Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.544
Filtrar
1.
Microb Cell Fact ; 23(1): 113, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622698

RESUMO

BACKGROUND: Isatropolone A and C, produced by Streptomyces sp. CPCC 204095, belong to an unusual class of non-benzenoid aromatic compounds and contain a rare seven-membered ring structure. Isatropolone A exhibits potent activity against Leishmania donovani, comparable to the only oral drug miltefosine. However, its variably low productivity represents a limitation for this lead compound in the future development of new anti-leishmaniasis drugs to meet unmet clinical needs. RESULTS: Here we first elucidated the regulatory cascade of biosynthesis of isatropolones, which consists of two SARP family regulators, IsaF and IsaJ. Through a series of in vivo and in vitro experiments, IsaF was identified as a pathway-specific activator that orchestrates the transcription of the gene cluster essential for isatropolone biosynthesis. Interestingly, IsaJ was found to only upregulate the expression of the cytochrome P450 monooxygenase IsaS, which is crucial for the yield and proportion of isatropolone A and C. Through targeted gene deletions of isaJ or isaS, we effectively impeded the conversion of isatropolone A to C. Concurrently, the facilitation of isaF overexpression governed by selected promoters, prompted the comprehensive activation of the production of isatropolone A. Furthermore, meticulous optimization of the fermentation parameters was conducted. These strategies culminated in the attainment of an unprecedented maximum yield-980.8 mg/L of isatropolone A-achieved in small-scale solid-state fermentation utilizing the genetically modified strains, thereby establishing the highest reported titer to date. CONCLUSION: In Streptomyces sp. CPCC 204095, the production of isatropolone A and C is modulated by the SARP regulators IsaF and IsaJ. IsaF serves as a master pathway-specific regulator for the production of isatropolones. IsaJ, on the other hand, only dictates the transcription of IsaS, the enzyme responsible for the conversion of isatropolone A and C. By engineering the expression of these pivotal genes, we have devised a strategy for genetic modification aimed at the selective and high-yield biosynthesis of isatropolone A. This study not only unveils the unique regulatory mechanisms governing isatropolone biosynthesis for the first time, but also establishes an essential engineering framework for the targeted high-level production of isatropolone A.


Assuntos
Streptomyces , Streptomyces/metabolismo , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regiões Promotoras Genéticas , Família Multigênica
2.
Arch Insect Biochem Physiol ; 115(4): e22111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628055

RESUMO

In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvßFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.


Assuntos
Besouros , Proteínas de Insetos , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Besouros/genética , Larva/genética , Larva/metabolismo , Insetos/metabolismo , Metamorfose Biológica , Ecdisterona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Interferência de RNA , Pupa/genética , Pupa/metabolismo
3.
Biochemistry ; 63(8): 1026-1037, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564530

RESUMO

The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11ß-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11ß-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.


Assuntos
Aldosterona , Esteroide 11-beta-Hidroxilase , Esteroide 11-beta-Hidroxilase/química , Esteroide 11-beta-Hidroxilase/genética , Esteroide 11-beta-Hidroxilase/metabolismo , Corticosterona/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/química , Citocromo P-450 CYP11B2/metabolismo , Catálise , Cinética
4.
J Agric Food Chem ; 72(15): 8444-8459, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574108

RESUMO

Cytochrome P450 sterol 14α-demethylase (CYP51) is a key enzyme involved in the sterol biosynthesis pathway and serves as a target for sterol demethylation inhibitors (DMIs). In this study, the 3D structures of three CPY51 paralogues from Calonectria ilicicola (C. ilicicola) were first modeled by AlphaFold2, and molecular docking results showed that CiCYP51A, CiCYP51B, or CiCYP51C proteins individually possessed two active pockets that interacted with DMIs. Our results showed that the three paralogues play important roles in development, pathogenicity, and sensitivity to DMI fungicides. Specifically, CiCYP51A primarily contributed to cell wall integrity maintenance and tolerance to abiotic stresses, and CiCYP51B was implicated in sexual reproduction and virulence, while CiCYP51C exerted negative regulatory effects on sterol 14α-demethylase activity within the ergosterol biosynthetic pathway, revealing its genus-specific function in C. ilicicola. These findings provide valuable insights into developing rational strategies for controlling soybean red crown rot caused by C. ilicicola.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hypocreales , Lanosterol , Lanosterol/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Esteróis , Esterol 14-Desmetilase/química
5.
Plant Cell Rep ; 43(5): 122, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642121

RESUMO

KEY MESSAGE: Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.


Assuntos
Lagerstroemia , Transcriptoma , Triterpenos , Transcriptoma/genética , Lagerstroemia/genética , Lagerstroemia/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Perfilação da Expressão Gênica
6.
Biopharm Drug Dispos ; 45(2): 107-114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573807

RESUMO

VX-548 is a sodium channel blocker, which acts as an analgesic. This study aims to investigate the gender differences in the pharmacokinetics and metabolism of VX-548 in rats. After intravenous administration, the area under the curve (AUC0-t) of VX-548 was much higher in female rats (1505.8 ± 47.3 ng·h/mL) than in male rats (253.8 ± 6.3 ng·h/mL), and the clearance in female rats (12.5 ± 0.8 mL/min/kg) was much lower than in male rats (65.1 ± 1.7 mL/min/kg). After oral administration, the AUC0-t in female rats was about 50-fold higher than that in male rats. The oral bioavailability in male rats was 11% while it was 96% in female rats. An in vitro metabolism study revealed that the metabolism of VX-548 in female rat liver microsomes was much slower than in male rats. Further metabolite identification suggested that the significant gender difference in pharmacokinetics was attributed to demethylation. The female rat liver microsomes showed a limited ability to convert VX-548 into desmethyl VX-548. Phenotyping experiments indicated that the formation of desmethyl VX-548 was mainly catalyzed by CYP3A2 and CYP2C11 using rat recombinant CYPs. Overall, we revealed that the pharmacokinetics and metabolism of VX-548 in male and female rats showed significant gender differences.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Compostos Organotiofosforados , Ratos , Masculino , Feminino , Animais , Fatores Sexuais , Sistema Enzimático do Citocromo P-450/metabolismo , Disponibilidade Biológica , Microssomos Hepáticos/metabolismo , Administração Oral
7.
Pestic Biochem Physiol ; 199: 105805, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458670

RESUMO

Diquat (DQ) poisoning has garnered attention in recent years, primarily due to the rising incidence of cases worldwide, coupled with the absence of a viable antidote for its treatment. Despite the fact that diquat monopyridone (DQ-M) has been identified as a significant metabolite of DQ, the enzyme responsible for its formation remains unknown. In this study, we have identified aldehyde oxidase (AOX) as a vital enzyme involved in DQ oxidative metabolism. The metabolism of DQ to DQ-M was significantly inhibited by AOX inhibitors including raloxifene and hydralazine. The source of oxygen incorporated into DQ-M was proved to be from water through a H218O incubation experiment which further corroborated DQ-M formation via AOX metabolism. The product of DQ-M in vitro generated by fresh rat tissues co-incubation was consistent with its AOX expression. The result of the molecular docking analysis of DQ and AOX protein showed that DQ is capable of binding to AOX. Furthermore, the cytotoxicity of DQ was significantly higher than DQ-M at the same concentration tested in six cell types. This work is the first to uncover the involvement of aldehyde oxidase, a non-cytochrome P450 enzyme, in the oxidative metabolic pathway of diquat, thus providing a potential target for the development of detoxification treatment.


Assuntos
Aldeído Oxidase , Diquat , Ratos , Animais , Diquat/farmacologia , Aldeído Oxidase/química , Aldeído Oxidase/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo , Redes e Vias Metabólicas , Sistema Enzimático do Citocromo P-450/metabolismo
8.
Pestic Biochem Physiol ; 199: 105775, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458682

RESUMO

Insect cuticular protein (ICP) plays an important role in insect growth and development. However, research on the role of ICP in insecticide resistance is very limited. In this study, insect cuticular protein genes LCP17 and SgAbd5 were cloned and characterized in Helicoverpa armigera based on previous transcriptome data. The functions of LCP17 and SgAbd5 genes in fenvalerate resistance were assessed by RNA interference (RNAi), and their response to fenvalerate was further detected. The results showed that LCP17 and SgAbd5 were overexpressed in the fenvalerate-resistant strain comparing with a susceptible strain. The open reading frames of LCP17 and SgAbd5 genes were 423 bp and 369 bp, encoding 141 and 123 amino acids, respectively. LCP17 and SgAbd5 genes were highly expressed in the larval stage, but less expressed in the adult and pupal stages. The expression level of LCP17 and SgAbd5 genes increased significantly after fenvalerate treatment at 24 h. When the cotton bollworms larvae were exposed to fenvalerate at LD50 level, RNAi-mediated silencing of LCP17 and SgAbd5 genes increased the mortality from 50.68% to 68.67% and 63.89%, respectively; the mortality increased to even higher level, which was 73.61%, when these two genes were co-silenced. Moreover, silencing of these two genes caused the cuticle lamellar structure to become loose, which led to increased penetration of fenvalerate into the larvae. The results suggested that LCP17 and SgAbd5 may be involved in the resistance of cotton bollworm to fenvalerate, and LCP17 and SgAbd5 could serve as potential targets for H. armigera control.


Assuntos
Inseticidas , Mariposas , Nitrilas , Piretrinas , Animais , Inseticidas/toxicidade , 60627 , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Mariposas/genética , Mariposas/metabolismo , Larva/genética , Larva/metabolismo
9.
Sci Total Environ ; 926: 171984, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547983

RESUMO

Mesoporous silica nanoparticles (MSNs) are efficient carriers of drugs, and are promising in developing novel pesticide formulations. The cotton aphids Aphis gossypii Glover is a world devastating insect pest. It has evolved high level resistance to various insecticides thus resulted in the application of higher doses of insecticides, which raised environmental risk. In this study, the MSNs based pesticide/antibiotic delivery system was constructed for co-delivery of ampicillin (Amp) and imidacloprid (IMI). The IMI@Amp@MSNs complexes have improved toxicity against cotton aphids, and reduced acute toxicity to zebrafish. From the 16S rDNA sequencing results, Amp@MSNs, prepared by loading ampicillin to the mesoporous of MSNs, greatly disturbed the gut community of cotton aphids. Then, the relative expression of at least 25 cytochrome P450 genes of A. gossypii was significantly suppressed, including CYP6CY19 and CYP6CY22, which were found to be associated with imidacloprid resistance by RNAi. The bioassay results indicated that the synergy ratio of ampicillin to imidacloprid was 1.6, while Amp@MSNs improved the toxicity of imidacloprid by 2.4-fold. In addition, IMI@Amp@MSNs significantly improved the penetration of imidacloprid, and contributed to the amount of imidacloprid delivered to A. gossypii increased 1.4-fold. Thus, through inhibiting the relative expression of cytochrome P450 genes and improving penetration of imidacloprid, the toxicity of IMI@Amp@MSNs was 6.0-fold higher than that of imidacloprid. The greenhouse experiments further demonstrated the enhanced insecticidal activity of IMI@Amp@MSNs to A. gossypii. Meanwhile, the LC50 of IMI@Amp@MSNs to zebrafish was 3.9-fold higher than that of IMI, and the EC50 for malformation was 2.8-fold higher than IMI, respectively, which indicated that the IMI@Amp@MSNs complexes significantly reduced the environmental risk of imidacloprid. These findings encouraged the development of pesticide/antibiotic co-delivery nanoparticles, which would benefit pesticide reduction and environmental safety.


Assuntos
Afídeos , Inseticidas , Nanosferas , Animais , Inseticidas/metabolismo , Peixe-Zebra , Resistência a Inseticidas/genética , Neonicotinoides/metabolismo , Nitrocompostos/toxicidade , Nitrocompostos/metabolismo , Afídeos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ampicilina
10.
Clin Transl Sci ; 17(3): e13746, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501263

RESUMO

Aminobenzotriazole (ABT) is commonly used as a non-selective inhibitor of cytochrome P450 (CYP) enzymes to assign contributions of CYP versus non-CYP pathways to the metabolism of new chemical entities. Despite widespread use, a systematic review of the drug-drug interaction (DDI) potential for ABT has not been published nor have the implications for using it in plated hepatocyte models for low clearance reaction phenotyping. The goal being to investigate the utility of ABT as a pan-CYP inhibitor for reaction phenotyping of low clearance compounds by evaluating stability over the incubation period, inhibition potential against UGT and sulfotransferase enzymes, and interaction with nuclear receptors involved in the regulation of drug metabolizing enzymes and transporters. Induction potential for additional inhibitors used to ascribe fraction metabolism (fm ), pathway including erythromycin, ketoconazole, azamulin, atipamezole, ZY12201, and quinidine was also investigated. ABT significantly inhibited the clearance of a non-selective UGT substrate 4-methylumbelliferone, with several UGTs shown to be inhibited using selective probe substrates in human hepatocytes and rUGTs. The inhibitors screened in the induction assay were shown to induce enzymes regulated through Aryl Hydrocarbon Receptor, Constitutive Androstane Receptor, and Pregnane X Receptor. Lastly, a case study identifying the mechanisms of a clinical DDI between Palbociclib and ARV-471 is provided as an example of the potential consequences of using ABT to derive fm . This work demonstrates that ABT is not an ideal pan-CYP inhibitor for reaction phenotyping of low clearance compounds and establishes a workflow that can be used to enable robust characterization of other prospective inhibitors.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hepatócitos , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
11.
Int J Biol Macromol ; 265(Pt 2): 131026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522710

RESUMO

Combining size exclusion chromatography-small angle X-ray scattering (SEC-SAXS) and molecular dynamics (MD) analysis is a promising approach to investigate protein behavior in solution, particularly for understanding conformational changes due to substrate binding in cytochrome P450s (CYPs). This study investigates conformational changes in CYP119, a thermophilic CYP from Sulfolobus acidocaldarius that exhibits structural flexibility similar to mammalian CYPs. Although the crystal structure of ligand-free (open state) and ligand-bound (closed state) forms of CYP119 is known, the overall structure of the enzyme in solution has not been explored until now. It was found that theoretical scattering profiles from the crystal structures of CYP119 did not align with the SAXS data, but conformers from MD simulations, particularly starting from the open state (46 % of all frames), agreed well. Interestingly, a small percentage of closed-state conformers also fit the data (9 %), suggesting ligand-free CYP119 samples ligand-bound conformations. Ab initio SAXS models for N-His tagged CYP119 revealed a tail-like unfolded structure impacting protein flexibility, which was confirmed by in silico modeling. SEC-SAXS analysis of N-His CYP119 indicated pentameric structures in addition to monomers in solution, affecting the stability and activity of the enzyme. This study adds insights into the conformational dynamics of CYP119 in solution.


Assuntos
Proteínas Arqueais , Sistema Enzimático do Citocromo P-450 , Histidina , Ligantes , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica
12.
Chem Res Toxicol ; 37(4): 549-560, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38501689

RESUMO

Most drugs are mainly metabolized by cytochrome P450 (CYP450), which can lead to drug-drug interactions (DDI). Specifically, time-dependent inhibition (TDI) of CYP3A4 isoenzyme has been associated with clinically relevant DDI. To overcome potential DDI issues, high-throughput in vitro assays were established to assess the TDI of CYP3A4 during the discovery and lead optimization phases. However, in silico machine learning models would enable an earlier and larger-scale assessment of TDI potential liabilities. For CYP inhibition, most modeling efforts have focused on highly imbalanced and small data sets. Moreover, assay variability is rarely considered, which is key to understand the model's quality and suitability for decision-making. In this work, machine learning models were built for the prediction of TDI of CYP3A4, evaluated prospectively, and compared to the variability of the experimental assay. Different modeling strategies were investigated to assess their influence on the model's performance. Through multitask learning, additional data sets were leveraged for model building, coming from public databases, in-house CYP-related assays, or other pharmaceutical companies (federated learning). Apart from the numerical prediction of inactivation rates of CYP3A4 TDI, three-class predictions were carried out, giving a negative (inactivation rate kobs < 0.01 min-1), weak positive (0.01 ≤ kobs ≤ 0.025 min-1), or positive (kobs > 0.025 min-1) output. The final multitask graph neural network model achieved misclassification rates of 8 and 7% for positive and negative TDI, respectively. Importantly, the presented deep learning-based predictions had a similar precision to the reproducibility of in vitro experiments and thus offered great opportunities for drug design, early derisk of DDI potential, and selection of experiments. To facilitate CYP inhibition modeling efforts in the public domain, the developed model was used to annotate ∼16 000 publicly available structures, and a surrogate data set is shared as Supporting Information.


Assuntos
Citocromo P-450 CYP3A , Aprendizado Profundo , Citocromo P-450 CYP3A/metabolismo , Reprodutibilidade dos Testes , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Modelos Biológicos
13.
Toxicol In Vitro ; 97: 105811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521251

RESUMO

Organophosphorus compounds (OP) constitute a large group of chemicals including pesticides and nerve agents. Organothiophosphate pesticides require cytochrome P450-mediated oxidative desulphuration in the liver to form corresponding oxons, which are potent inhibitors of the enzyme acetylcholinesterase (AChE). Human HepaRG cells are a promising tool to study liver-specific functions and have been shown to maintain drug metabolizing enzymes. This research describes for the first time the in vitro metabolic activation of an organothiophosphate to its active oxon by two different HepaRG cell-based models. Monolayer cultures and liver spheroids were exposed to the model OP parathion and the quantification of the corresponding oxon was performed with an AChE inhibition assay. Our results showed a time- and dose-dependent cytochrome P450 catalyzed bioactivation and a superior metabolism capacity of the monolayer HepaRG model in comparison with the liver spheroids. Finally, HepaRG cells can be assessed as a metabolically competent cell model intermediate between cell-free preparations and intact animals and as suitable to study OP metabolism in the human liver.


Assuntos
Paration , Praguicidas , Animais , Humanos , Paration/toxicidade , Paration/metabolismo , Praguicidas/toxicidade , Acetilcolinesterase/metabolismo , Fígado/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
14.
Science ; 383(6687): eadk8838, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452087

RESUMO

Crop yield potential is constrained by the inherent trade-offs among traits such as between grain size and number. Brassinosteroids (BRs) promote grain size, yet their role in regulating grain number is unclear. By deciphering the clustered-spikelet rice germplasm, we show that activation of the BR catabolic gene BRASSINOSTEROID-DEFICIENT DWARF3 (BRD3) markedly increases grain number. We establish a molecular pathway in which the BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 phosphorylates and stabilizes OsMADS1 transcriptional factor, which targets TERMINAL FLOWER1-like gene RICE CENTRORADIALIS2. The tissue-specific activation of BRD3 in the secondary branch meristems enhances panicle branching, minimizing negative effects on grain size, and improves grain yield. Our study showcases the power of tissue-specific hormonal manipulation in dismantling the trade-offs among various traits and thus unleashing crop yield potential in rice.


Assuntos
Brassinosteroides , Grão Comestível , Oryza , Proteínas de Plantas , Brassinosteroides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
J Agric Food Chem ; 72(13): 6931-6941, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514379

RESUMO

Tembotrione is a triketone herbicide widely used for broad-spectrum weed control in corn but not registered for use in wheat. A wide collection of spring, winter, and EMS-derived mutant lines of wheat was evaluated for their response to tembotrione treatment. Two winter wheat (WW) genotypes (WW-1 and WW-2) were found to be least sensitive to this herbicide, surviving >6 times the field recommended dose (92 g ai ha-1) compared to the most sensitive genotype (WW-24). Further, HPLC analysis using [14C] tembotrione suggested that both WW-1 and WW-2 metabolized tembotrione rapidly to nontoxic metabolites. Pretreatment with a P450 inhibitor (malathion) followed by tembotrione application increased the sensitivity of WW-1 and WW-2 genotypes to this herbicide, suggesting likely involvement of P450 enzymes in metabolizing tembotrione similar to corn. Overall, our results suggest that the genotypes WW-1 and WW-2 can potentially be used to develop tembotrione-resistant wheat varieties.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Triticum/genética , Triticum/metabolismo , Cicloexanonas/farmacologia , Sulfonas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Zea mays/metabolismo
16.
Science ; 383(6690): 1448-1454, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547266

RESUMO

The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hordeum , Alcaloides Indólicos , Família Multigênica , Hordeum/genética , Hordeum/metabolismo , Alcaloides Indólicos/metabolismo , Melhoramento Vegetal , Oxirredução , Triptofano/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Edição de Genes , Genes de Plantas
17.
Bioorg Chem ; 146: 107308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531151

RESUMO

Genome mining of the Actinomycete Crossiella cryophila facilitated the discovery of a minimal terpenoid biosynthetic gene cluster of cry consisting of a class I terpene cyclase CryA and a CYP450 monooxygenase CryB. Heterologous expression of cry allowed the isolation and characterization of two new sesquiterpenoids, ent-viridiflorol (1) and cryophilain (2). Notably, cryophilain (2) possesses a 5/7/3-fused tricyclic skeleton bearing a distinctive bridgehead hydroxy group. The combined in vivo and in vitro experiments revealed that CryA, the first ent-viridiflorol terpene cyclase, catalyzes farnesyl diphosphate to form the 5/7/3 sesquiterpene core scaffold and P450 CryB serves as a tailoring enzyme responsible for installing a hydroxy group at the bridgehead carbon.


Assuntos
Actinobacteria , Actinomycetales , Sesquiterpenos , Terpenos , Sesquiterpenos/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Actinomycetales/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
18.
Curr Protoc ; 4(3): e1003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483112

RESUMO

The human lymphoblastoid cell line TK6 stands out as the most widely employed human cell line in genotoxicity testing, as recommended by various testing guidelines for in vitro assessments. Nevertheless, like many testing cell lines, TK6 lacks functional phase I drug-metabolizing enzymes crucial for chemical genotoxicity evaluations. This protocol introduces a lentivirus-based methodology for establishing a panel of TK6-derived cell lines, each expressing one of 14 cytochrome P450s (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, and CYP3A7). The utilization of a lentiviral expression system ensures stable transduction, offering notable advantages such as sustained transgene expression, high transduction efficiency, positive selection feasibility, and user-friendly application. Additionally, we present a detailed procedure for validating the enhanced expression of each CYP in the established cell lines through real-time PCR, western blotting, and mass spectrometry analysis. Lastly, we exemplify the application of these CYP-expressing TK6 cell lines in genotoxicity testing, employing a flow-cytometry-based in vitro micronucleus test. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Lentivirus production and transduction for TK6 cells Support Protocol: Selecting a single clone of CYP-expressing TK6 cells Basic Protocol 2: Validation of CYP expression in TK6 cell lines Basic Protocol 3: Application of transduced cell lines in flow-cytometry-based micronucleus assay.


Assuntos
Sistema Enzimático do Citocromo P-450 , Lentivirus , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2E1/genética , Linhagem Celular
19.
J Agric Food Chem ; 72(10): 5153-5164, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427964

RESUMO

Being a destructive pest worldwide, the whitefly Bemisia tabaci has evolved resistance to neonicotinoid insecticides. The third-generation neonicotinoid dinotefuran has commonly been applied to the control of the whitefly, but its underlying mechanism is currently unknown. On the base of our transcriptome data, here we aim to investigate whether the cytochrome P450 CYP6EM1 underlies dinotefuran resistance in the whitefly. Compared to the susceptible strain, the CYP6EM1 gene was found to be highly expressed in both laboratory and field dinotefuran-resistant populations. Upon exposure to dinotefuran, the mRNA levels of CYP6EM1 were increased. These results demonstrate the involvement of this gene in dinotefuran resistance. Loss and gain of functional studies in vivo were conducted through RNAi and transgenic Drosophila melanogaster assays, confirming the role of CYP6EM1 in conferring such resistance. In a metabolism assay in vitro, the CYP6EM1 protein could metabolize 28.11% of dinotefuran with a possible dinotefuran-dm-NNO metabolite via UPLC-QTOF/MS. Docking of dinotefuran to the CYP6EM1 protein showed a good binding affinity, with an energy of less than -6.0 kcal/mol. Overall, these results provide compelling evidence that CYP6EM1 plays a crucial role in the metabolic resistance of B. tabaci to dinotefuran. Our work provides new insights into the mechanism underlying neonicotinoid resistance and applied knowledge that can contribute to sustainable control of a global pest such as whitefly.


Assuntos
Guanidinas , Hemípteros , Inseticidas , Animais , Hemípteros/metabolismo , Drosophila melanogaster/metabolismo , Resistência a Inseticidas/genética , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo
20.
PLoS One ; 19(3): e0298424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498575

RESUMO

The Cytochrome P450 (CYP) enzymes metabolize a variety of drugs, which may potentially lead to toxicity or reduced efficacy when drugs are co-administered. These drug-drug interactions are often manifested by CYP3A4, the most prevalent of all CYP isozymes. We carried out multiple MD simulations employing CAVER to quantify the channels, and Hidden Markov Models (HMM) to characterize the behavior of the gating residues. We discuss channel properties, bottleneck residues with respect to their likelihood to deem the respective channel ingress or egress, gating residues regarding their open or closed states, and channel location relative to the membrane. Channels do not display coordinated motion and randomly transition between different conformations. Gateway residues also behave in a random fashion. Our findings shed light on the equilibrium behavior of the gating residues and channels in the apo state.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...