Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.777
Filtrar
1.
J Agric Food Chem ; 68(8): 2366-2372, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017555

RESUMO

Spermidine possesses multiple healthy functions, and soybeans contain the most abundant spermidine. In this study, spermidine contents of soybeans from different varieties and production regions in China were evaluated, and a spermidine synthase gene (speE) was identified by recombinant expression, transcriptional verification, and sequence analysis. Spermidine contents of soybean samples from 18 varieties ranged 72.38-228.82 mg/kg, and those from 19 production regions ranged 134.64-242.32 mg/kg. The highest-spermidine sample GZ was used to clone four predicted speE genes. Expressing the gene speE5 improved the spermidine titer by 54% in Bacillus amyloliquefaciens, confirming that speE5 was involved in spermidine synthesis. Transcriptional verification was performed through a soybean germination model. Germination for 48 h led to a onefold increase of spermidine in samples SHX and HB, and corresponding speE5 transcriptional levels were improved by 26-fold and 18-fold, respectively, further verifying the function of speE5. Finally, the sequences of the speE5 gene and deduced amino acids were analyzed, and the conserved sites and catalysis mechanisms were presented. This study identified an active spermidine synthase gene from soybean for the first time, which provided an important gene resource for genetic breeding of spermidine-rich soybean or microbial cell factory.


Assuntos
Proteínas de Plantas/genética , Soja/enzimologia , Espermidina Sintase/genética , Sequência de Aminoácidos , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Germinação , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Soja/genética , Soja/crescimento & desenvolvimento , Soja/metabolismo , Espermidina/metabolismo , Espermidina Sintase/química , Espermidina Sintase/metabolismo , Transcrição Genética
2.
J Agric Food Chem ; 68(7): 1974-1985, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31971785

RESUMO

Our aim was to investigate DNA mismatch repair (MMR) genes regulating cadmium tolerance in two soybean cultivars. Cultivars Liaodou 10 (LD10, Cd-sensitive) and Shennong 20 (SN20, Cd-tolerant) seedlings were grown hydroponically on Murashige and Skoog (MS) media containing 0-2.5 mg·L-1 Cd for 4 days. Cd stress induced less random amplified polymorphism DNA (RAPD) polymorphism in LD10 than in SN20 roots, causing G1/S arrest in LD10 and G2/M arrest in SN20 roots. Virus-induced gene silencing (VIGS) of MLH1 in LD10-TRV-MLH1 plantlets showed markedly diminished G1/S arrest but enhanced root length/area under Cd stress. However, an increase in G1/S arrest and reduction of G2/M arrest occurred in SN20-TRV-MSH2 and SN20-TRV-MSH6 plantlets with decreased root length/area under Cd stress. Taken together, we conclude that the low expression of MSH2 and MSH6, involved in the G2/M arrest, results in Cd-induced DNA damage recognition bypassing the MMR system to activate G1/S arrest with the assistance of MLH1. This then leads to repressed root growth in LD10, explaining the intervarietal difference in Cd tolerance in soybean.


Assuntos
Cádmio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Plantas/metabolismo , Soja/genética , Soja/metabolismo , Cádmio/toxicidade , Dano ao DNA/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Proteínas de Plantas/genética , Soja/efeitos dos fármacos
3.
Food Chem ; 313: 126095, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31923873

RESUMO

Core-shell hydrogel beads were successfully produced from soybean hull polysaccharides (SHP). Using electron microscopy, the beads were found to be spherical with smooth surfaces and have tight gel network internal structures. Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction were used to investigate the interaction between soy isoflavone and SHP in the gel beads mesh-like structure. Furthermore, the encapsulation efficiency and loading capacity of gel beads for soy isoflavone are 66.90% and 4.67%, respectively, and have the ability of pH-responsive release in vitro. Through the mathematical model of kinetics, we found that the release of soy isoflavone from gel beads showed Fickian diffusion in release media (pH 2.0 and 7.4), but showed non-Fickian diffusion at pH 4.0 and 6.8. This polymer can be extended to prepare more versatile delivery and controlled release system, appealing for food, pharmaceutical, biomedicine and cosmetics applications.


Assuntos
Hidrogéis/química , Isoflavonas/química , Polissacarídeos/química , Soja/metabolismo , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Isoflavonas/metabolismo , Cinética
4.
J Sci Food Agric ; 100(3): 1285-1293, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31710695

RESUMO

BACKGROUND: Bioprocessing of plant feedstuff can be a novel approach for reducing the overwhelming dependence on fish meal in aquaculture. The objective of this study was to evaluate the performance of Pacific white shrimp Litopenaeus vannamei fed solid-state fermented protein concentrates in order to replace fish meal in the diet. RESULTS: In the first trial, a group of 15 shrimp (average 3.88 g) were randomly distributed into aquaria in triplicate according to the experimental diets. Ten isonitrogenous (400 g kg-1 CP) and isolipidic (90 g kg-1 CL) diets were formulated to contain high-protein fish meal (HFM) and low-protein fish meal (LFM), and four types of bioprocessed protein concentrates (BPCs) as a replacement of fish meal (BPC-A, -B, -C and -D) each at 30% and 50% FM replacement levels. BPC-A was a solid-state fermented mixture of soybean and corn gluten meals; BPC-B was pre-treated acid-hydrolyzed BPC-A; BPC-C and BPC-D were BPC-A + 2% shrimp soluble extract (SSE) and BPC-B + 2% SSE, respectively. After 8 weeks, shrimp fed the HFM, BPC-B, BPC-C and BPC-D diets showed significantly higher growth performance at 30% FM replacement than those of shrimp fed the BPC diets at 50% FM replacement. Interestingly, shrimp fed the BPC-D diet could replace up to 50% FM replacement. In the second trial, the results show that apparent digestibility coefficients of feeds and apparent digestibility coefficients of ingredients for crude protein were significantly higher in fish fed the BPC-B, BPC-C and BPC-D diets. CONCLUSIONS: The results demonstrated successful partial replacement of high-protein fish meal using high-quality fermented protein concentrates from plant sources. © 2019 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Proteínas de Peixes/metabolismo , Penaeidae/crescimento & desenvolvimento , Penaeidae/metabolismo , Proteínas de Plantas/metabolismo , Soja/metabolismo , Animais , Aquicultura , Dieta/veterinária , Digestão , Proteínas de Peixes/análise , Peixes/metabolismo , Proteínas de Plantas/análise , Soja/química
5.
J Sci Food Agric ; 100(3): 1099-1105, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31667840

RESUMO

BACKGROUND: γ-Aminobutyric acid (GABA) is a non-protein amino acid with several functions in the human body. Although freeze-thawing could effectively accumulate GABA in soybean sprouts, the mechanism has not been revealed. The mechanism by which freeze-thawing enhances GABA accumulation in germinated soybean was revealed by evaluating GABA content, the activity of related synthesis enzymes, and the microstructure of the tissues and cells of sprouts. The germinated soybeans were treated at different temperatures (from -196 °C to 25 °C) for 12 h and then thawed at 25 °C for 6 h. RESULTS: The results showed that GABA content in frozen soybean sprouts did not change significantly before thawing. After thawing, the GABA content of sprouts increased by 83.9% and 82.9% when treated by liquid nitrogen flash freeze at - 80 °C for 12 h compared with the control (4 °C treatment for 12 h). The results indicated that GABA formation mainly occurred during thawing. However, glutamate decarboxylase (GAD), diamine oxidase (DAO), and aminoaldehyde dehydrogenase (AMADH) activity decreased during thawing. Based on the malonaldehyde (MDA) content and microstructure of sprouts, it was suggested that freezing at lower temperatures (< -20 °C) maintained the integrity of the cell structure, while the tissues and cell membranes were broken during thawing. CONCLUSION: These results could provide evidence for the hypothesis that GABA formation resulted from full contact between enzymes and substrates during thawing, rather than the contribution of higher enzyme activity. © 2019 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Sementes/química , Soja/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Amina Oxidase (contendo Cobre)/análise , Amina Oxidase (contendo Cobre)/metabolismo , Temperatura Baixa , Congelamento , Germinação , Glutamato Descarboxilase/análise , Glutamato Descarboxilase/metabolismo , Malondialdeído/análise , Malondialdeído/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Soja/química , Soja/metabolismo , Ácido gama-Aminobutírico/análise
6.
J Sci Food Agric ; 100(3): 1106-1117, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31667842

RESUMO

BACKGROUND: The environmental risk from the application of synthetic chelates has led to the use of biodegradable complexes to correct Fe deficiency in plants. In this article, the Fe oxidation state, the Fe:ligand ratio, and the molecular weight distribution for heptagluconate (G7) and gluconate (G6) are considered as key factors for the efficacy of complexes as fertilizers. Complexes with different Fe:ligand ratios were prepared and analyzed by gel filtration chromatography (GFC). The ability of Fe:ligand ratios to provide Fe to tomato in hydroponics and soybean in calcareous soil was tested and compared with synthetic chelates (Fe3+ :HBED and Fe3+ :EDTA). RESULTS: G7 presented greater capacity to complex both Fe(II) and Fe(III) than G6, but the Fe(II) complexes exhibited poor stability at pH 9 and oxidation in solution. Gel filtration chromatography demonstrated the polynuclear nature of the Fe3+ :G7 at various ratios. The effectiveness of the Fe fertilizers depend on the Fe3+ :ligand ratio and the ligand type, the Fe3+ :G7 (1:1 and 1:2) being the most effective. Fe3+ :G7 (1:1) also presented a better response for the uptake of other micronutrients. CONCLUSION: Fe3+ :G7 molar ratios have been shown to be critical for plant Fe uptake under hydroponic conditions and with calcareous soil. Thus, the Fe3+ :G7 at equimolar ratio and 1:2 molar ratio can be an environmentally friendly alternative to less degradable synthetic chelates to correct Fe chlorosis in strategy I plants. © 2019 Society of Chemical Industry.


Assuntos
Quelantes/química , Fertilizantes/análise , Gluconatos/química , Ferro/metabolismo , Lycopersicon esculentum/crescimento & desenvolvimento , Solo/química , Soja/crescimento & desenvolvimento , Quelantes/metabolismo , Gluconatos/metabolismo , Hidroponia/instrumentação , Hidroponia/métodos , Ferro/química , Ligantes , Lycopersicon esculentum/metabolismo , Soja/metabolismo
7.
J Sci Food Agric ; 100(3): 1274-1284, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31721238

RESUMO

BACKGROUND: Diet plays an important role in shaping the composition of gut microbiota. Starch is the main source of carbohydrates in diets of broilers. This study investigated the effects of dietary corn starch and resistant starch on composition and function of caecal microbiota of broilers. A total of 320, 1-day-old male Arbor Acres broiler chicks were randomly assigned into five groups including normal corn-soybean (NC) diet, corn starch (CS) diet group, 4%, 8% and 12% resistant starch (RS) diet groups. The caecal contents of 42-day old broilers were sampled and microbiota community was analysed with 16S rRNA gene sequences. RESULTS: The CS group increased the abundances of Bilophila, Eggerthella, Olsenella and Sellimonas and decreased proportion of Akkermansia, Eisenbergiella, Oscillospira, Ruminococcaceae NK4A214 group and Synergistes in the caecum of birds compared to the NC group. However, the birds from RS groups had higher abundances of Anaerofilum, Bacteroides, Desulfovibrio and Parasutterella and lower abundances of Alistipes, Bilophila, Christensenellaceae R-7 group, Eggerthella and Ruminiclostridium 1 than the CS group. Functional prediction of these changes in microbiota revealed that the CS diet drove caecal microbiota that were more inclined to utilize carbohydrates through glycolysis/gluconeogenesis metabolism, while the 8%RS and 12%RS diets depleted microbial glycolysis/gluconeogenesis and amino acids metabolism. CONCLUSION: Dietary CS and RS alter the microbial composition and diversity, and modulate the metabolic pathways of microbial metabolism in caecum of broilers, which may further affect nutrient utilization and hindgut health of the host. © 2019 Society of Chemical Industry.


Assuntos
Ceco/metabolismo , Galinhas/metabolismo , Galinhas/microbiologia , Microbioma Gastrointestinal , Amido/metabolismo , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ceco/microbiologia , Masculino , Soja/química , Soja/metabolismo , Zea mays/química , Zea mays/metabolismo
8.
Food Chem ; 305: 125461, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505412

RESUMO

The quality of fermented soybeans can be determined by diverse metabolites produced by microorganisms. Mass spectrometry-based metabolomic approach was applied to investigate the differences in volatile and non-volatile metabolite profiles of fermented soybeans by different microorganisms [e.g., molds, yeasts, lactic acid bacteria (LAB), and other bacteria]. The partial least squares-discriminant analysis (PLS-DA) for volatile metabolites profiles indicated that the fungi group (mold/yeast) was clearly discriminated from the bacteria group (bacteria/LAB). The metabolic pathways related to the formation of volatile metabolites also differed according to microorganisms. In particular, the formation of branched-chain aliphatic alcohols and esters increased in the fungi group, while that of volatiles derived from fatty acids was superior in the bacteria group. In addition, we could determine the microorganism-specific metabolites using a correlation network analysis. This study can provide the fundamental knowledge on the metabolic differences according to the type of microorganisms in fermented soybeans.


Assuntos
Bactérias/crescimento & desenvolvimento , Metabolômica/métodos , Soja/metabolismo , Leveduras/crescimento & desenvolvimento , Bactérias/metabolismo , Análise Discriminante , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Álcoois Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Leveduras/metabolismo
9.
Food Chem ; 305: 125462, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618694

RESUMO

The objectives of this research were to demonstrate the changes in isoflavone-aglycones, total phenolics, and biological properties (digestive enzyme inhibition; antioxidant) from six organs including leaves, leafstalks, roots, stems, seeds, and pods at different growth times of soybean plant. Three isoflavone-aglycones in microwave-assisted acid hydrolysis extracts were elucidated using UHPLC-ESI-Q-TOF-MS/MS and their contents exhibited remarkable differences in leaves (245.93-2239.33 µg/g), roots (854.96-4425.34 µg/g), and seeds (ND-2339.62 µg/g). Specifically, the collected samples on 15-Oct (leaves: 2239.33; seeds: 2339.62 µg/g) and 31-Aug (roots: 4425.34 µg/g) showed the highest isoflavone-aglycones, and daidzein was observed the most abundant component, comprising approximately 70%. Moreover, the inhibitions against α-glucosidase and α-amylase displayed the predominant effects in roots (89;91%) and leaves (81;85%) of samples on 31-Aug and 15-Oct at 300 µg/ml. The antioxidant activities on ABTS, DPPH, and hydroxyl radicals increased considerably with the increases of growth times in leaves and seeds, especially, ABTS showed the highest scavenging abilities: leaves (15-Oct;83%) > roots (31-Aug;75%) > seeds (15-Oct;68%). Therefore, our results suggest that soybean leaves, roots and seeds may be considered as excellent natural sources for nutraceuticals.


Assuntos
Antioxidantes/química , Glucosidases/metabolismo , Isoflavonas/análise , Micro-Ondas , Soja/química , Cromatografia Líquida de Alta Pressão , Glucosidases/antagonistas & inibidores , Hidrólise , Isoflavonas/metabolismo , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Sementes/química , Sementes/metabolismo , Soja/crescimento & desenvolvimento , Soja/metabolismo , Espectrometria de Massas em Tandem/métodos
10.
Food Chem ; 303: 125376, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442900

RESUMO

This study investigated the effects of persistent ultraviolet B (UV-B) irradiation on isoflavone accumulation in soybean sprouts. Three malonyl isoflavones were increased by UV-B. Malonylgenistin specifically accumulated upon UV-B exposure, whereas the other isoflavones were significantly increased under both dark conditions and UV-B exposure. The results of isoflavone accumulation to UV-B irradiation time were observed as following: acetyl glycitin rapidly increased and then gradually decreased; malonyl daidzin and malonyl genistin were highly accumulated within an intermediate period; genistein and daidzin were gradually maximized; daidzin, glycitin, genistein, and malonyl glycitin did not increase; and glycitin, acetyl daidzin, and acetyl genistin exhibited trace amounts. Transcriptional analysis of isoflavonoid biosynthetic genes demonstrated that most metabolic genes were highly activated in response to UV-B 24 and UV-B 36 treatments. In particular, it was found that GmCHS6, GmCHS7, and GmCHS8 genes among the eight known genes encoding chalcone synthase were specifically related to UV-B response.


Assuntos
Regulação da Expressão Gênica de Plantas , Isoflavonas/metabolismo , Soja/efeitos da radiação , Raios Ultravioleta , Aciltransferases/genética , Aciltransferases/metabolismo , Genisteína/metabolismo , Glucosídeos/metabolismo , Cinética , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação , Soja/genética , Soja/metabolismo , Tempo
11.
J Sci Food Agric ; 100(1): 154-160, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31471908

RESUMO

BACKGROUND: Active optical crop sensors have been gaining importance to determine in-season nitrogen (N) fertilization requirements for on-the-go variable rate applications. Although most of these active in-field crop sensors have been evaluated in maize (Zea mays L.) and wheat (Triticum aestivum L. emend. Thell.), these sensors have not been evaluated in soybean [Glycine max (L.) Merr.] production systems in North Dakota, USA. Recent research from both South Dakota and North Dakota, USA indicate that in-season N application in soybean can increase soybean yield under certain conditions. RESULTS: The study revealed that OptRx™ sensor reading did not show any significant differences from early to midway through the growing season. The NDRE (normalized difference red edge) index data collected towards the end of the growing season showed significantly higher values for some of the N treatments as compared to others in both years. The NDRE values were strongly correlated to grain yield for both years under tiled (r = 0.923) and non-tiled (r = 0.901) drainage conditions. Certain soybean varieties displayed significantly higher NDRE values over both years. The three varieties tested across years, under both tiled and non-tiled conditions, showed a significant linear relationship between late August NDRE values and yield (R2  = 0.85 for tiled and R2  = 0.81 for non-tiled). CONCLUSION: In this research, the study results show that the OptRx™ sensor has the potential to work for soybean as well, though later in the crop growing season. Further investigation is needed to confirm the use of OptRx™ sensor for variable rate in-season N applications in soybeans. © 2019 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Nitrogênio/análise , Soja/metabolismo , Produção Agrícola/instrumentação , Fertilizantes/análise , Nitrogênio/metabolismo , Estações do Ano , Soja/química , Soja/crescimento & desenvolvimento
12.
Plant Sci ; 290: 110298, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31779909

RESUMO

Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids to yield phosphatidic acid (PA) and a free headgroup. PLDs are important for plant growth, development, and responses to external stresses. However, their roles in triacylglycerol (TAG) synthesis are still unclear. Here, we report that a soybean (Glycine max) PLDγ (GmPLDγ) is involved in glycerolipid turnover and seed oil production. GmPLDγ was targeted to mitochondria and exhibited PLD activity that was activated by oleate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. Overexpression of GmPLDγ (abbreviated GmPLDγ-OE) in Arabidopsis thaliana resulted in enhanced seed weight, elevated levels of TAGs with 18-, 20-, and 22-carbon fatty acids (FAs), and altered oil-body morphology. Furthermore, the levels of membrane lipids in vegetative tissues decreased significantly, whereas no overt changes were found in mature seeds except for a decrease in the digalactosyldiacylglycerol (DGDG) level in the GmPLDγ-OE lines. Additionally, the expression of genes involved in glycerolipid metabolism was significantly upregulated in developing siliques in GmPLDγ-OE lines. Together, our data indicate a regulatory role for GmPLDγ in TAG synthesis and fatty-acid remodeling, highlighting the importance of mitochondria-directed glycerophospholipid homeostasis in seed oil accumulation.


Assuntos
Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfolipase D/genética , Óleos Vegetais/metabolismo , Proteínas de Plantas/genética , Soja/genética , Arabidopsis/genética , Fosfolipase D/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Soja/metabolismo
13.
Food Microbiol ; 86: 103340, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703864

RESUMO

Red sufu is a traditional food produced by the fermentation of soybean. In this study, sufu samples were periodically collected during the whole fermentation to investigate the dynamic changes of fungal and bacterial communities using high-throughput sequencing technology. The overall process can be divided into pre- and post-fermentation. During post-fermentation, the pH value showed a gradual decrease over time while the amino nitrogen content increased. Trichosporon, Actinomucor and Cryptococcus were the main genera in pre-fermentation while Monascus and Aspergillus were dominant in post-fermentation. This huge shift in fungal composition was caused by process procedure of pouring dressing mixture. However, the bacterial composition was not greatly changed after pouring dressing mixture, the Acinetobacter and Enterobacter were the predominant genera throughout the whole process. Furthermore, Bacillus species were first detected after adding dressing mixture, but declined abruptly to a very low level (0.07%) by the end of the fermentation. Our work demonstrates the dynamic changes of physicochemical properties and microbial composition in every fermentation stage, the knowledge of which could potentially serve as a foundation for improving the safety and quality of sufu in the future.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiota , Alimentos de Soja/microbiologia , Soja/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fermentação , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Alimentos de Soja/análise , Soja/metabolismo
14.
J Agric Food Chem ; 67(47): 13010-13020, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31670946

RESUMO

Increasing the yield of soybean is a challenge to humankind dependent on several management practices, such as fertilizing and weed control. While glyphosate contributes to controlling weeds, it can interfere with spray mixture stability and, supposedly, complex with micronutrients within the plant tissue. This study investigated the effects of glyphosate on soybean foliar uptake and transport of Mn supplied as MnSO4, MnHPO3, Mn-ethylenediamine tetraacetic acid (EDTA), and MnCO3. These fertilizers induced ultrastructural changes in the leaf cuticle, regardless of the glyphosate mixture. Except for MnCO3, all tested sources increased the Mn content in the petiole. The mixture of glyphosate impaired Mn transport from MnSO4 and MnHPO3, but no evidence of Mn-glyphosate complexation within the plant was found. Manganese is rather transported in a similar chemical environment regardless of the source, except for Mn-EDTA, which was absorbed and transported in its pristine form. Interferences of glyphosate seem to be related to complexations in the tank mixture rather than affecting nutrients' metabolism.


Assuntos
Glicina/análogos & derivados , Herbicidas/farmacologia , Manganês/metabolismo , Folhas de Planta/química , Soja/efeitos dos fármacos , Soja/metabolismo , Transporte Biológico , Glicina/química , Glicina/farmacologia , Cinética , Manganês/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Soja/química , Espectrometria por Raios X
15.
BMC Plant Biol ; 19(1): 469, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690290

RESUMO

BACKGROUND: Soybean (Glycine max (L.)) is one the most important oil-yielding cash crops. However, the soybean production has been seriously restricted by salinization. It is therefore crucial to identify salt tolerance-related genes and reveal molecular mechanisms underlying salt tolerance in soybean crops. A better understanding of how plants resist salt stress provides insights in improving existing soybean varieties as well as cultivating novel salt tolerant varieties. In this study, the biological function of GmNHX1, a NHX-like gene, and the molecular basis underlying GmNHX1-mediated salt stress resistance have been revealed. RESULTS: We found that the transcription level of GmNHX1 was up-regulated under salt stress condition in soybean, reaching its peak at 24 h after salt treatment. By employing the virus-induced gene silencing technique (VIGS), we also found that soybean plants became more susceptible to salt stress after silencing GmNHX1 than wild-type and more silenced plants wilted than wild-type under salt treatment. Furthermore, Arabidopsis thaliana expressing GmNHX1 grew taller and generated more rosette leaves under salt stress condition compared to wild-type. Exogenous expression of GmNHX1 resulted in an increase of Na+ transportation to leaves along with a reduction of Na+ absorption in roots, and the consequent maintenance of a high K+/Na+ ratio under salt stress condition. GmNHX1-GFP-transformed onion bulb endothelium cells showed fluorescent pattern in which GFP fluorescence signals enriched in vacuolar membranes. Using the non-invasive micro-test technique (NMT), we found that the Na+ efflux rate of both wild-type and transformed plants after salt treatment were significantly higher than that of before salt treatment. Additionally, the Na+ efflux rate of transformed plants after salt treatment were significantly higher than that of wild-type. Meanwhile, the transcription levels of three osmotic stress-related genes, SKOR, SOS1 and AKT1 were all up-regulated in GmNHX1-expressing plants under salt stress condition. CONCLUSION: Vacuolar membrane-localized GmNHX1 enhances plant salt tolerance through maintaining a high K+/Na+ ratio along with inducing the expression of SKOR, SOS1 and AKT1. Our findings provide molecular insights on the roles of GmNHX1 and similar sodium/hydrogen exchangers in regulating salt tolerance.


Assuntos
Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Soja/metabolismo , Arabidopsis/genética , Inativação Gênica , Proteínas de Plantas/genética , Potássio/metabolismo , Plantas Tolerantes a Sal/genética , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Soja/genética , Estresse Fisiológico/genética , Regulação para Cima , Vacúolos/metabolismo
16.
J Agric Food Chem ; 67(49): 13577-13588, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730344

RESUMO

Light-emitting diode (LED) based light sources, which can selectively and quantitatively provide different spectra, have been frequently applied to manipulate plant growth and development. In this study, the effects of different LED light spectra on the growth, phenolic compounds profile, antioxidant capacity, and transcriptional changes in genes regulating phenolic biosynthesis in soybean microgreens were investigated. The results showed that light illumination decreased the seedling length and yield but increased phenolic compound content. Blue light and ultraviolet-A (UV-A) induced significant increases in total phenolic and total flavonoid content, as compared with the white light control. Sixty-six phenolic compounds were identified in the soybean samples, of which isoflavone, phenolic acid, and flavonol were the main components. Ten phenolic compounds obtained from the orthogonal partial least-squares discriminant analysis (OPLS-DA) were reflecting the effect of light spectra. The antioxidant capacity was consistent with the phenolic metabolite levels, which showed higher levels under blue light and UV-A compared with the control. The highest transcript levels of phenolic biosynthesis-related genes were observed under blue light and UV-A. The transcript levels of GmCHI, GmFLS, and GmIOMT were also upregulated under far-red and red light. Taken together, our findings suggested that the application of LED light could pave a green and effective way to produce phenolic compound-enriched soybean microgreens with high nutritional quality, which could stimulate further investigations for improving plant nutritional value and should have a wide impact on maintaining human health.


Assuntos
Antioxidantes/metabolismo , Fenóis/metabolismo , Proteínas de Plantas/genética , Soja/efeitos da radiação , Antioxidantes/química , Luz , Fenóis/química , Proteínas de Plantas/metabolismo , Plântula/química , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação , Soja/genética , Soja/crescimento & desenvolvimento , Soja/metabolismo
17.
Sci Total Environ ; 694: 133784, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756809

RESUMO

Elevated atmospheric CO2 concentration (eCO2) exerts significant influence on nutrient requirement in plant. The investigation of C:N:P ratios in major cropping soils is important for managing nutrient balance and maximizing their use efficiency in future farming systems. This study aimed to examine the effect of eCO2 on the C:N:P ratios in different plant parts among soybean cultivars. Twenty-four soybean cultivars were planted in open top chambers at two CO2 concentrations (390 and 550 ppm) and sampled at the initial pod filling stage (R5) and the full maturity stage (R8). The C, N and P concentrations in root, stem, leaf and seed were determined. Elevated CO2 decreased the N concentrations in stem (-5.1%) and leaf (-3.2%) at R5, and in root (-24%), stem (-25%) and seed (-6.2%) at R8, resulting in a significant decrease of C:N ratio in the corresponding parts. The P concentration was significantly increased in root (6.0%), stem (7.9%) and leaf (16%) at R5, and in root (2.6%), stem (29%) and seed (16%) at R8 across 24 cultivars, leading to a decrease in the C:P ratio. Elevated CO2 significantly decreased the N:P ratio in root (-4.5%), stem (-12%) and leaf (-17%) at R5, and in root (-26%), stem (-57%) and seed (-22%) at R8. Furthermore, the response of C:N:P ratios to eCO2 varied greatly among soybean cultivars leading to significant CO2 × cultivar interactions. Nitrogen, but not P was the limiting factor for the soybean plants grown in Mollisols under eCO2. The considerable variation in the C:N:P ratios among cultivars in response to eCO2 indicates a potential improvement in soybean adaptability to climate change via selection new cultivars. Cultivars SN22 and ZH4 that did not considerably altered the C:N and C:P ratios in response to eCO2 are likely the optimal genomes in soybean breeding programs for eCO2 adaption.


Assuntos
Dióxido de Carbono/metabolismo , Soja/metabolismo , Biomassa , Mudança Climática , Fabaceae , Nitrogênio , Folhas de Planta , Sementes , Solo
18.
J Agric Food Chem ; 67(44): 12172-12181, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31609615

RESUMO

Understanding the mechanisms of absorption and transport of foliar nutrition is a key step towards the development of advanced fertilization methods. This study employed X-ray fluorescence (XRF) and X-ray absorption near edge spectroscopy (XANES) to trace the in vivo absorption and transport of ZnO and ZnSO4(aq) to soybean leaves (Glycine max). XRF maps monitored over 48 h showed a shape change of the dried ZnSO4(aq) droplet, indicating Zn2+ absorption. Conversely, these maps did not show short movement of Zn from ZnO. XRF measurements on petioles of leaves that received Zn2+ treatments clarified that the Zn absorption and transport in the form of ZnSO4(aq) was faster that of ZnO. Solubility was the major factor driving ZnSO4(aq) absorption. XANES speciation showed that in planta Zn is transported coordinated with organic acids. Because plants demand Zn during their entire lifecycle, the utilization of sources with different solubilities can increase Zn use efficiency.


Assuntos
Soja/metabolismo , Espectrometria de Fluorescência/métodos , Espectroscopia por Absorção de Raios X/métodos , Zinco/análise , Zinco/metabolismo , Transporte Biológico , Fertilizantes/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Soja/química
19.
Plant Physiol Biochem ; 144: 254-263, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31593898

RESUMO

To elucidate the mechanism of soybean resistance to Al, physiological and biochemical indices and antioxidant enzyme expression and activities were systematically analyzed in Al-sensitive (Glycine max Merr., Yunnan Province of China, SB) and Al-resistant Dambo (Glycine max Merr., Kyoto of Japan, RB) black soybean plants. According to the results, the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in RB root tips were significantly lower than those in SB root tips, though the opposite results occurred for soluble protein contents. Moreover, the expression and activities of superoxide dismutase (SOD, EC1.15.1.1.1.1.1.1), peroxidase (POD, EC1.11.1.7) and catalase (CAT, EC1.11.1.6) under 0-400 µM Al for 0-96 h were greater in RB than in SB. However, below 100 µM Al, the activities of those enzymes in SB increased with increasing Al concentration and treatment duration, with SOD activity being lowest and CAT activity exceeding that of POD with increasing Al concentration. Overall, enzyme activity in SB treated with Al at concentrations greater than 200 µM was lower than that in the SB control (CK; not treated with Al) and decreased with treatment duration. Additionally, at Al concentrations lower than 200 µM, enzyme activities in RB were significantly greater than those in RB CK and increased with both Al concentration and treatment duration. Moreover, enzyme activity in RB treated with 400 µM Al was slightly greater than that in RB CK. Thus, CAT activity determines soybean resistance to Al. These results indicate that soybean resistance to Al can be enhanced by regulating the expression and activity of antioxidant enzymes to remove H2O2 under Al stress.


Assuntos
Alumínio/toxicidade , Soja/efeitos dos fármacos , Soja/enzimologia , Peroxidase/genética , Peroxidase/metabolismo , Soja/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
20.
Plant Mol Biol ; 101(4-5): 499-506, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31621004

RESUMO

A simple, accessible, and inexpensive assay to quantify the strength of DNA-protein interactions was developed. The assay relies on capturing DNA-protein complexes using an affinity resin that binds tagged, recombinant proteins. Sequential washes with filtration spin cups and centrifugation remove non-specific interactions in a gentle, uniform manner and a final elution isolates specific DNA-protein complexes. SYBR Gold nucleic acid stain is added to the eluted product and the fluorescence intensity accurately quantifies the amount of captured DNA, ultimately illustrating the relative strength of the DNA-protein interaction. The major utility of the assay resides in the versatility and quantitative nature of the SYBR Gold:nucleic acid interaction, eliminating the need for customized or labeled oligos and permitting relatively inexpensive quantification of binding capacity. The assay also employs DNA-protein complex capture by the very common purification tag, 6xHis, but other tags could likely be utilized. Further, SYBR Gold fluorescence is compatible with a wide variety of instruments, including UV transilluminators, a staple to any molecular biology laboratory. This assay was used to compare the binding capacities of different auxin response factor (ARF) transcription factors to various dsDNA targets, including the classical AuxRE motif and several divergent sequences. Results from dose-response assays suggest that different ARF proteins might show distinct comparative affinities for AuxRE variants, emphasizing that specific ARF-AuxRE binding strengths likely contribute to the complex and fine-tuned cellular auxin response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Compostos Orgânicos , Proteínas de Plantas/metabolismo , Soja/metabolismo , Fatores de Transcrição/metabolismo , Fluorescência , Ligação Proteica , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA