Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.196
Filtrar
1.
BMC Genomics ; 25(1): 674, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972970

RESUMO

BACKGROUND: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.


Assuntos
Consórcios Microbianos , Poríferos , Simbiose , Transcriptoma , Simbiose/genética , Poríferos/microbiologia , Poríferos/genética , Animais , Consórcios Microbianos/genética , Perfilação da Expressão Gênica , Mar Mediterrâneo
2.
Proc Biol Sci ; 291(2026): 20241214, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981524

RESUMO

Obligatory ant-plant symbioses often appear to be single evolutionary shifts within particular ant lineages; however, convergence can be revealed once natural history observations are complemented with molecular phylogenetics. Here, we describe a remarkable example of convergent evolution in an ant-plant symbiotic system. Exclusively arboreal, Myrmelachista species can be generalized opportunists nesting in several plant species or obligately symbiotic, live-stem nesters of a narrow set of plant species. Instances of specialization within Myrmelachista are known from northern South America and throughout Middle America. In Middle America, a diverse radiation of specialists occupies understory treelets of lowland rainforests. The morphological and behavioural uniformity of specialists suggests that they form a monophyletic assemblage, diversifying after a single origin of specialization. Using ultraconserved element phylogenomics and ancestral state reconstructions, we show that shifts from opportunistic to obligately symbiotic evolved independently in South and Middle America. Furthermore, our analyses support a remarkable case of convergence within the Middle American radiation, with two independently evolved specialist clades, arising nearly simultaneously from putative opportunistic ancestors during the late Pliocene. This repeated evolution of a complex phenotype suggests similar mechanisms behind trait shifts from opportunists to specialists, generating further questions about the selective forces driving specialization.


Assuntos
Formigas , Evolução Biológica , Filogenia , Simbiose , Formigas/fisiologia , Formigas/genética , Animais , América do Sul , América Central , Mirmecófitas
3.
Sci Adv ; 10(28): eado1453, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985862

RESUMO

The interplay between humans and their microbiome is crucial for various physiological processes, including nutrient absorption, immune defense, and maintaining homeostasis. Microbiome alterations can directly contribute to diseases or heighten their likelihood. This relationship extends beyond humans; microbiota play vital roles in other organisms, including eukaryotic pathogens causing severe diseases. Notably, Wolbachia, a bacterial microbiota, is essential for parasitic worms responsible for lymphatic filariasis and onchocerciasis, devastating human illnesses. Given the lack of rapid cures for these infections and the limitations of current treatments, new drugs are imperative. Here, we disrupt Wolbachia's symbiosis with pathogens using boron-based compounds targeting an unprecedented Wolbachia enzyme, leucyl-tRNA synthetase (LeuRS), effectively inhibiting its growth. Through a compound demonstrating anti-Wolbachia efficacy in infected cells, we use biophysical experiments and x-ray crystallography to elucidate the mechanism behind Wolbachia LeuRS inhibition. We reveal that these compounds form adenosine-based adducts inhibiting protein synthesis. Overall, our study underscores the potential of disrupting key microbiota to control infections.


Assuntos
Microbiota , Wolbachia , Wolbachia/efeitos dos fármacos , Humanos , Animais , Leucina-tRNA Ligase/metabolismo , Leucina-tRNA Ligase/antagonistas & inibidores , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Cristalografia por Raios X , Compostos de Boro/farmacologia , Compostos de Boro/química , Simbiose , Modelos Moleculares
4.
BMC Biol ; 22(1): 148, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965531

RESUMO

BACKGROUND: Microbiomes are generally characterized by high diversity of coexisting microbial species and strains, and microbiome composition typically remains stable across a broad range of conditions. However, under fixed conditions, microbial ecology conforms with the exclusion principle under which two populations competing for the same resource within the same niche cannot coexist because the less fit population inevitably goes extinct. Therefore, the long-term persistence of microbiome diversity calls for an explanation. RESULTS: To explore the conditions for stabilization of microbial diversity, we developed a simple mathematical model consisting of two competing populations that could exchange a single gene allele via horizontal gene transfer (HGT). We found that, although in a fixed environment, with unbiased HGT, the system obeyed the exclusion principle, in an oscillating environment, within large regions of the phase space bounded by the rates of reproduction and HGT, the two populations coexist. Moreover, depending on the parameter combination, all three major types of symbiosis were obtained, namely, pure competition, host-parasite relationship, and mutualism. In each of these regimes, certain parameter combinations provided for synergy, that is, a greater total abundance of both populations compared to the abundance of the winning population in the fixed environment. CONCLUSIONS: The results of this modeling study show that basic phenomena that are universal in microbial communities, namely, environmental variation and HGT, provide for stabilization and persistence of microbial diversity, and emergence of ecological complexity.


Assuntos
Transferência Genética Horizontal , Microbiota , Microbiota/genética , Biodiversidade , Simbiose/genética , Modelos Teóricos , Modelos Biológicos
5.
Nat Commun ; 15(1): 5947, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013857

RESUMO

Conversion of heterotrophic organisms into partially or completely autotrophic organisms is primarily accomplished by extensive metabolic engineering and laboratory evolution efforts that channel CO2 into central carbon metabolism. Here, we develop a directed endosymbiosis approach to introduce carbon assimilation in budding yeasts. Particularly, we engineer carbon assimilating and sugar-secreting photosynthetic cyanobacterial endosymbionts within the yeast cells, which results in the generation of yeast/cyanobacteria chimeras that propagate under photosynthetic conditions in the presence of CO2 and in the absence of feedstock carbon sources like glucose or glycerol. We demonstrate that the yeast/cyanobacteria chimera can be engineered to biosynthesize natural products under the photosynthetic conditions. Additionally, we expand our directed endosymbiosis approach to standard laboratory strains of yeasts, which transforms them into photosynthetic yeast/cyanobacteria chimeras. We anticipate that our studies will have significant implications for sustainable biotechnology, synthetic biology, and experimentally studying the evolutionary adaptation of an additional organelle in yeast.


Assuntos
Carbono , Engenharia Metabólica , Fotossíntese , Saccharomyces cerevisiae , Simbiose , Simbiose/fisiologia , Carbono/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Engenharia Metabólica/métodos , Dióxido de Carbono/metabolismo , Glucose/metabolismo , Cianobactérias/metabolismo , Cianobactérias/genética
6.
Nat Commun ; 15(1): 5969, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013920

RESUMO

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.


Assuntos
Metanol , Methylobacterium , Methylobacterium/metabolismo , Methylobacterium/genética , Methylobacterium/enzimologia , Methylobacterium/crescimento & desenvolvimento , Metanol/metabolismo , Simbiose , Mutação , Aldeído Liases/metabolismo , Aldeído Liases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/crescimento & desenvolvimento , Methylobacterium extorquens/enzimologia , Desenvolvimento Vegetal , Microbiota/genética , Biomassa
7.
BMC Microbiol ; 24(1): 273, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044145

RESUMO

BACKGROUND: Owing to the widespread use of chemical pesticides to control agricultural pests, pesticide tolerance has become a serious problem. In recent years, it has been found that symbiotic bacteria are related to pesticides tolerance. To investigate the potential role of microorganisms in the pesticide tolerance of Chilo suppressalis, this study was conducted. RESULTS: The insect was fed with tetracycline and cefixime as the treatment group (TET and CFM, respectively), and did not add antibiotics in the control groups (CK). The 16S rDNA sequencing results showed that antibiotics reduced the diversity of C. suppressalis symbiotic microorganisms but did not affect their growth and development. In bioassays of the three C. suppressalis groups (TET, CFM, and CK), a 72 h LC50 fitting curve was calculated to determine whether long-term antibiotic feeding leads to a decrease in pesticide resistance. The CK group of C. suppressalis was used to determine the direct effect of antibiotics on pesticide tolerance using a mixture of antibiotics and pesticides. Indirect evidence suggests that antibiotics themselves did not affect the pesticide tolerance of C. suppressalis. The results confirmed that feeding C. suppressalis cefixime led to a decrease in the expression of potential tolerance genes to chlorantraniliprole. CONCLUSIONS: This study reveals the impact of antibiotic induced changes in symbiotic microorganisms on the pesticide tolerance of C. suppressalis, laying the foundation for studying the interaction between C. suppressalis and microorganisms, and also providing new ideas for the prevention and control of C. suppressalis and the creation of new pesticides.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Praguicidas/farmacologia , Mariposas/microbiologia , Mariposas/efeitos dos fármacos , Simbiose , RNA Ribossômico 16S/genética , Microbiota/efeitos dos fármacos , Tetraciclina/farmacologia
8.
Gut Microbes ; 16(1): 2379624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042424

RESUMO

Symbiosis between the host and intestinal microbial communities is essential for human health. Disruption in this symbiosis is linked to gastrointestinal diseases, including inflammatory bowel diseases, as well as extra-gastrointestinal diseases. Unbalanced gut microbiome or gut dysbiosis contributes in multiple ways to disease frequency, severity and progression. Microbiome taxonomic profiling and metabolomics approaches greatly improved our understanding of gut dysbiosis features; however, the precise mechanisms involved in gut dysbiosis establishment still need to be clarified. The aim of this review is to present new actors and mechanisms underlying gut dysbiosis formation following parasitic infection or in a context of altered Paneth cells, revealing the existence of a critical crosstalk between Paneth and tuft cells to control microbiome composition.


Assuntos
Disbiose , Microbioma Gastrointestinal , Celulas de Paneth , Disbiose/microbiologia , Humanos , Animais , Celulas de Paneth/metabolismo , Simbiose , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Células em Tufo
9.
Proc Biol Sci ; 291(2027): 20240788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043236

RESUMO

Cyanobacteria can form complex interactions with heterotrophic microorganisms, but this relationship is susceptible to nutrient concentrations. Disentangling the cyanobacteria-bacteria interactions in relation to nutrient supply is essential to understanding their roles in geochemical cycles under global change. We hypothesize that enhanced nutrient supply in oligotrophic oceans can promote interactions among cyanobacteria and bacteria. Therefore, we investigated the planktonic bacteria and their interactions with cyanobacteria in relation to elevated nutrients caused by enhanced upwelling around a shallow and a deep seamount in the tropical western Pacific Ocean. We found obviously higher complexity of network occurred with significantly more cyanobacteria in the deep chlorophyll maximum layer of the shallow seamount when compared with that of the deep seamount. Cyanobacteria can shape bacterial interaction and community evenness in response to relatively high nutrient concentrations. The effects of the nutrients on cyanobacteria-related networks were further estimated based on the Tara Oceans data. Statistical analyses further showed a facilitative effect of nitrate concentrations on cyanobacteria-bacteria mutualistic interactions in the global oligotrophic ocean. By analysing the Tara Ocean macrogenomic data, we detected functional genes related to cyanobacteria-bacteria interactions in all samples, indicating the existence of a mutualistic relationship. Our results reveal cyanobacteria-bacteria interaction in response to nutrient elevation in oligotrophic ocean and highlight the potentially negative effects of global change on the bacterial community from the view of the bio-interaction.


Assuntos
Cianobactérias , Nutrientes , Simbiose , Cianobactérias/fisiologia , Nutrientes/metabolismo , Bactérias , Oceano Pacífico , Água do Mar/microbiologia , Água do Mar/química
10.
Proc Biol Sci ; 291(2027): 20240765, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043241

RESUMO

Symbiotic nitrogen (N) fixation (SNF) by legumes and their rhizobial partners is one of the most important sources of bioavailable N to terrestrial ecosystems. While most work on the regulation of SNF has focussed on abiotic drivers such as light, water and soil nutrients, the diversity of rhizobia with which individual legume partners may play an important but under-recognized role in regulating N inputs from SNF. By experimentally manipulating the diversity of rhizobia available to legumes, we demonstrate that rhizobial diversity can increase average SNF rates by more than 90%, and that high rhizobial diversity can induce increased SNF even under conditions of high soil N fertilization. However, the effects of rhizobial diversity, the conditions under which diversity effects were the strongest, and the likely mechanisms driving these diversity effects differed between the two legume species we assessed. These results provide evidence that biodiversity-ecosystem function relationships can occur at the scales of an individual plant and that the effects of rhizobial diversity may be as important as long-established abiotic factors, such as N availability, in driving terrestrial N inputs via SNF.


Assuntos
Fixação de Nitrogênio , Nitrogênio , Rhizobium , Microbiologia do Solo , Solo , Simbiose , Solo/química , Nitrogênio/metabolismo , Rhizobium/fisiologia , Rhizobium/metabolismo , Fabaceae/microbiologia , Biodiversidade
11.
Front Cell Infect Microbiol ; 14: 1371312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035357

RESUMO

The symbiotic relationship between the human digestive system and its intricate microbiota is a captivating field of study that continues to unfold. Comprising predominantly anaerobic bacteria, this complex microbial ecosystem, teeming with trillions of organisms, plays a crucial role in various physiological processes. Beyond its primary function in breaking down indigestible dietary components, this microbial community significantly influences immune system modulation, central nervous system function, and disease prevention. Despite the strides made in microbiome research, the precise mechanisms underlying how bacterial effector functions impact mammalian and microbiome physiology remain elusive. Unlike the traditional DNA-RNA-protein paradigm, bacteria often communicate through small molecules, underscoring the imperative to identify compounds produced by human-associated bacteria. The gut microbiome emerges as a linchpin in the transformation of natural products, generating metabolites with distinct physiological functions. Unraveling these microbial transformations holds the key to understanding the pharmacological activities and metabolic mechanisms of natural products. Notably, the potential to leverage gut microorganisms for large-scale synthesis of bioactive compounds remains an underexplored frontier with promising implications. This review serves as a synthesis of current knowledge, shedding light on the dynamic interplay between natural products, bacteria, and human health. In doing so, it contributes to our evolving comprehension of microbiome dynamics, opening avenues for innovative applications in medicine and therapeutics. As we delve deeper into this intricate web of interactions, the prospect of harnessing the power of the gut microbiome for transformative medical interventions becomes increasingly tantalizing.


Assuntos
Produtos Biológicos , Microbioma Gastrointestinal , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Microbioma Gastrointestinal/fisiologia , Bactérias/metabolismo , Bactérias/classificação , Animais , Interações entre Hospedeiro e Microrganismos , Simbiose
12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000087

RESUMO

Sulfur metabolism plays a major role in plant growth and development, environmental adaptation, and material synthesis, and the sulfate transporters are the beginning of sulfur metabolism. We identified 37 potential VcSULTR genes in the blueberry genome, encoding peptides with 534 to 766 amino acids. The genes were grouped into four subfamilies in an evolutionary analysis. The 37 putative VcSULTR proteins ranged in size from 60.03 to 83.87 kDa. These proteins were predicted to be hydrophobic and mostly localize to the plasma membrane. The VcSULTR genes were distributed on 30 chromosomes; VcSULTR3;5b and VcSULTR3;5c were the only tandemly repeated genes. The VcSULTR promoters contained cis-acting elements related to the fungal symbiosis and stress responses. The transcript levels of the VcSULTRs differed among blueberry organs and changed in response to ericoid mycorrhizal fungi and sulfate treatments. A subcellular localization analysis showed that VcSULTR2;1c localized to, and functioned in, the plasma membrane and chloroplast. The virus-induced gene knock-down of VcSULTR2;1c resulted in a significantly decreased endogenous sulfate content, and an up-regulation of genes encoding key enzymes in sulfur metabolism (VcATPS2 and VcSiR1). These findings enhance our understanding of mycorrhizal-fungi-mediated sulfate transport in blueberry, and lay the foundation for further research on blueberry-mycorrhizal symbiosis.


Assuntos
Mirtilos Azuis (Planta) , Regulação da Expressão Gênica de Plantas , Micorrizas , Filogenia , Proteínas de Plantas , Transportadores de Sulfato , Micorrizas/genética , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/microbiologia , Mirtilos Azuis (Planta)/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Sulfatos/metabolismo , Simbiose/genética , Genoma de Planta
13.
Environ Microbiol Rep ; 16(4): e13300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38979873

RESUMO

Desert plants, such as Agave tequilana, A. salmiana and Myrtillocactus geometrizans, can survive harsh environmental conditions partly due to their symbiotic relationships with microorganisms, including arbuscular mycorrhizal fungi (AMF). Interestingly, some of these fungi also harbour endosymbiotic bacteria. Our research focused on investigating the diversity of these AMFs and their associated bacteria in these plants growing in arid soil. We found that agaves have a threefold higher AMF colonization than M. geometrizans. Metabarcoding techniques revealed that the composition of AMF communities was primarily influenced by the plant host, while the bacterial communities were more affected by the specific plant compartment or niche they inhabited. We identified both known and novel endofungal bacterial taxa, including Burkholderiales, and confirmed their presence within AMF spores using multiphoton microscopy. Our study also explored the effects of drought on the symbiosis between A. tequilana and AMF. We discovered that the severity of drought conditions could modulate the strength of this symbiosis and its outcomes for the plant holobiont. Severe drought conditions prevented the formation of this symbiosis, while moderate drought conditions promoted it, thereby conferring drought tolerance in A. tequilana. This research sheds light on the diversity of AMF and associated bacteria in Crassulacean Acid Metabolism (CAM) plants and underscores the crucial role of drought as a factor modulating the symbiosis between A. tequilana and AMF. Further research is needed to understand the role of endofungal bacteria in this response.


Assuntos
Bactérias , Clima Desértico , Secas , Micorrizas , Microbiologia do Solo , Simbiose , Micorrizas/fisiologia , Micorrizas/classificação , Micorrizas/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Agave/microbiologia , Biodiversidade , Raízes de Plantas/microbiologia
14.
Microb Ecol ; 87(1): 92, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987492

RESUMO

Symbiotic dinoflagellates in the genus Symbiodiniaceae play vital roles in promoting resilience and increasing stress tolerance in their coral hosts. While much of the world's coral succumb to the stresses associated with increasingly severe and frequent thermal bleaching events, live coral cover in Papua New Guinea (PNG) remains some of the highest reported globally despite the historically warm waters surrounding the country. Yet, in spite of the high coral cover in PNG and the acknowledged roles Symbiodiniaceae play within their hosts, these communities have not been characterized in this global biodiversity hotspot. Using high-throughput sequencing of the ITS2 rDNA gene, we profiled the endosymbionts of four coral species, Diploastrea heliopora, Pachyseris speciosa, Pocillopora acuta, and Porites lutea, across six sites in PNG. Our findings reveal patterns of Cladocopium and Durusdinium dominance similar to other reefs in the Coral Triangle, albeit with much greater intra- and intergenomic variation. Host- and site-specific variations in Symbiodiniaceae type profiles were observed across collection sites, appearing to be driven by environmental conditions. Notably, the extensive intra- and intergenomic variation, coupled with many previously unreported sequences, highlight PNG as a potential hotspot of symbiont diversity. This work represents the first characterization of the coral-symbiont community structure in the PNG marine biodiversity hotspot, serving as a baseline for future studies.


Assuntos
Antozoários , Biodiversidade , Recifes de Corais , Dinoflagellida , Simbiose , Antozoários/microbiologia , Animais , Dinoflagellida/genética , Dinoflagellida/classificação , Dinoflagellida/fisiologia , Papua Nova Guiné , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala
15.
Sci Rep ; 14(1): 15484, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969663

RESUMO

The symbiosis between corals and dinoflagellates of the family Symbiodiniaceae is sensitive to environmental stress. The oxidative bleaching hypothesis posits that extreme temperatures lead to accumulation of photobiont-derived reactive oxygen species ROS, which exacerbates the coral environmental stress response (ESR). To understand how photosymbiosis modulates coral ESRs, these responses must be explored in hosts in and out of symbiosis. We leveraged the facultatively symbiotic coral Astrangia poculata, which offers an opportunity to uncouple the ESR across its two symbiotic phenotypes (brown, white). Colonies of both symbiotic phenotypes were exposed to three temperature treatments for 15 days: (i) control (static 18 °C), (ii) heat challenge (increasing from 18 to 30 °C), and (iii) cold challenge (decreasing from 18 to 4 °C) after which host gene expression was profiled. Cold challenged corals elicited widespread differential expression, however, there were no differences between symbiotic phenotypes. In contrast, brown colonies exhibited greater gene expression plasticity under heat challenge, including enrichment of cell cycle pathways involved in controlling photobiont growth. While this plasticity was greater, the genes driving this plasticity were not associated with an amplified environmental stress response (ESR) and instead showed patterns of a dampened ESR under heat challenge. This provides nuance to the oxidative bleaching hypothesis and suggests that, at least during the early onset of bleaching, photobionts reduce the host's ESR under elevated temperatures in A. poculata.


Assuntos
Antozoários , Dinoflagellida , Simbiose , Antozoários/fisiologia , Animais , Dinoflagellida/fisiologia , Estresse Fisiológico , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Espécies Reativas de Oxigênio/metabolismo , Fotossíntese
16.
BMC Microbiol ; 24(1): 247, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971740

RESUMO

BACKGROUND: Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS: Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS: Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.


Assuntos
Transferência Genética Horizontal , Mercúrio , Óperon , Simbiose , Transcriptoma , Mercúrio/metabolismo , Mercúrio/toxicidade , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Microbiologia do Solo
17.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38982749

RESUMO

Ciliates are a diverse group of protists known for their ability to establish various partnerships and thrive in a wide variety of oxygen-depleted environments. Most anaerobic ciliates harbor methanogens, one of the few known archaea living intracellularly. These methanogens increase the metabolic efficiency of host fermentation via syntrophic use of host end-product in methanogenesis. Despite the ubiquity of these symbioses in anoxic habitats, patterns of symbiont specificity and fidelity are not well known. We surveyed two unrelated, commonly found groups of anaerobic ciliates, the Plagiopylea and Metopida, isolated from anoxic marine sediments. We sequenced host 18S rRNA and symbiont 16S rRNA marker genes as well as the symbiont internal transcribed spacer region from our cultured ciliates to identify hosts and their associated methanogenic symbionts. We found that marine ciliates from both of these co-occurring, divergent groups harbor closely related yet distinct intracellular archaea within the Methanocorpusculum genus. The symbionts appear to be stable at the host species level, but at higher taxonomic levels, there is evidence that symbiont replacements have occurred. Gaining insight into this unique association will deepen our understanding of the complex transmission modes of marine microbial symbionts, and the mutualistic microbial interactions occurring across domains of life.


Assuntos
Cilióforos , Sedimentos Geológicos , Filogenia , RNA Ribossômico 16S , Simbiose , Cilióforos/classificação , Cilióforos/genética , Cilióforos/fisiologia , Anaerobiose , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , RNA Ribossômico 18S/genética , DNA Arqueal/genética , DNA Arqueal/química , Análise de Sequência de DNA , Água do Mar/microbiologia , Água do Mar/parasitologia
18.
Curr Microbiol ; 81(9): 265, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003318

RESUMO

Protists, including ciliates retain crystals in their cytoplasm. However, their functions and properties remain unclear. To comparatively analyze the crystals of Paramecium bursaria, a ciliate, associated with and without the endosymbiotic Chlorella variabilis, we investigated the isolated crystals using a light microscope and analyzed their length and solubility. A negligible number of crystals was found in P. bursaria cells harboring symbiotic algae. The average crystal length in alga-free and algae-reduced cells was about 6.8 µm and 14.4 µm, respectively. The crystals of alga-free cells were spherical, whereas those of algae-reduced cells were angular in shape. The crystals of alga-free cells immediately dissolved in acids and bases, but not in water or organic solvents, and were stable at - 20 °C for more than 3 weeks. This study, for the first time, reveals that the characteristics of crystals present in the cytoplasm of P. bursaria vary greatly depending on the amount of symbiotic algae.


Assuntos
Chlorella , Paramecium , Simbiose , Chlorella/química , Chlorella/metabolismo , Paramecium/metabolismo , Cristalização , Citoplasma/química
20.
Microbiol Res ; 286: 127814, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38954993

RESUMO

Bacillus subtilis is a beneficial bacterium that supports plant growth and protects plants from bacterial, fungal, and viral infections. Using a simplified system of B. subtilis and Arabidopsis thaliana interactions, we studied the fitness and transcriptome of bacteria detached from the root over generations of growth in LB medium. We found that bacteria previously associated with the root or exposed to its secretions had greater stress tolerance and were more competitive in root colonization than bacteria not previously exposed to the root. Furthermore, our transcriptome results provide evidence that plant secretions induce a microbial stress response and fundamentally alter signaling by the cyclic nucleotide c-di-AMP, a signature maintained by their descendants. The changes in cellular physiology due to exposure to plant exudates were multigenerational, as they allowed not only the bacterial cells that colonized a new plant but also their descendants to have an advance over naive competitors of the same species, while the overall plasticity of gene expression and rapid adaptation were maintained. These changes were hereditary but not permanent. Our work demonstrates a bacterial memory manifested by multigenerational reversible adaptation to plant hosts in the form of activation of the stressosome, which confers an advantage to symbiotic bacteria during competition.


Assuntos
Arabidopsis , Bacillus subtilis , Raízes de Plantas , Simbiose , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Arabidopsis/microbiologia , Arabidopsis/genética , Raízes de Plantas/microbiologia , Transcriptoma , Estresse Fisiológico , Regulação Bacteriana da Expressão Gênica , Adaptação Fisiológica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA