Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.743
Filtrar
1.
Redox Biol ; 36: 101615, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863223

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in hundreds of thousands of deaths worldwide. While the majority of people with COVID-19 won't require hospitalization, those who do may experience severe life-threatening complications, including acute respiratory distress syndrome. SARS-CoV-2 infects human cells by binding to the cellular surface protein angiotensin-converting enzyme 2 (ACE2); in addition, the cellular transmembrane serine protease 2 (TMPRSS2) is needed for priming of the spike (S) protein of the virus. Virus entry may also depend on the activity of the endosomal/lysosomal cysteine proteases cathepsin B, L (CTSB, CTSL) although their activity is likely dispensable. Given that the uncertainty of how COVID-19 kills, hampers doctors' ability to choose treatments the need for a deep understanding of COVID-19 biology is urgent. Herein, we performed an expression profiling meta-analysis of ACE2, TMPRSS2 and CTSB/L genes (and proteins) in public repository databases and found that all are widely expressed in human tissues; also, the ACE2 and TMPRSS2 genes tend to be co-regulated. The ACE2 and TMPRSS genes expression is (among others) suppressed by TNF, and is induced by pro-inflammatory conditions including obesity, Barrett's esophagus, stomach infection by helicobacter pylori, diabetes, autoimmune diseases and oxidized LDL; by exercise, as well as by growth factors, viruses' infections, cigarette smoke, interferons and androgens. Regarding currently investigated therapies interferon-beta induced ACE2 gene expression in bronchial epithelial cells, while chloroquine tends to upregulate CTSB/L genes. Finally, we analyzed KEGG pathways modulated by ACE2, TMPRSS2 and CTSB/L and probed DrugBank for drugs that target modules of the affected pathways. Our data indicate possible novel high-risk groups for COVID-19; provide a rich resource for future investigations of its pathogenesis and highlight the therapeutic challenges we face.


Assuntos
Betacoronavirus/fisiologia , Peptidil Dipeptidase A/genética , Serina Endopeptidases/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Catepsinas/genética , Catepsinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Rim/metabolismo , Peptidil Dipeptidase A/metabolismo , Mucosa Respiratória/metabolismo , Serina Endopeptidases/metabolismo , Inibidores de Serino Proteinase/farmacologia , Internalização do Vírus/efeitos dos fármacos
2.
J Hematol Oncol ; 13(1): 120, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887634

RESUMO

BACKGROUND: Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear. METHODS: Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl3-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo. RESULTS: We demonstrated that COVID-19 patients present with increased mean platelet volume (MPV) and platelet hyperactivity, which correlated with a decrease in overall platelet count. Detectable SARS-CoV-2 RNA in the blood stream was associated with platelet hyperactivity in critically ill patients. Platelets expressed ACE2, a host cell receptor for SARS-CoV-2, and TMPRSS2, a serine protease for Spike protein priming. SARS-CoV-2 and its Spike protein directly enhanced platelet activation such as platelet aggregation, PAC-1 binding, CD62P expression, α granule secretion, dense granule release, platelet spreading, and clot retraction in vitro, and thereby Spike protein enhanced thrombosis formation in wild-type mice transfused with hACE2 transgenic platelets, but this was not observed in animals transfused with wild-type platelets in vivo. Further, we provided evidence suggesting that the MAPK pathway, downstream of ACE2, mediates the potentiating role of SARS-CoV-2 on platelet activation, and that platelet ACE2 expression decreases following SARS-COV-2 stimulation. SARS-CoV-2 and its Spike protein directly stimulated platelets to facilitate the release of coagulation factors, the secretion of inflammatory factors, and the formation of leukocyte-platelet aggregates. Recombinant human ACE2 protein and anti-Spike monoclonal antibody could inhibit SARS-CoV-2 Spike protein-induced platelet activation. CONCLUSIONS: Our findings uncovered a novel function of SARS-CoV-2 on platelet activation via binding of Spike to ACE2. SARS-CoV-2-induced platelet activation may participate in thrombus formation and inflammatory responses in COVID-19 patients.


Assuntos
Betacoronavirus/metabolismo , Plaquetas/metabolismo , Infecções por Coronavirus/metabolismo , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Trombose/metabolismo , Adulto , Idoso , Animais , Betacoronavirus/genética , Células CACO-2 , Infecções por Coronavirus/virologia , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Células PC-3 , Pandemias , Peptidil Dipeptidase A/genética , Agregação Plaquetária/imunologia , Contagem de Plaquetas , Pneumonia Viral/virologia , RNA Viral/sangue , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Trombose/virologia
3.
Cell Rep ; 32(12): 108175, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32946807

RESUMO

To predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell transcriptomics across various healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Intestinal goblet cells, enterocytes, and kidney proximal tubule cells appear highly permissive to SARS-CoV-2, consistent with clinical data. Our analysis also predicts non-canonical entry paths for lung and brain infections. Spermatogonial cells and prostate endocrine cells also appear to be permissive to SARS-CoV-2 infection, suggesting male-specific vulnerabilities. Both pro- and anti-viral factors are highly expressed within the nasal epithelium, with potential age-dependent variation, predicting an important battleground for coronavirus infection. Our analysis also suggests that early embryonic and placental development are at moderate risk of infection. Lastly, SCARF expression appears broadly conserved across a subset of primate organs examined. Our study establishes a resource for investigations of coronavirus biology and pathology.


Assuntos
Infecções por Coronavirus/patologia , Mucosa Nasal/metabolismo , Pneumonia Viral/patologia , Receptores Virais/genética , Tropismo Viral/genética , Internalização do Vírus , Células A549 , Animais , Betacoronavirus/crescimento & desenvolvimento , Linhagem Celular , Chlorocebus aethiops , Enterócitos/metabolismo , Perfilação da Expressão Gênica , Células Caliciformes/metabolismo , Células HEK293 , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Mucosa Nasal/virologia , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Análise de Célula Única , Células Vero
4.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L670-L674, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878480

RESUMO

The severity of coronavirus disease 2019 (COVID-19) is linked to an increasing number of risk factors, including exogenous (environmental) stimuli such as air pollution, nicotine, and cigarette smoke. These three factors increase the expression of angiotensin I converting enzyme 2 (ACE2), a key receptor involved in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the etiological agent of COVID-19-into respiratory tract epithelial cells. Patients with severe COVID-19 are managed with oxygen support, as are at-risk individuals with chronic lung disease. To date, no study has examined whether an increased fraction of inspired oxygen (FiO2) may affect the expression of SARS-CoV-2 entry receptors and co-receptors, including ACE2 and the transmembrane serine proteases TMPRSS1, TMPRSS2, and TMPRSS11D. To address this, steady-state mRNA levels for genes encoding these SARS-CoV-2 receptors were assessed in the lungs of mouse pups chronically exposed to elevated FiO2, and in the lungs of preterm-born human infants chronically managed with an elevated FiO2. These two scenarios served as models of chronic elevated FiO2 exposure. Additionally, SARS-CoV-2 receptor expression was assessed in primary human nasal, tracheal, esophageal, bronchial, and alveolar epithelial cells, as well as primary mouse alveolar type II cells exposed to elevated oxygen concentrations. While gene expression of ACE2 was unaffected, gene and protein expression of TMPRSS11D was consistently upregulated by exposure to an elevated FiO2. These data highlight the need for further studies that examine the relative contribution of the various viral co-receptors on the infection cycle, and point to oxygen supplementation as a potential risk factor for COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Proteínas de Membrana/metabolismo , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Mucosa Respiratória/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Betacoronavirus , Células Cultivadas , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/administração & dosagem , Oxigênio/análise , Pandemias , Receptores Virais/metabolismo , Fatores de Risco , Serina Endopeptidases/genética , Serina Proteases/genética , Índice de Gravidade de Doença
5.
J Exp Clin Cancer Res ; 39(1): 200, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967703

RESUMO

BACKGROUND: SARS-coronavirus-2 enters host cells through binding of the Spike protein to ACE2 receptor and subsequent S priming by the TMPRSS2 protease. We aim to assess differences in both ACE2 and TMPRSS2 expression in normal tissues from oral cavity, pharynx, larynx and lung tissues as well as neoplastic tissues from the same areas. METHODS: The study has been conducted using the TCGA and the Regina Elena Institute databases and validated by experimental model in HNSCC cells. We also included data from one COVID19 patient who went under surgery for HNSCC. RESULTS: TMPRSS2 expression in HNSCC was significantly reduced compared to the normal tissues. It was more evident in women than in men, in TP53 mutated versus wild TP53 tumors, in HPV negative patients compared to HPV positive counterparts. Functionally, we modeled the multivariate effect of TP53, HPV, and other inherent variables on TMPRSS2. All variables had a statistically significant independent effect on TMPRSS2. In particular, in tumor tissues, HPV negative, TP53 mutated status and elevated TP53-dependent Myc-target genes were associated with low TMPRSS2 expression. The further analysis of both TCGA and our institutional HNSCC datasets identified a signature anti-correlated to TMPRSS2. As proof-of-principle we also validated the anti-correlation between microRNAs and TMPRSS2 expression in a SARS-CoV-2 positive HNSCC patient tissues Finally, we did not find TMPRSS2 promoter methylation. CONCLUSIONS: Collectively, these findings suggest that tumoral tissues, herein exemplified by HNSCC and lung cancers might be more resistant to SARS-CoV-2 infection due to reduced expression of TMPRSS2. These observations may help to better assess the frailty of SARS-CoV-2 positive cancer patients.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/complicações , Neoplasias de Cabeça e Pescoço/patologia , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/complicações , Pneumonia Viral/complicações , Serina Endopeptidases/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Estudos de Casos e Controles , Infecções por Coronavirus/virologia , Feminino , Seguimentos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Masculino , Pandemias , Infecções por Papillomavirus/virologia , Pneumonia Viral/virologia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Taxa de Sobrevida
6.
Sci Adv ; 6(31)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32937591

RESUMO

Altered olfactory function is a common symptom of COVID-19, but its etiology is unknown. A key question is whether SARS-CoV-2 (CoV-2) - the causal agent in COVID-19 - affects olfaction directly, by infecting olfactory sensory neurons or their targets in the olfactory bulb, or indirectly, through perturbation of supporting cells. Here we identify cell types in the olfactory epithelium and olfactory bulb that express SARS-CoV-2 cell entry molecules. Bulk sequencing demonstrated that mouse, non-human primate and human olfactory mucosa expresses two key genes involved in CoV-2 entry, ACE2 and TMPRSS2. However, single cell sequencing revealed that ACE2 is expressed in support cells, stem cells, and perivascular cells, rather than in neurons. Immunostaining confirmed these results and revealed pervasive expression of ACE2 protein in dorsally-located olfactory epithelial sustentacular cells and olfactory bulb pericytes in the mouse. These findings suggest that CoV-2 infection of non-neuronal cell types leads to anosmia and related disturbances in odor perception in COVID-19 patients.


Assuntos
Infecções por Coronavirus/patologia , Transtornos do Olfato/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Serina Endopeptidases/metabolismo , Olfato/fisiologia , Animais , Betacoronavirus/fisiologia , Callithrix , Humanos , Macaca , Camundongos , Transtornos do Olfato/genética , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Pandemias , Peptidil Dipeptidase A/genética , Serina Endopeptidases/genética , Olfato/genética , Internalização do Vírus
7.
Sci Rep ; 10(1): 15917, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985513

RESUMO

SARS-CoV-2 is the novel coronavirus responsible for the outbreak of COVID-19, a disease that has spread to over 100 countries and, as of the 26th July 2020, has infected over 16 million people. Despite the urgent need to find effective therapeutics, research on SARS-CoV-2 has been affected by a lack of suitable animal models. To facilitate the development of medical approaches and novel treatments, we compared the ACE2 receptor, and TMPRSS2 and Furin proteases usage of the SARS-CoV-2 Spike glycoprotein in human and in a panel of animal models, i.e. guinea pig, dog, cat, rat, rabbit, ferret, mouse, hamster and macaque. Here we showed that ACE2, but not TMPRSS2 or Furin, has a higher level of sequence variability in the Spike protein interaction surface, which greatly influences Spike protein binding mode. Using molecular docking simulations we compared the SARS-CoV and SARS-CoV-2 Spike proteins in complex with the ACE2 receptor and showed that the SARS-CoV-2 Spike glycoprotein is compatible to bind the human ACE2 with high specificity. In contrast, TMPRSS2 and Furin are sufficiently similar in the considered hosts not to drive susceptibility differences. Computational analysis of binding modes and protein contacts indicates that macaque, ferrets and hamster are the most suitable models for the study of inhibitory antibodies and small molecules targeting the SARS-CoV-2 Spike protein interaction with ACE2. Since TMPRSS2 and Furin are similar across species, our data also suggest that transgenic animal models expressing human ACE2, such as the hACE2 transgenic mouse, are also likely to be useful models for studies investigating viral entry.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/veterinária , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos/genética , Animais , Gatos , Biologia Computacional/métodos , Infecções por Coronavirus/patologia , Cricetinae , Modelos Animais de Doenças , Cães , Furões , Furina/genética , Furina/metabolismo , Cobaias , Humanos , Macaca fascicularis , Camundongos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Coelhos , Ratos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
8.
Emerg Microbes Infect ; 9(1): 2169-2179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32969768

RESUMO

Studies on patients with the coronavirus disease-2019 (COVID-19) have implicated that the gastrointestinal (GI) tract is a major site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We established a human GI tract cell line model highly permissive to SARS-CoV-2. These cells, C2BBe1 intestinal cells with a brush border having high levels of transmembrane serine protease 2 (TMPRSS2), showed robust viral propagation, and could be persistently infected with SARS-CoV-2, supporting the clinical observations of persistent GI infection in COVID-19 patients. Ectopic expression of viral receptors revealed that the levels of angiotensin-converting enzyme 2 (ACE2) expression confer permissiveness to SARS-CoV-2 infection, and TMPRSS2 greatly facilitates ACE2-mediated SARS-CoV-2 dissemination. Interestingly, ACE2 but not TMPRSS2 expression was significantly promoted by enterocytic differentiation, suggesting that the state of enterocytic differentiation may serve as a determining factor for viral propagation. Thus, our study sheds light on the pathogenesis of SARS-CoV-2 in the GI tract.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Mucosa Intestinal/virologia , Pneumonia Viral/virologia , Betacoronavirus/genética , Linhagem Celular , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/virologia , Humanos , Mucosa Intestinal/metabolismo , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/genética , Pneumonia Viral/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
9.
Cell Death Dis ; 11(9): 799, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973152

RESUMO

A severe upper respiratory tract syndrome caused by the new coronavirus has now spread to the entire world as a highly contagious pandemic. The large scale explosion of the disease is conventionally traced back to January of this year in the Chinese province of Hubei, the wet markets of the principal city of Wuhan being assumed to have been the specific causative locus of the sudden explosion of the infection. A number of findings that are now coming to light show that this interpretation of the origin and history of the pandemic is overly simplified. A number of variants of the coronavirus would in principle have had the ability to initiate the pandemic well before January of this year. However, even if the COVID-19 had become, so to say, ready, conditions in the local environment would have had to prevail to induce the loss of the biodiversity's "dilution effect" that kept the virus under control, favoring its spillover from its bat reservoir to the human target. In the absence of these appropriate conditions only abortive attempts to initiate the pandemic could possibly occur: a number of them did indeed occur in China, and probably elsewhere as well. These conditions were unfortunately present at the wet marked in Wuhan at the end of last year.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Vírus da SARS/patogenicidade , Síndrome Respiratória Aguda Grave/epidemiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , Quirópteros/virologia , Infecções por Coronavirus/transmissão , Eutérios/virologia , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Filogenia , Pneumonia Viral/transmissão , Ligação Proteica , Vírus da SARS/classificação , Vírus da SARS/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Síndrome Respiratória Aguda Grave/transmissão , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Viverridae/virologia
11.
Open Biol ; 10(8): 200162, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750256

RESUMO

While initially recognized as causing respiratory disease, the SARS-CoV-2 virus also affects many other organs leading to other complications. It has emerged that advanced age and obesity are risk factors for complications but questions concerning the potential effects on fetal health and successful pregnancy for those infected with SARS-CoV-2 remain largely unanswered. Here, we examine human pre-gastrulation embryos to determine the expression patterns of the genes ACE2, encoding the SARS-CoV-2 receptor, and TMPRSS2, encoding a protease that cleaves both the viral spike protein and the ACE2 receptor to facilitate infection. We show expression and co-expression of these genes in the trophoblast of the blastocyst and syncytiotrophoblast and hypoblast of the implantation stages, which develop into tissues that interact with the maternal blood supply for nutrient exchange. Expression of ACE2 and TMPRSS2 in these tissues raises the possibility for vertical transmission and indicates that further work is required to understand potential risks to implantation, placental health and fetal health that require further study.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/patologia , Embrião de Mamíferos/metabolismo , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Serina Endopeptidases/metabolismo , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Feminino , Humanos , Pandemias , Peptidil Dipeptidase A/genética , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Gravidez , Primeiro Trimestre da Gravidez , Serina Endopeptidases/genética , Análise de Célula Única , Trofoblastos/metabolismo
12.
J Mol Graph Model ; 100: 107710, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32829149

RESUMO

The emergence of SARS-CoV-2 has prompted a worldwide health emergency. There is an urgent need for therapeutics, both through the repurposing of approved drugs and the development of new treatments. In addition to the viral drug targets, a number of human drug targets have been suggested. In theory, targeting human proteins should provide an advantage over targeting viral proteins in terms of drug resistance, which is commonly a problem in treating RNA viruses. This paper focuses on the human protein TMPRSS2, which supports coronavirus life cycles by cleaving viral spike proteins. The three-dimensional structure of TMPRSS2 is not known and so we have generated models of the TMPRSS2 in the apo state as well as in complex with a peptide substrate and putative inhibitors to aid future work. Importantly, many related human proteases have 80% or higher identity with TMPRSS2 in the S1-S1' subsites, with plasminogen and urokinase-type plasminogen activator (uPA) having 95% identity. We highlight 376 approved, investigational or experimental drugs targeting S1A serine proteases that may also inhibit TMPRSS2. Whilst the presence of a relatively uncommon lysine residue in the S2/S3 subsites means that some serine protease inhibitors will not inhibit TMPRSS2, this residue is likely to provide a handle for selective targeting in a focused drug discovery project. We discuss how experimental drugs targeting related serine proteases might be repurposed as TMPRSS2 inhibitors to treat coronaviruses.


Assuntos
Antivirais/química , Betacoronavirus/química , Inibidores de Proteases/química , Serina Endopeptidases/química , Bibliotecas de Moléculas Pequenas/química , Sequência de Aminoácidos , Betacoronavirus/enzimologia , Domínio Catalítico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Reposicionamento de Medicamentos , Interações Hospedeiro-Patógeno , Humanos , Ligantes , Simulação de Dinâmica Molecular , Pandemias , Plasminogênio/antagonistas & inibidores , Plasminogênio/química , Plasminogênio/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Alinhamento de Sequência , Serina Endopeptidases/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Termodinâmica , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
13.
Genes Immun ; 21(4): 269-272, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32759995

RESUMO

The entry of SARS-CoV-2 into host cells is dependent upon angiotensin-converting enzyme 2 (ACE2), which serves as a functional attachment receptor for the viral spike glycoprotein, and the serine protease TMPRSS2 which allows fusion of the viral and host cell membranes. We devised a quantitative measure to estimate genetic determinants of ACE2 and TMPRSS2 expression and applied this measure to >2500 individuals. Our data show significant variability in genetic determinants of ACE2 and TMPRSS2 expression among individuals and between populations, and indicate a genetic predisposition for lower expression levels of both key viral entry genes in African populations. These data suggest that host genetics related to viral entry mechanisms might influence interindividual variability in disease susceptibility and severity of COVID-19.


Assuntos
Infecções por Coronavirus/genética , Peptidil Dipeptidase A/genética , Pneumonia Viral/genética , Serina Endopeptidases/genética , Grupos de Populações Continentais/genética , Infecções por Coronavirus/etnologia , Feminino , Humanos , Masculino , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/etnologia , Serina Endopeptidases/metabolismo
14.
Life Sci ; 259: 118219, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768580

RESUMO

AIMS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel member of the betacoronaviruses family affecting the lower respiratory tract mainly through binding to angiotensin converting enzyme 2 (ACE2) via its S-protein. Genetic analysis of (ACE2) gene revealed several variants that have been suggested to regulate the interaction with S protein. This study investigates the N720D variant, positioned in the collectrin-like domain (CLD) at proximity to type II transmembrane serine protease (TMPRSS2) cleavage site. MAIN METHODS: The effect of N720D variant on ACE2 structure and thermodynamic stability was studied by DynaMut. HDOCK was utilised to model TMPRSS2 protease binding to ACE2 WT and D720 variant cleavage site. PRODIGY was used to calculate binding affinities and MD simulation tools calculated the at 100 ns for ACE2 apo structure and the ACE2-TMPRSS2 complex. KEY FINDINGS: The N720D variant is a more dynamic structure with a free energy change (ΔΔG): -0.470 kcal/mol. As such, introducing a tighter binding affinity of Kd = 3.2 × 10-10 M between TMPRSS2 and N720D variant. RMSD, RMSF calculations showed the N720D variant is less stable, however, RMSF values of the D720-TMPRSS2 complex reflected a slower dynamic motion. SIGNIFICANCE: The hotspot N720D variant in the CLD of ACE2 affected the stability and flexibility of ACE2 by increasing the level of motion in the loop region, resulting in a more favourable site for TMPRSS2 binding and cleavage. Consequently, this would facilitate S-protein binding and can potentially increase viral entry highlighting the importance of variants affecting the ACE2-TMPRSS2 complex.


Assuntos
Betacoronavirus/metabolismo , Peptidil Dipeptidase A/metabolismo , Serina Endopeptidases/metabolismo , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Humanos , Pulmão/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Pneumonia Viral/enzimologia , Pneumonia Viral/genética , Pneumonia Viral/virologia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Termodinâmica
15.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825469

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor, angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and furin, which promote entry of the virus into the host cell, have been identified as determinants of SARS-CoV-2 infection. Dorsal tongue and gingiva, saliva, and tongue coating samples were examined to determine the presence of these molecules in the oral cavity. Immunohistochemical analyses showed that ACE2 was expressed in the stratified squamous epithelium of the dorsal tongue and gingiva. TMPRSS2 was strongly expressed in stratified squamous epithelium in the keratinized surface layer and detected in the saliva and tongue coating samples via Western blot. Furin was localized mainly in the lower layer of stratified squamous epithelium and detected in the saliva but not tongue coating. ACE2, TMPRSS2, and furin mRNA expression was observed in taste bud-derived cultured cells, which was similar to the immunofluorescence observations. These data showed that essential molecules for SARS-CoV-2 infection were abundant in the oral cavity. However, the database analysis showed that saliva also contains many protease inhibitors. Therefore, although the oral cavity may be the entry route for SARS-CoV-2, other factors including protease inhibitors in the saliva that inhibit viral entry should be considered.


Assuntos
Betacoronavirus/metabolismo , Furina/metabolismo , Mucosa Bucal/metabolismo , Peptidil Dipeptidase A/metabolismo , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Infecções por Coronavirus/metabolismo , Gengiva/metabolismo , Humanos , Pandemias , Pneumonia Viral/metabolismo , Saliva/metabolismo , Língua/metabolismo , Internalização do Vírus
16.
Molecules ; 25(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842606

RESUMO

Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3α,17α-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.


Assuntos
Antivirais/química , Betacoronavirus/efeitos dos fármacos , Catepsina L/química , Compostos Fitoquímicos/química , Inibidores de Proteases/química , Receptores Virais/química , Serina Endopeptidases/química , Sequência de Aminoácidos , Antivirais/isolamento & purificação , Antivirais/farmacologia , Betacoronavirus/patogenicidade , Sítios de Ligação , Catepsina L/antagonistas & inibidores , Catepsina L/genética , Catepsina L/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/virologia , Cumarínicos/química , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Expressão Gênica , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Índia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Monossacarídeos/química , Monossacarídeos/isolamento & purificação , Monossacarídeos/farmacologia , Pandemias , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/enzimologia , Pneumonia Viral/virologia , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Quinazolinas/química , Quinazolinas/isolamento & purificação , Quinazolinas/farmacologia , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Termodinâmica , Internalização do Vírus/efeitos dos fármacos
17.
DNA Cell Biol ; 39(9): 1621-1638, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32758021

RESUMO

Increasing evidence highlights the clinical significance of stromal cells and immune cells in the liver cancer microenvironment. However, reliable prognostic models have not been well established. This study aimed to develop a gene signature for liver cancer based on stromal and immune scores. Using the estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) algorithm, stromal and immune scores were estimated based on the transcriptome profile of The Cancer Genome Atlas (TCGA) liver cancer cohort. Stromal-/immune-related differentially expressed genes were identified, followed by functional enrichment analysis. The Cox regression model was used to select prognostic genes and construct a gene signature. Its predictive potential was evaluated by receiver operating characteristic (ROC). The correlation between the risk score and immune cell infiltration was analyzed using Tumor Immune Estimation Resource (TIMER). Three hundred sixty-four upregulated and 10 downregulated stromal-/immune-related genes were identified, were mainly enriched in immune-related processes and pathways. Through univariate and multivariate cox survival analysis, a five-gene risk score was constructed, composed of FABP3, HTRA3, OLFML2B, PDZD4 and SLAMF6. Patients with high score indicated a poorer prognosis than those with low risk score. The areas under the ROC curves of overall survival (OS), progression-free interval, 3-, 5-year, OS status were 0.68, 0.57, 0.72, 0.74 and 0.728, indicating its well performance on predicting patients' prognoses. Furthermore, the risk score and the five genes were significantly correlated with immune cell infiltration in the tumor microenvironment. In this study, we proposed a prognostic five-gene signature based on stromal/immune scores in the liver cancer microenvironment.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Hepáticas/genética , Microambiente Tumoral , Idoso , Biomarcadores Tumorais/metabolismo , Proteína 3 Ligante de Ácido Graxo/genética , Proteína 3 Ligante de Ácido Graxo/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Transcriptoma
18.
J Genet ; 992020.
Artigo em Inglês | MEDLINE | ID: mdl-32661206

RESUMO

At present, more than 200 countries and territories are directly affected by the coronavirus disease-19 (COVID-19) pandemic. Incidence and case fatality rate are significantly higher among elderly individuals (age>60 years), type 2 diabetes and hypertension patients. Cellular receptor ACE2, serine protease TMPRSS2 and exopeptidase CD26 (also known as DPP4) are the three membrane bound proteins potentially implicated in SARS-CoV-2 infection. We hypothesised that common variants from TMPRSS2 and CD26 may play critical role in infection susceptibility of predisposed population or group of individuals. Coding (missense) and regulatory variants from TMPRSS2 and CD26 were studied across 26 global populations. Two missense and five regulatory SNPs were identified to have differential allelic frequency. Significant linkage disequilibrium (LD) signature was observed in different populations. Modelled protein-protein interaction (PPI) predicted strong molecular interaction between these two receptors and SARS-CoV-2 spike protein (S1 domain). However, two missense SNPs, rs12329760 (TMPRSS2) and rs1129599 (CD26), were not found to be involved physically in the said interaction. Four regulatory variants (rs112657409, rs11910678, rs77675406 and rs713400) from TMPRSS2 were found to influence the expression of TMPRSS2 and pathologically relevant MX1. rs13015258 a 50 UTR variant from CD26 have significant role in regulation of expression of key regulatory genes that could be involved in SARS-CoV-2 internalization. Overexpression of CD26 through epigenetic modification at rs13015258-C allele was found critical and could explain the higher SARS-CoV-2 infected fatality rate among type 2 diabetes.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/genética , Dipeptidil Peptidase 4/genética , Pneumonia Viral/genética , Serina Endopeptidases/genética , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/metabolismo , Epigenômica , Predisposição Genética para Doença , Variação Genética , Humanos , Desequilíbrio de Ligação , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
19.
PLoS One ; 15(7): e0235987, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32726325

RESUMO

Development of novel approaches for regulating the expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) is becoming increasingly important within the context of the ongoing COVID-19 pandemic since these enzymes play a crucial role in cell infection. In this work we searched for putative ACE2 and TMPRSS2 expression regulation networks mediated by various miRNA isoforms (isomiR) across different human organs using publicly available paired miRNA/mRNA-sequencing data from The Cancer Genome Atlas (TCGA) project. As a result, we identified several miRNA families targeting ACE2 and TMPRSS2 genes in multiple tissues. In particular, we found that lysine-specific demethylase 5B (JARID1B), encoded by the KDM5B gene, can indirectly affect ACE2 / TMPRSS2 expression by repressing transcription of hsa-let-7e / hsa-mir-125a and hsa-mir-141 / hsa-miR-200 miRNA families which are targeting these genes.


Assuntos
Betacoronavirus , Infecções por Coronavirus/enzimologia , Regulação da Expressão Gênica , MicroRNAs/genética , Peptidil Dipeptidase A/genética , Pneumonia Viral/enzimologia , RNA Mensageiro/genética , Serina Endopeptidases/genética , Regiões 3' não Traduzidas , Infecções por Coronavirus/virologia , Bases de Dados Genéticas , Redes Reguladoras de Genes , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Isoformas de RNA/genética , RNA Mensageiro/metabolismo , RNA-Seq , Proteínas Repressoras/genética , Serina Endopeptidases/metabolismo , Análise de Célula Única
20.
Signal Transduct Target Ther ; 5(1): 121, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641705
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA