were treated with gavage of 50 mg/kg berberine hydrochloride 2 hours after modeling; Sham group and LPS group were treated with gavage of an equal amount of saline (2 mL). The temperature, weight, behavior and survival rate of rats were observed at 0, 6, 12 and 24 hours of modeling. After 24 hours of modeling, abdominal aortic blood was collected under anesthesia, and intestinal tissues were obtained after euthanasia. The pathological changes of ileum were observed under light microscope. The ultrastructure of ileum was observed under transmission electron microscope. Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of serum diamine oxidase (DAO), intestinal fatty acid binding protein (iFABP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Real time-polymerase chain reaction (RT-PCR) and Western blotting were used to detect the mRNA and protein expressions of tight junction proteins (Occludin and Claudin1), Notch1 and their downstream target signals in the ileum tissue. RESULTS: After 24 hours of modeling, compared with the Sham group, the LPS group, Ber group, and DAPT group showed a decrease in weight and an increase in temperature. Among them, the LPS group showed the most significant changes, followed by the DAPT group, and the Ber group showed the least significant changes. The survival rates of the LPS group, Ber group, and DAPT group were all lower than those of the Sham group [42.9% (6/14), 57.1% (8/14), 57.1% (8/14) vs. 100% (6/6)], and six rats were taken from each group for subsequent testing. Macroscopic observation of the intestine showed that the LPS group had the most severe edema in the ileum tissue and abdominal bleeding, with significant improvement in the Ber group and followed by the DAPT group. Under the light microscope, the LPS group showed disordered arrangement of glandular tissue in the ileum mucosa, significantly reduced goblet cells, and extensive infiltration of inflammatory cells, which were significantly improved in the Ber group but less improved in the DAPT group. Under electron microscopy, the LPS group showed extensive shedding of ileal microvilli and severe damage to the tight junction complex structure of intestinal epithelial cells, which was significantly improved in the Ber group but less improved in the DAPT group. The levels of serum DAO, iFABP, TNF-α, IL-6 in the LPS group were significantly higher than those in the Sham group, while the above indicators in the Ber group were significantly lower than those in the LPS group [DAO (µg/L): 4.94±0.44 vs. 6.53±0.49, iFABP (ng/L): 709.67±176.97 vs. 1 417.71±431.44, TNF-α (ng/L): 74.70±8.15 vs. 110.36±3.51, IL-6 (ng/L): 77.34±9.80 vs. 101.65±6.92, all P < 0.01], while the above indicators in the DAPT group were significantly higher than those in the Ber group. The results of RT-PCR and Western blotting showed that the mRNA and protein expressions of Occludin, Claudin1, Notch1, and Hes1 in the ileum tissue of LPS group rats were decreased compared to the Sham group, which were significantly increased in the Ber group compared with the LPS group [mRNA expression: Occludin mRNA (2-ΔΔCt): 1.61±0.74 vs. 0.30±0.12, Claudin1 mRNA (2-ΔΔCt): 1.97±0.37 vs. 0.58±0.14, Notch1 mRNA (2-ΔΔCt): 1.29±0.29 vs. 0.36±0.10, Hes1 mRNA (2-ΔΔCt): 1.22±0.39 vs. 0.27±0.04; protein expression: Occludin/GAPDH: 1.17±0.14 vs. 0.74±0.04, Claudin1/GAPDH: 1.14±0.06 vs. 0.58±0.10, Notch1/GAPDH: 0.87±0.11 vs. 0.56±0.09, Hes1/GAPDH: 1.02±0.13 vs. 0.62±0.01; all P < 0.05], while those in the DAPT group were significantly lower than those in the Ber group. CONCLUSIONS: Early use of berberine hydrochloride can significantly improve intestinal mucosal barrier damage in sepsis rats, and its mechanism may be related to inhibiting inflammatory response and regulating the expression of intestinal mechanical barrier tight junction protein through Notch1 signal.


Assuntos
Berberina , Mucosa Intestinal , Ratos Sprague-Dawley , Sepse , Animais , Berberina/farmacologia , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Masculino , Ratos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças
4.
Sci Rep ; 14(1): 16071, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992150

RESUMO

Sepsis-induced acute lung injury (SALI) poses a significant threat with high incidence and mortality rates. Ginsenoside Rg1 (GRg1), derived from Ginseng in traditional Chinese medicine, has been found to reduce inflammation and protect lung epithelial cells against tissue damage. However, the specific roles and mechanisms by which GRg1 mitigates SALI have yet to be fully elucidated. In this context, we employed a relevant SALI mouse model, alongside network pharmacology, molecular docking, and molecular dynamics simulation to pinpoint GRg1's action targets, complemented by in vitro assays to explore the underlying mechanisms. Our research shows that GRg1 alleviates CLP-induced SALI, decreasing lung tissue damage and levels of serum proinflammatory factor IL-6, TNF-α, and IL-1ß, also enhancing the survival rate of CLP mice. A total of 116 common targets between GRg1 and ALI, with specific core targets including AKT1, VEGFA, SRC, IGF1, ESR1, STAT3, and ALB. Further in vitro experiments assessed GRg1's intervention effects on MLE-12 cells exposed to LPS, with qRT-PCR analysis and molecular dynamics simulations confirming AKT1 as the key target with the favorable binding activity for GRg1. Western blot results indicated that GRg1 increased the Bcl-2/Bax protein expression ratio to reduce apoptosis and decreased the high expression of cleaved caspase-3 in LPS-induced MLE-12 cells. More results showed significant increases in the phosphorylation of PI3K and AKT1. Flow cytometric analysis using PI and Annexin-V assays further verified that GRg1 decreased the apoptosis rate in LPS-stimulated MLE-12 cells (from 14.85 to 6.54%, p < 0.05). The employment of the AKT1 inhibitor LY294002 confirmed these trends, indicating that AKT1's inhibition negates GRg1's protective effects on LPS-stimulated MLE-12 cells. In conclusion, our research highlights GRg1's potential as an effective adjunct therapy for SALI, primarily by inhibiting apoptosis in alveolar epithelial cells and reducing pro-inflammatory cytokine secretion, thus significantly enhancing the survival rates of CLP mice. These beneficial effects are mediated through targeting AKT1 and activating the PI3K-AKT pathway.


Assuntos
Lesão Pulmonar Aguda , Ginsenosídeos , Simulação de Dinâmica Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sepse , Transdução de Sinais , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Ginsenosídeos/uso terapêutico , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Linhagem Celular , Lipopolissacarídeos
5.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000249

RESUMO

In recent years, there has been a growing realization of intricate interactions between the nervous and immune systems, characterized by shared humoral factors and receptors. This interplay forms the basis of the neuroimmune system, the understanding of which will provide insights into the pathogenesis of neurological diseases, in which the involvement of the immune system has been overlooked. Kynurenine and its derivatives derived from tryptophan have long been implicated in the pathogenesis of various neurological diseases. Recent studies have revealed their close association not only with neurological disorders but also with sepsis-related deaths. This review provides an overview of the biochemistry of kynurenine and its derivatives, followed by a discussion of their role via the modulation of the neuroimmune system in various diseases.


Assuntos
Cinurenina , Neuroimunomodulação , Humanos , Cinurenina/metabolismo , Animais , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/imunologia , Triptofano/metabolismo , Triptofano/química , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Sepse/imunologia , Sepse/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000323

RESUMO

Neutrophil extracellular traps (NETs) have a dual role in the innate immune response to thermal injuries. NETs provide an early line of defence against infection. However, excessive NETosis can mediate the pathogenesis of immunothrombosis, disseminated intravascular coagulation (DIC) and multiple organ failure (MOF) in sepsis. Recent studies suggest that high interleukin-8 (IL-8) levels in intensive care unit (ICU) patients significantly contribute to excessive NET generation. This study aimed to determine whether IL-8 also mediates NET generation in patients with severe thermal injuries. IL-8 levels were measured in serum samples from thermally injured patients with ≥15% of the total body surface area (TBSA) and healthy controls (HC). Ex vivo NET generation was also investigated by treating isolated neutrophils with serum from thermal injured patients or normal serum with and without IL-8 and anti-IL-8 antibodies. IL-8 levels were significantly increased compared to HC on days 3 and 5 (p < 0.05) following thermal injury. IL-8 levels were also significantly increased at day 5 in septic versus non-septic patients (p < 0.001). IL-8 levels were also increased in patients who developed sepsis compared to HC at days 3, 5 and 7 (p < 0.001), day 10 (p < 0.05) and days 12 and 14 (p < 0.01). Serum containing either low, medium or high levels of IL-8 was shown to induce ex vivo NETosis in an IL-8-dependent manner. Furthermore, the inhibition of DNase activity in serum increased the NET-inducing activity of IL-8 in vitro by preventing NET degradation. IL-8 is a major contributor to NET formation in severe thermal injury and is increased in patients who develop sepsis. We confirmed that DNase is an important regulator of NET degradation but also a potential confounder within assays that measure serum-induced ex vivo NETosis.


Assuntos
Armadilhas Extracelulares , Interleucina-8 , Neutrófilos , Humanos , Armadilhas Extracelulares/metabolismo , Interleucina-8/metabolismo , Interleucina-8/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Neutrófilos/metabolismo , Neutrófilos/imunologia , Queimaduras/imunologia , Queimaduras/metabolismo , Queimaduras/complicações , Queimaduras/patologia , Queimaduras/sangue , Sepse/metabolismo , Sepse/imunologia , Sepse/sangue , Idoso
7.
Br J Anaesth ; 133(2): 316-325, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960833

RESUMO

BACKGROUND: The mechanisms by which megadose sodium ascorbate improves clinical status in experimental sepsis is unclear. We determined its effects on cerebral perfusion, oxygenation, and temperature, and plasma levels of inflammatory biomarkers, nitrates, nitrites, and ascorbate in ovine Gram-negative sepsis. METHODS: Sepsis was induced by i.v. infusion of live Escherichia coli for 31 h in unanaesthetised Merino ewes instrumented with a combination sensor in the frontal cerebral cortex to measure tissue perfusion, oxygenation, and temperature. Fluid resuscitation at 23 h was followed by i.v. megadose sodium ascorbate (0.5 g kg-1 over 30 min+0.5 g kg-1 h-1 for 6.5 h) or vehicle (n=6 per group). Norepinephrine was titrated to restore mean arterial pressure (MAP) to 70-80 mm Hg. RESULTS: At 23 h of sepsis, MAP (mean [sem]: 85 [2] to 64 [2] mm Hg) and plasma ascorbate (27 [2] to 15 [1] µM) decreased (both P<0.001). Cerebral ischaemia (901 [58] to 396 [40] units), hypoxia (34 [1] to 19 [3] mm Hg), and hyperthermia (39.5 [0.1]°C to 40.8 [0.1]°C) (all P<0.001) developed, accompanied by malaise and lethargy. Sodium ascorbate restored cerebral perfusion (703 [121] units], oxygenation (30 [2] mm Hg), temperature (39.2 [0.1]°C) (all PTreatment<0.05), and the behavioural state to normal. Sodium ascorbate slightly reduced the sepsis-induced increase in interleukin-6, returned VEGF-A to normal (both PGroupxTime<0.01), and increased plasma ascorbate (20 000 [300] µM; PGroup<0.001). The effects of sodium ascorbate were not reproduced by equimolar sodium bicarbonate. CONCLUSIONS: Megadose sodium ascorbate rapidly reversed sepsis-induced cerebral ischaemia, hypoxia, hyperthermia, and sickness behaviour. These effects were not reproduced by an equimolar sodium load.


Assuntos
Ácido Ascórbico , Sepse , Animais , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Feminino , Ovinos , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Hipóxia/metabolismo , Antioxidantes/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
8.
Chem Biol Drug Des ; 104(1): e14579, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39013775

RESUMO

Sepsis-induced acute lung injury (ALI) is a severe complication of sepsis. Karanjin, a natural flavonoid compound, has been proved to have anti-inflammatory function, but its role in sepsis-stimulated ALI is uncertain. Herein, the effect of karanjin on sepsis-stimulated ALI was investigated. We built a mouse model of lipopolysaccharide (LPS)-stimulated ALI. The histopathological morphology of lung tissues was scrutinized by hematoxylin-eosin (H&E) staining. The lung injury score and lung wet/dry weight ratio were detected. The myeloperoxidase (MPO) activity and malondialdehyde (MDA) content were scrutinized by commercial kits. Murine alveolar lung epithelial (MLE-12) cells were treated with LPS to mimic a cellular model of ALI. The cell viability was scrutinized by the CCK-8 assay. The contents of proinflammatory cytokines were scrutinized by qRT-PCR and ELISA. The TLR4 and MyD88 contents were scrutinized by qRT-PCR and western blotting. Results showed that karanjin alleviated LPS-stimulated ALI in mice by inhibiting lung tissue lesions, edema, and oxidative stress. Moreover, karanjin inhibited LPS-stimulated inflammation and TLR4 pathway activation in mice. However, treatment with GSK1795091, an agonist of TLR4, attenuated the effects of karanjin on LPS-induced ALI. Furthermore, karanjin repressed LPS-stimulated inflammatory response and TLR4 pathway activation in MLE-12 cells. Overexpression of TLR4 attenuated karanjin effects on LPS-stimulated inflammatory responses in MLE-12 cells. In conclusion, karanjin repressed sepsis-stimulated ALI in mice by suppressing the TLR4 pathway.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Sepse , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Receptor 4 Toll-Like/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Linhagem Celular , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Peroxidase/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Malondialdeído/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Sobrevivência Celular/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Sulfonamidas
9.
Adipocyte ; 13(1): 2379867, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39011965

RESUMO

BACKGROUND: Sepsis is a significant contributor to both intensive care unit (ICU) admissions and mortality among patients in ICU, with a rising prevalence of obesity. There is a lack of extensive research on the correlation between TyGI and findings in patients with sepsis, especially in obese patients. METHODS: This study used a retrospective cohort design and included patients with sepsis (≥18 years) from the Medical Information Mart for Intensive Care IV database. The association between TyGI and outcome was examined using multivariable logistic regression analysis. RESULTS: 8,840 patients with sepsis were included in the analysis. The in-ICU mortality rate was 9.7%. Non-survivors exhibited significantly greater TyGI levels than survivors [9.19(8.76-9.71) vs. 9.10(8.67-9.54), p < 0.001]. The adjusted multivariate regression model showed that elevated TyGI values were linked to a greater likelihood of death in ICU (odds ratio [OR] range 1.072-1.793, p < 0.001) and hospital (OR range 1.068-1.445, p = 0.005). Restricted Cubic Spline analysis revealed a nonlinear association between TyGI and in-ICU and in-hospital mortality risks within specified ranges. Subgroup analysis revealed interaction effects in the general obesity, abdominal obesity, and impaired fasting glucose subgroups (p = 0.014, 0.016, and < 0.001, respectively). CONCLUSION: TyGI was associated with an increased sepsis-related short-term mortality risk and adverse outcomes after ICU admission.


Assuntos
Glicemia , Mortalidade Hospitalar , Unidades de Terapia Intensiva , Obesidade , Sepse , Triglicerídeos , Humanos , Sepse/mortalidade , Sepse/metabolismo , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Obesidade/mortalidade , Obesidade/metabolismo , Obesidade/complicações , Idoso , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Glicemia/análise , Glicemia/metabolismo , Adulto
10.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000113

RESUMO

Iron is an essential nutrient for humans and microbes, such as bacteria. Iron deficiency commonly occurs in critically ill patients, but supplementary iron therapy is not considered during the acute phase of critical illness since it increases iron availability for invading microbes and oxidative stress. However, persistent iron deficiency in the recovery phase is harmful and has potential adverse outcomes such as cognitive dysfunction, fatigue, and cardiopulmonary dysfunction. Therefore, it is important to treat iron deficiency quickly and efficiently. This article reviews current knowledge about iron-related biomarkers in critical illness with a focus on patients with sepsis, and provides possible criteria to guide decision-making for iron supplementation in the recovery phase of those patients.


Assuntos
Estado Terminal , Ferro , Sepse , Humanos , Sepse/metabolismo , Ferro/metabolismo , Biomarcadores/metabolismo , Animais , Deficiências de Ferro
11.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953409

RESUMO

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Assuntos
Anti-Inflamatórios , Epigênese Genética , Flavanonas , Proteína 2 de Ligação a Metil-CpG , Regiões Promotoras Genéticas , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Animais , Flavanonas/farmacologia , Epigênese Genética/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Metilação de DNA/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Transcrição RelA/metabolismo , Sepse/tratamento farmacológico , Sepse/genética , Sepse/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , DNA Metiltransferase 3A/metabolismo , Masculino , Proteína p300 Associada a E1A/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética
12.
Gen Physiol Biophys ; 43(4): 353-366, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953577

RESUMO

This study aimed to assess the prophylactic effects of Berberine on experimentally induced lung sepsis and examine its effects on selected cytokines, genes, and protein expression besides the histopathological evaluation. Berberine significantly reduced the wet/dry lung ratio, the broncho-alveolar lavage fluid (BALF) protein, cells, neutrophils percentage, and cytokines levels. In addition, pretreatment with Berberine decreased the myeloperoxidase (MPO) and malondialdehyde (MDA) levels and decreased gene expression of nuclear factor kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), and the intracellular adhesion molecule 1 (ICAM-1) by RT-qPCR analysis, revealing Berberine's antioxidant and anti-inflammatory mode of action. Western blot analysis revealed increased peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in the Berberine pretreated group compared to the cecal ligation and puncture (CLP) group, in which the histopathological examination evidenced this improvement. In conclusion, Berberine improved lung sepsis via its PPAR-γ mediated antioxidant and anti-inflammatory effects.


Assuntos
Lesão Pulmonar Aguda , Berberina , PPAR gama , Sepse , Transdução de Sinais , Berberina/farmacologia , Berberina/uso terapêutico , Animais , PPAR gama/metabolismo , Sepse/metabolismo , Sepse/tratamento farmacológico , Ratos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Masculino , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ratos Wistar , Ratos Sprague-Dawley
13.
Sci Rep ; 14(1): 15789, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982195

RESUMO

Red blood cells (RBCs) express the nucleic acid-binding toll-like receptor 9 (TLR9) and bind CpG-containing DNA. However, whether human RBCs express other nucleic acid-binding TLRs is unknown. Here we show that human RBCs express the RNA sensor TLR7. TLR7 is present on the red cell membrane and is associated with the RBC membrane protein Band 3. In patients with SARS-CoV2-associated sepsis, TLR7-Band 3 interactions in the RBC membrane are increased when compared with healthy controls. In vitro, RBCs bind synthetic ssRNA and RNA from ssRNA viruses. Thus, RBCs may serve as a previously unrecognized sink for exogenous RNA, expanding the repertoire of non-gas exchanging functions performed by RBCs.


Assuntos
COVID-19 , Eritrócitos , SARS-CoV-2 , Receptor 7 Toll-Like , Humanos , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Eritrócitos/metabolismo , COVID-19/virologia , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Sepse/metabolismo , Sepse/sangue , Sepse/genética , Membrana Eritrocítica/metabolismo , Masculino , RNA/metabolismo , RNA/genética , Feminino
14.
Biochem Biophys Res Commun ; 727: 150313, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954981

RESUMO

Sepsis, a life-threatening condition resulting in multiple organ dysfunction, is characterized by a dysregulated immune response to infection. Current treatment options are limited, leading to unsatisfactory outcomes for septic patients. Here, we present a series of studies utilizing compact bone mesenchymal stem cells (CB-MSCs) and their derived paracrine mediators, especially exosome (CB-MSCs-Exo), to treat mice with cecal ligation and puncture-induced sepsis. Our results demonstrate that CB-MSCs treatment significantly improves the survival rate of septic mice by mitigating excessive inflammatory response and attenuating sepsis-induced organ injuries. Furthermore, CB-MSCs-conditioned medium, CB-MSCs secretome (CB-MSCs-Sec), and CB-MSCs-Exo exhibit potent anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage (RAW264.7). Intriguingly, intravenous administration of CB-MSCs-Exo confers superior protection against inflammation and organ damage in septic mice compared to CB-MSCs in certain aspects. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) shotgun proteomic analysis, we identify a range of characterized proteins derived from the paracrine activity of CB-MSCs, involved in critical biological processes such as immunomodulation and apoptosis. Our findings highlight that the paracrine products of CB-MSCs could serve as a promising cell-free therapeutic agent for sepsis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Comunicação Parácrina , Sepse , Animais , Sepse/terapia , Sepse/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Células RAW 264.7 , Exossomos/metabolismo , Exossomos/transplante , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Lipopolissacarídeos , Meios de Cultivo Condicionados/farmacologia
15.
Sci Rep ; 14(1): 14972, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38951571

RESUMO

Sepsis, marked by organ dysfunction, necessitates reliable biomarkers. Ribonuclease inhibitor 1 (RNH1), a ribonuclease (RNase) inhibitor, emerged as a potential biomarker for acute kidney injury and mortality in thoracoabdominal aortic aneurysm patients. Our study investigates RNH1 dynamics in sepsis, its links to mortality and organ dysfunction, and the interplay with RNase 1 and RNase 5. Furthermore, we explore RNH1 as a therapeutic target in sepsis-related processes like inflammation, non-canonical inflammasome activation, and iron homeostasis. We showed that RNH1 levels are significantly higher in deceased patients compared to sepsis survivors and correlate with creatine kinase, aspartate and alanine transaminase, bilirubin, serum creatinine and RNase 5, but not RNase 1. RNH1 mitigated LPS-induced TNFα and RNase 5 secretion, and relative mRNA expression of ferroptosis-associated genes HMOX1, FTH1 and HAMP in PBMCs. Monocytes were identified as the predominant type of LPS-positive PBMCs. Exogenous RNH1 attenuated LPS-induced CASP5 expression, while increasing IL-1ß secretion in PBMCs and THP-1 macrophages. As RNH1 has contradictory effects on inflammation and non-canonical inflammasome activation, its use as a therapeutic agent is limited. However, RNH1 levels may play a central role in iron homeostasis during sepsis, supporting our clinical observations. Hence, RNH1 shows promise as biomarkers for renal and hepatic dysfunction and hepatocyte injury, and may be useful in predicting the outcome of septic patients.


Assuntos
Biomarcadores , Homeostase , Inflamação , Ferro , Sepse , Humanos , Sepse/metabolismo , Sepse/tratamento farmacológico , Biomarcadores/metabolismo , Ferro/metabolismo , Inflamação/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inflamassomos/metabolismo , Lipopolissacarídeos , Células THP-1 , Proteínas de Transporte
16.
Physiol Rep ; 12(13): e16134, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981846

RESUMO

Endothelial dysfunction is a critical feature of acute respiratory distress syndrome (ARDS) associated with higher disease severity and worse outcomes. Preclinical in vivo models of sepsis and ARDS have failed to yield useful therapies in humans, perhaps due to interspecies differences in inflammatory responses and heterogeneity of human host responses. Use of microphysiological systems (MPS) to investigate lung endothelial function may shed light on underlying mechanisms and targeted treatments for ARDS. We assessed the response to plasma from critically ill sepsis patients in our lung endothelial MPS through measurement of endothelial permeability, expression of adhesion molecules, and inflammatory cytokine secretion. Sepsis plasma induced areas of endothelial cell (EC) contraction, loss of cellular coverage, and luminal defects. EC barrier function was significantly worse following incubation with sepsis plasma compared to healthy plasma. EC ICAM-1 expression, IL-6 and soluble ICAM-1 secretion increased significantly more after incubation with sepsis plasma compared with healthy plasma. Plasma from sepsis patients who developed ARDS further increased IL-6 and sICAM-1 compared to plasma from sepsis patients without ARDS and healthy plasma. Our results demonstrate the proof of concept that lung endothelial MPS can enable interrogation of specific mechanisms of endothelial dysfunction that promote ARDS in sepsis patients.


Assuntos
Células Endoteliais , Pulmão , Síndrome do Desconforto Respiratório , Sepse , Humanos , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/sangue , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/sangue , Interleucina-6/metabolismo , Pulmão/fisiopatologia , Pulmão/metabolismo , Sistemas Microfisiológicos , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/metabolismo , Sepse/fisiopatologia , Sepse/complicações , Sepse/metabolismo
17.
Sci Rep ; 14(1): 16386, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013974

RESUMO

Presepsin (P-SEP) is a specific biomarker for sepsis. Monocytes produce P-SEP by phagocytosing neutrophil extracellular traps (NETs). Herein, we investigated whether M1 macrophages (M1 MΦs) are the primary producers of P-SEP after NET phagocytosis. We co-cultured M1 MΦs and NETs from healthy participants, measured P-SEP levels in the culture medium supernatant, and detected P-SEP using western blotting. When NETs were co-cultured with M1 MΦs, the P-SEP level of the culture supernatant was high. Notably, we demonstrated, for the first time, the intracellular kinetics of P-SEP production by M1 MΦs via NET phagocytosis: M1 MΦs produced P-SEP intracellularly 15 min after NET phagocytosis and then released it extracellularly. In a sepsis mouse model, the blood NET ratio and P-SEP levels, detected using ELISA, were significantly increased (p < 0.0001). Intracellular P-SEP analysis via flow cytometry demonstrated that lung, liver, and kidney MΦs produced large amounts of P-SEP. Therefore, we identified these organs as the origin of M1 MΦs that produce P-SEP during sepsis. Our data indicate that the P-SEP level reflects the trend of NETs, suggesting that monitoring P-SEP can be used to both assess NET-induced organ damage in the lungs, liver, and kidneys during sepsis and determine treatment efficacy.


Assuntos
Armadilhas Extracelulares , Receptores de Lipopolissacarídeos , Macrófagos , Fagocitose , Sepse , Animais , Humanos , Armadilhas Extracelulares/metabolismo , Macrófagos/metabolismo , Camundongos , Sepse/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Neutrófilos/metabolismo , Fragmentos de Peptídeos/metabolismo , Modelos Animais de Doenças , Técnicas de Cocultura
18.
Nat Commun ; 15(1): 6067, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025856

RESUMO

After recognizing its ligand lipopolysaccharide, Toll-like receptor 4 (TLR4) recruits adaptor proteins to the cell membrane, thereby initiating downstream signaling and triggering inflammation. Whether this recruitment of adaptor proteins is dependent solely on protein-protein interactions is unknown. Here, we report that the sphingolipid sphinganine physically interacts with the adaptor proteins MyD88 and TIRAP and promotes MyD88 recruitment in macrophages. Myeloid cell-specific deficiency in serine palmitoyltransferase long chain base subunit 2, which encodes the key enzyme catalyzing sphingolipid biosynthesis, decreases the membrane recruitment of MyD88 and inhibits inflammatory responses in in vitro bone marrow-derived macrophage and in vivo sepsis models. In a melanoma mouse model, serine palmitoyltransferase long chain base subunit 2 deficiency decreases anti-tumor myeloid cell responses and increases tumor growth. Therefore, sphinganine biosynthesis is required for the initiation of TLR4 signal transduction and serves as a checkpoint for macrophage pattern recognition in sepsis and melanoma mouse models.


Assuntos
Macrófagos , Melanoma , Fator 88 de Diferenciação Mieloide , Sepse , Serina C-Palmitoiltransferase , Esfingosina , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Sepse/metabolismo , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Melanoma/genética , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Humanos , Transdução de Sinais , Modelos Animais de Doenças , Inflamação/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células HEK293 , Lipopolissacarídeos
19.
Anesth Analg ; 139(2): 385-396, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39008867

RESUMO

BACKGROUND: Currently, clinical indicators for evaluating endothelial permeability in sepsis are unavailable. Endothelium-derived extracellular vesicles (EDEVs) are emerging as biomarkers of endothelial injury. Platelet endothelial cell adhesion molecule (PECAM) and vascular endothelial (VE)-cadherin are constitutively expressed endothelial intercellular adhesion molecules that regulate intercellular adhesion and permeability. Herein, we investigated the possible association between EDEVs expressing intercellular adhesion molecules (PECAM+ or VE-cadherin+ EDEVs) and endothelial permeability and sepsis severity. METHODS: Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor alpha (TNF-α) directly or after pretreatment with permeability-modifying reagents such as angiopoietin-1, prostacyclin, or vascular endothelial growth factor (VEGF) to alter TNF-α-induced endothelial hyperpermeability. Endothelial permeability was measured using the dextran assay or transendothelial electrical resistance. Additionally, a prospective cross-sectional observational study was conducted to analyze circulating EDEV levels in patients with sepsis. EDEVs were examined in HUVEC culture supernatants or patient plasma (nonsepsis, n = 30; sepsis, n = 30; septic shock, n = 42) using flow cytometry. The Wilcoxon rank-sum test was used for comparisons between 2 groups. Comparisons among 3 or more groups were performed using the Steel-Dwass test. Spearman's test was used for correlation analysis. Statistical significance was set at P < .05. RESULTS: TNF-α stimulation of HUVECs significantly increased EDEV release and endothelial permeability. Pretreatment with angiopoietin-1 or prostacyclin suppressed the TNF-α-induced increase in endothelial permeability and inhibited the release of PECAM+ and VE-cadherin+ EDEVs. In contrast, pretreatment with VEGF increased TNF-α-induced endothelial permeability and the release of PECAM+ and VE-cadherin+ EDEVs. However, pretreatment with permeability-modifying reagents did not affect the release of EDEVs expressing inflammatory stimulus-inducible endothelial adhesion molecules such as E-selectin, intracellular adhesion molecule-1, or vascular cell adhesion molecule-1. The number of PECAM+ EDEVs on admission in the septic-shock group (232 [124, 590]/µL) was significantly higher (P = .043) than that in the sepsis group (138 [77,267]/µL), with an average treatment effect of 98/µL (95% confidence interval [CI], 2-270/µL), and the number of VE-cadherin+ EDEVs in the septic-shock group (173 [76,339]/µL) was also significantly higher (P = .004) than that in the sepsis group (81 [42,159]/µL), with an average treatment effect (ATE) of 79/µL (95% CI, 19-171/µL); these EDEV levels remained elevated until day 5. CONCLUSIONS: EDEVs expressing intercellular adhesion molecules (PECAM+ or VE-cadherin+ EDEVs) may reflect increased endothelial permeability and could be valuable diagnostic and prognostic markers for sepsis.


Assuntos
Antígenos CD , Caderinas , Permeabilidade Capilar , Vesículas Extracelulares , Células Endoteliais da Veia Umbilical Humana , Sepse , Índice de Gravidade de Doença , Humanos , Vesículas Extracelulares/metabolismo , Sepse/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Estudos Prospectivos , Antígenos CD/metabolismo , Feminino , Pessoa de Meia-Idade , Caderinas/metabolismo , Idoso , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Estudos Transversais , Células Cultivadas , Angiopoietina-1/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Endotélio Vascular/metabolismo , Epoprostenol/metabolismo
20.
Cell Death Dis ; 15(7): 473, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956064

RESUMO

Damage to renal tubular epithelial cells (RTECs) signaled the onset and progression of sepsis-associated acute kidney injury (SA-AKI). Recent research on mitochondria has revealed that mitophagy plays a crucial physiological role in alleviating injury to RTECs and it is suppressed progressively by the inflammation response in SA-AKI. However, the mechanism by which inflammation influences mitophagy remains poorly understood. We examined how macrophage migration inhibitory factor (MIF), a pro-inflammatory protein, influences the PINK1-Parkin pathway of mitophagy by studying protein-protein interactions when MIF was inhibited or overexpressed. Surprisingly, elevated levels of MIF were found to directly bind to PINK1, disrupting its interaction with Parkin. This interference hindered the recruitment of Parkin to mitochondria and impeded the initiation of mitophagy. Furthermore, this outcome led to significant apoptosis of RTECs, which could, however, be reversed by an MIF inhibitor ISO-1 and/or a new mitophagy activator T0467. These findings highlight the detrimental impact of MIF on renal damage through its disruption of the interaction between PINK1 and Parkin, and the therapeutic potential of ISO-1 and T0467 in mitigating SA-AKI. This study offers a fresh perspective on treating SA-AKI by targeting MIF and mitophagy.


Assuntos
Injúria Renal Aguda , Fatores Inibidores da Migração de Macrófagos , Mitofagia , Proteínas Quinases , Sepse , Ubiquitina-Proteína Ligases , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Sepse/complicações , Sepse/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Apoptose , Ligação Proteica , Masculino , Oxirredutases Intramoleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA