Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.469
Adv Exp Med Biol ; 1232: 85-90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31893398


Delayed orthostatic hypotension (OH) is a minor subset of orthostatic dysregulation (OD). Cerebral blood oxygenation in juvenile patients with delayed OH has not been studied. We investigated the bilateral changes in cerebral oxygenation in the prefrontal cortex during an active standing test in 23 juvenile patients with delayed OH using near-infrared spectroscopy (NIRS). We measured the oxy-Hb, deoxy-Hb, and total-Hb during the active standing test. Four observations were made during the test: t1 in a resting supine position, t2 when maintaining blood pressure, and the remaining two (t3, t4) during hypotension. The concentration of oxy-Hb significantly decreased prior to satisfying the diagnostic criteria of delayed OH after standing and did not change thereafter. The concentration of deoxy-Hb increased gradually during the measurement periods. In addition, total-Hb increased from t2 to t3. There was no significant difference in the change in each Hb parameter between the left and right cerebral hemispheres. Our results indicate that NIRS parameters are more sensitive than blood pressure for the interpretation of cerebral autoregulation in juvenile patients with delayed OH.

Sistema Cardiovascular , Circulação Cerebrovascular , Hipotensão Ortostática , Oxigênio , Posição Ortostática , Adolescente , Pressão Sanguínea , Circulação Cerebrovascular/fisiologia , Humanos , Hipotensão Ortostática/sangue , Hipotensão Ortostática/diagnóstico , Oxigênio/sangue , Espectroscopia de Luz Próxima ao Infravermelho
Adv Gerontol ; 32(4): 536-544, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31800181


For the first time, studies of the functional condition of the cardiovascular system long-livers of Pridnestrovie (Transnistria) were carried out. It was found that the main indicators of the functional state of the cardiovascular system of long-livers (except for 100-year-olds and older) are not significantly different or slightly lower than in the representatives of the previous age group and do not differ between representatives of the age groups of long-livers 90-94 and 95-99 years; the index of the adaptive potential of long-livers does not differ from this indicator in the previous age group (2,86 and 2,7 points respectively), which indicates a slow rate of involuntary and degenerative processes in the cardiovascular system in the majority of long-livers.

Fenômenos Fisiológicos Cardiovasculares , Sistema Cardiovascular , Idoso de 80 Anos ou mais , Sistema Cardiovascular/patologia , Europa Oriental , Humanos
Adv Gerontol ; 32(4): 572-580, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31800186


The present work introduces data on studying the activity of pyruvate kinase (PK) and lactate dehydrogenase (LDH) and the state of the cardiovascular system in elderly and senile people who applied to polyclinic "Health zone" in Baku. 60 people on an enzimopatiya and 87 people on a condition of cardiovascular system were examined. The examined persons were found the decreased myocardial blood flow, ischemic heart disease (IHD), against increased PK and LDH. Statistically significant differences in the activity of enzymes depending on gender, age were established, and changes in the bioelectric activity of the heart during an ECG were detected.

Sistema Cardiovascular , L-Lactato Desidrogenase , Miocárdio , Piruvato Quinase , Idoso , Idoso de 80 Anos ou mais , Azerbaijão , Sistema Cardiovascular/enzimologia , Sistema Cardiovascular/patologia , Feminino , Coração/fisiopatologia , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Isquemia Miocárdica/enzimologia , Miocárdio/enzimologia , Piruvato Quinase/metabolismo
Adv Exp Med Biol ; 1182: 181-199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31777019


Cardiovascular diseases (CVDs) are disorders of the heart and blood vessels and include coronary heart diseases, cerebrovascular diseases, rheumatic heart diseases, and other conditions. CVDs are one of the most major causes of morbidity and mortality around the world, taking the lives of 17.9 million people every year. Several investigations have shown the influence of Ganoderma lucidum (G. lucidum, Lingzhi) on some metabolic markers, such as low-density lipoprotein (LDL), high-density lipoprotein (HDL), total cholesterol (TC), blood pressure, and oxidative damage. G. lucidum potentially reduces the risk of suffering cardiovascular diseases. Some studies found that G. lucidum prevented from heart damage in a variety of disease models, such as streptozotocin (STZ)-induced diabetic, high-fat-diet-induced diabetic, isoprenaline (ISO)-induced myocardial hypertrophy, acute ethanol-induced heart toxicity, and transverse aortic constriction (TAC) models. This chapter summarizes putative preventive and therapeutic effects of G. lucidum on cardiovascular diseases and the potential clinical use of G. lucidum involved in these effects.

Produtos Biológicos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Sistema Cardiovascular/efeitos dos fármacos , Reishi/química , Humanos
Biochim Biophys Acta Gene Regul Mech ; 1862(10): 194435, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31678627


Cardiovascular development is governed by a complex interplay between inducting signals such as Bmps and Fgfs leading to activation of cardiac specific transcription factors such as Nkx2.5, Mef2c and Srf that orchestrate the initial steps of cardiogenesis. Over the last decade we have witnessed the discovery of novel layers of gene regulation, i.e. post-transcriptional regulation exerted by non-coding RNAs. The function role of small non coding RNAs has been widely demonstrated, e.g. miR-1 knockout display several cardiovascular abnormalities during embryogenesis. More recently long non-coding RNAs have been also reported to modulate gene expression and function in the developing heart, as exemplified by the embryonic lethal phenotypes of Fendrr and Braveheart knock out mice, respectively. In this study, we investigated the differential expression profile during cardiogenesis of previously reported lncRNAs in heart development. Our data revealed that Braveheart, Fendrr, Carmen display a preferential adult expression while Miat, Alien, H19 preferentially display chamber-specific expression at embryonic stages. We also demonstrated that these lncRNAs are differentially regulated by Nkx2.5, Srf and Mef2c, Pitx2 > Wnt > miRNA signaling pathway and angiotensin II and thyroid hormone administration. Importantly isoform-specific expression and distinct nuclear vs cytoplasmic localization of Braveheart, Carmen and Fendrr during chamber morphogenesis is observed, suggesting distinct functional roles of these lncRNAs in atrial and ventricular chambers. Furthermore, we demonstrate by in situ hybridization a dynamic epicardial, myocardial and endocardial expression of H19 during cardiac development. Overall our data support novel roles of these lncRNAs in different temporal and tissue-restricted fashion during cardiogenesis.

Sistema Cardiovascular/crescimento & desenvolvimento , Coração/crescimento & desenvolvimento , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Animais , Sistema Cardiovascular/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Homeobox Nkx-2.5/genética , Proteínas de Homeodomínio/genética , Hibridização In Situ , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fator de Resposta Sérica/genética
Methodist Debakey Cardiovasc J ; 15(3): 200-206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687099


Nitric oxide (NO) is continually produced by the enzyme nitric oxide synthase (NOS) and is essential to the control and effectiveness of the cardiovascular system. However, there is a substantial reduction in NOS activity with aging that can lead to the development of hypertension and other cardiovascular complications. Fortunately, NO can also be produced by the sequential reduction of inorganic nitrate to nitrite and then to NO. Nitric oxide from inorganic nitrate supplementation has been found to have the same cardioprotective benefits of NO produced by NOS. Moreover, it can effectively compensate for declining NOS activity due to aging or NOS inhibition by oxidative stress, hypoxia, or other factors. This review covers some of the major cardiovascular regulatory actions of NO and presents evidence that NO from inorganic nitrate supplementation can provide (1) compensation when NOS activity is inadequate, and (2) cardioprotective benefits beyond that provided by a healthy NOS system. In addition, it discusses how to obtain a safe and efficacious range of inorganic nitrate.

Doenças Cardiovasculares/prevenção & controle , Sistema Cardiovascular/efeitos dos fármacos , Suplementos Nutricionais , Nitratos/uso terapêutico , Óxido Nítrico/metabolismo , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Suplementos Nutricionais/efeitos adversos , Nível de Saúde , Humanos , Nitratos/efeitos adversos , Óxido Nítrico Sintase/metabolismo , Fatores de Risco , Resultado do Tratamento
Rev Cardiovasc Med ; 20(3): 153-160, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31601089


Exosomes, nanosized lipid bilayer membranous vesicles, are secreted by a variety of cells and contain protein, lipids, mRNA, miRNA, and signaling molecules that participate in intercellular material transfer and information exchange through binding, fusion or endocytosis. Exosomes mediate the gene expression of target cells and regulate pathological and physiological processes, thereby playing a key role in the occurrence and development of various diseases. Accumulated studies has shown that exosomes hold therapeutic potential though their anti-apoptotic and anti-fibrotic roles. They also have been shown to promote angiogenesis, inhibit ventricular remodeling and improve cardiac function, as well as inhibiting local inflammation and regulating the immune response. As such, exosomes represent a new target for the treatment of cardiovascular diseases. This review summarizes the literature in this field to date, including the basic biological characteristics of exosomes, and new progress in the understanding of the mechanisms of their involvement in immune regulation in cardiovascular diseases. In this way, it servrs as a basis for future research and the development of therapeutic exosomes.

Doenças Cardiovasculares/imunologia , Sistema Cardiovascular/imunologia , Exossomos/imunologia , Sistema Imunitário/imunologia , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Exossomos/metabolismo , Exossomos/transplante , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiopatologia , Prognóstico , Transdução de Sinais
Rev. Soc. Cardiol. Estado de Säo Paulo ; 29(4 (Supl)): 387-392, out.-dez. 2019.
Artigo em Português | LILACS | ID: biblio-1047320


A finalidade do sistema cardiovascular é manter uma perfusão adequada e, para tanto, conta com uma bomba eficiente (coração) e um sistema de condução apropriado, representado pelos vasos arteriais e venosos. Este artigo visa abordar os diferentes ajustes funcionais e estruturais decorrentes do treinamento físico no sistema vascular, que contribuem principalmente para melhorar a capacidade física dos indivíduos. Para tanto, o sistema conta com vários mecanismos, dentre eles neurais, hormonais e locais, que podem ser avaliados por meio de diferentes técnicas, tanto in vivo quanto in vitro. Após um período de treinamento físico, tem-se evidenciado uma melhor inter-relação entre sistema neural e local, promovendo menor atividade nervosa simpática acompanhada por simpatólise mais pronunciada. Além disso, o treinamento físico melhora a reatividade vascular de artérias, por melhorar a biodisponibilidade de óxido nítrico. Na parede vascular, o treinamento melhora o equilíbrio entre os componentes da matriz extracelular, favorecendo a redução da rigidez arterial em grandes artérias e a redução da razão parede-luz em arteríolas da musculatura locomotora e não locomotora, o que contribui para melhor distensibilidade dos vasos e redução da resistência periférica total, principalmente em casos patológicos. Por fim, o treinamento físico favorece a angiogênese na microcirculação, que contribui significativamente para nutrição tecidual

The purpose of the cardiovascular system is to maintain complete perfusion and, to this end, it has an efficient pump (the heart) and an appropriate conduction system, represented by arterial and venous vessels. This article addresses the different functional and structural adjustments resulting from physical training in the vascular system, which contribute mainly to improve the physical capacity of individuals. Therefore, the system has several mechanisms, including neural, hormonal and local mechanisms, which may be evaluated by different techniques, both in vivo and in vitro. After a period of physical training, a better interrelationship between neural and local systems has been evidenced, promoting less sympathetic nervous activity accompanied by more pronounced sympatholysis. In addition, physical training improves vascular reactivity of arteries by improving nitric oxide bioavailability. In the vascular wall, training improves balance between extracellular matrix components, favoring reduced of stiffness of the large arteries and reduced wall-to-lumen ratio in locomotor and non-locomotor muscle arterioles, which contributes to improving vessel distensibility and total peripheral resistance, especially in pathological cases. Finally, physical training favors microcirculatory angiogenesis, which contributes significantly to tissue nutrition

Exercício , Rigidez Vascular , Artérias , Doenças Cardiovasculares , Sistema Cardiovascular , Endotélio , Microcirculação , Neovascularização Patológica
Rev. Soc. Cardiol. Estado de Säo Paulo ; 29(4 (Supl)): 393-399, out.-dez. 2019. tab
Artigo em Português | LILACS | ID: biblio-1047325


A testosterona, hormônio masculino com efeitos androgênicos e anabólicos, também exerce efeito sobre o leito vascular. Este hormônio promove vasodilatação através da liberação de óxido nítrico e modulação dos canais de cálcio que impacta a função endotelial. Em pacientes com doença arterial coronariana (DAC) e insuficiência cardíaca (IC), reduções nas concentrações de testosterona total (<300 ng/dL) estão relacionadas com maior mortalidade e severidade dessas doenças. Em pacientes com DAC, a reposição de testosterona (RT) tem relação com melhora do tônus vascular coronário e melhora do limiar de isquemia. Em pacientes com IC, os efeitos parecem estar mais relacionados à melhora da capacidade funcional, aumento na distância percorrida em testes funcionais, maior VO2máx, menor razão VE/VCO2, e melhora adicional da sensibilidade barorreflexa. No entanto, embora os efeitos da testosterona sobre o aumento de massa muscular e força muscular estejam bem estabelecidos na literatura, os efeitos dessa substância no sistema cardiovascular precisam ser elucidados. O aumento das concentrações de antígeno prostático específico da próstata tem sido constantemente discutido quando a RT é proposta no tratamento de pacientes com doenças cardiovasculares. Por se tratar de um hormônio com grande potencial anabólico, os efeitos do uso de quantidades suprafisiológicas de testosterona e seus análogos sobre as alterações cardiovasculares em jovens atletas têm sido estudados. Portanto, o objetivo dessa revisão é abordar os efeitos benéficos da RT em homens com hipogonadismo com DAC e IC, e mostrar os riscos relacionados com a prática indiscriminada do uso de anabolizantes em jovens sem deficiência de testosterona

Testosterone, the male hormone with androgenic and anabolic effects, also has an effect on the vascular bed. This hormone promotes vasodilation by releasing nitric oxide and calcium channel modulation that impacts endothelial function. In patients with coronary artery disease (CAD) and heart failure (HF), reductions in total testosterone concentrations (<300 ng/dL) are related to higher mortality and severity of these diseases. In patients with CAD, testosterone replacement (TR) is related to improved coronary vascular tone and improved ischemia threshold. In HF patients, the effects seem be more related to improved functional capacity, increased distance covered in functional tests, higher VO2max, lower LV/VCO2 ratio, and further improvement of baroreflex sensitivity. However, although the effects of testosterone on muscle mass gain and muscle strength are well established in the literature, the effects of testosterone on the cardiovascular system need to be elucidated. Increased prostate-specific prostate antigen concentrations have been constantly discussed when TR is proposed in the treatment of patients with cardiovascular disease. Because it is a hormone with great anabolic potential, the effects of supraphysiological amounts of testosterone and its analogues on cardiovascular disorders in young athletes have been studied. Therefore, the objective of this review is to address the beneficial effects of TR in men with hypogonadism with CAD and HF, and to show the risks related to anabolic steroids abuse in young people without testosterone deficiency

Testosterona , Doenças Cardiovasculares/terapia , Doença da Artéria Coronariana , Sistema Cardiovascular , Exercício , Vasos Coronários , Insuficiência Cardíaca Diastólica , Hormônios , Hipogonadismo
Rev. Soc. Cardiol. Estado de Säo Paulo ; 29(4 (Supl)): 400-407, out.-dez. 2019.
Artigo em Português | LILACS | ID: biblio-1047333


O coração é um órgão que se adapta frente aos diferentes estímulos ou desafios a que é exposto. No entanto, o tipo de adaptação e a magnitude da mesma dependem do tipo, da magnitude e do tempo de duração do estímulo. Logo, a adaptação cardíaca observada após um período de treinamento físico é diferente da adaptação cardíaca observada nas doenças cardiovasculares. Além disso, as variáveis inerentes ao exercício físico como tipo, intensidade, volume e frequência semanal também apresentam uma relação direta quanto ao tipo de adaptação cardíaca. No presente artigo revisaremos os efeitos dos diferentes tipos treinamento físico na estrutura e função cardíaca, abordando os diferentes tipos de hipertrofia cardíaca (excêntrica e concêntrica), bem como as principais vias de sinalização intracelular responsáveis por essa hipertrofia. Além disso, abordaremos como alguns dos principais fatores (massa corporal, sexo, etnia e fatores genéticos) influenciam na magnitude da hipertrofia cardíaca e discutiremos se o treinamento físico praticado em grandes volumes pode ser prejudicial à saúde cardíaca

The heart is an organ that adapts to the different stimuli or challenges to which it is exposed. However, the type of adaptation and its magnitude depend on the stimulus type, magnitude and duration. Therefore, the cardiac adaptation observed after a period of exercise training is different from the cardiac adaptation observed in cardiovascular diseases. In addition, the variables inherent in exercise training such as type, intensity, volume and weekly frequency also have a direct relation to the type of cardiac adaptation. In this article we will review the effects of different types of exercise training on cardiac structure and function, addressing the different types of cardiac hypertrophy (eccentric and concentric), as well as the main intracellular signaling pathways responsible for this hypertrophy. In addition, we will discuss how some of the major factors (body mass, gender, ethnicity, and genetic factors) influence the magnitude of cardiac hypertrophy and will discuss whether high-volume of exercise training can be detrimental to heart health

Exercício , Coração , Doenças Cardiovasculares , Sistema Cardiovascular , Transdução de Sinais , Fatores Sexuais , Fatores de Risco , Fatores Etários , MicroRNAs , Hipertensão , Hipertrofia
Rev. Soc. Cardiol. Estado de Säo Paulo ; 29(4 (Supl)): 408-414, out.-dez. 2019. tab, ilus
Artigo em Português | LILACS | ID: biblio-1047334


O presente manuscrito teve por objetivo a revisão de literatura sobre os efeitos do destreinamento (DT) no sistema cardiovascular e em fatores de risco cardiovasculares, tais como massa corporal, adiposidade e perfil lipídico. Para isso, uma ampla pesquisa da literatura nas bases de dados PubMed, Scopus e Web of Science foi realizada, e o conjunto de dados mostrou que o DT promove reversão das adaptações cardiovasculares obtidas com o treinamento físico, tais como redução do VO2máx, do débito cardíaco máximo, do volume sistólico, do volume sanguíneo e da massa ventricular. Além disso, o DT induz aumento da frequência cardíaca de repouso e submáxima, da resistência vascular periférica e da pressão arterial. O curso temporal para que tais efeitos cardiovasculares ocorram é amplo, podendo ocorrer a partir da segunda semana de DT até três meses após o DT. O DT também gera prejuízos aos fatores de risco cardiovasculares, tais como aumento da massa corporal e da adiposidade, aumento do colesterol total, LDL e VLDL, e redução do HDL. Enquanto os efeitos na massa corporal aparecem após quatro semanas de DT, as mudanças no perfil lipídico são mais precoces, com apenas uma semana de DT

The objective of this manuscript is to review the literature about the effects of detraining (DT) on the cardiovascular system and on cardiovascular risk factors such as body mass, adiposity and lipid profile. For this, a wide literature search in the PubMed, Scopus and Web of Science databases was performed, and the data showed that DT promotes the reversal of cardiovascular adaptations obtained with physical training, such as reduction in VO2 max, cardiac output, ejection fraction, blood volume and ventricular mass. In addition, DT induces an increase in resting and submaximal heart rates, peripheral vascular resistance and blood pressure. The timeframe for such cardiovascular effects to be seen is long, which may occur from the second week of DT to 3 months after DT. DT also causes damage to cardiovascular risk factors by inducing an increase in body mass and adiposity, an increase in total cholesterol, LDL and VLDL, and a reduction in HDL. While effects on body mass appear after 4 weeks of DT, changes in lipid profile appear earlier, with only 1 week of DT

Sistema Cardiovascular , Exercício , Consumo de Oxigênio , Índice de Massa Corporal , Colesterol , Fatores de Risco , Atletas , Pressão Arterial , Frequência Cardíaca , HDL-Colesterol , LDL-Colesterol
Am J Vet Res ; 80(10): 912-922, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31556714


OBJECTIVE: To investigate the cardiovascular and sedation reversal effects of IM administration of atipamezole (AA) in dogs treated with medetomidine hydrochloride (MED) or MED and vatinoxan (MK-467). ANIMALS: 8 purpose-bred, 2-year-old Beagles. PROCEDURES: A randomized, blinded, crossover study was performed in which each dog received 2 IM treatments at a ≥ 2-week interval as follows: injection of MED (20 µg/kg) or MED mixed with 400 µg of vatinoxan/kg (MEDVAT) 30 minutes before AA (100 µg/kg). Sedation score, heart rate, mean arterial and central venous blood pressures, and cardiac output were recorded before and at various time points (up to 90 minutes) after AA. Cardiac and systemic vascular resistance indices were calculated. Venous blood samples were collected at intervals until 210 minutes after AA for drug concentration analysis. RESULTS: Heart rate following MED administration was lower, compared with findings after MEDVAT administration, prior to and at ≥ 10 minutes after AA. Mean arterial blood pressure was lower with MEDVAT than with MED at 5 minutes after AA, when its nadir was detected. Overall, cardiac index was higher and systemic vascular resistance index lower, indicating better cardiovascular function, in MEDVAT-atipamezole-treated dogs. Plasma dexmedetomidine concentrations were lower and recoveries from sedation were faster and more complete after MEDVAT treatment with AA than after MED treatment with AA. CONCLUSIONS AND CLINICAL RELEVANCE: Atipamezole failed to restore heart rate and cardiac index in medetomidine-sedated dogs, and relapses into sedation were observed. Coadministration of vatinoxan with MED helped to maintain hemodynamic function and hastened the recovery from sedation after AA in dogs.

Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Cães , Hipnóticos e Sedativos/farmacologia , Imidazóis/farmacologia , Medetomidina/farmacologia , Quinolizinas/farmacologia , Anestesia/veterinária , Animais , Débito Cardíaco/efeitos dos fármacos , Estudos Cross-Over , Dexmedetomidina/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Injeções Intramusculares/veterinária , Masculino , Medetomidina/administração & dosagem , Medetomidina/antagonistas & inibidores , Quinolizinas/antagonistas & inibidores , Distribuição Aleatória , Método Simples-Cego