Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.580
Filtrar
1.
Physiol Plant ; 176(4): e14422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962815

RESUMO

Low temperatures pose a common challenge in the production of cucumbers and tomatoes, hindering plant growth and, in severe cases, leading to plant death. In our investigation, we observed a substantial improvement in the growth of cucumber and tomato seedlings through the application of corn steep liquor (CSL), myo-inositol (MI), and their combinations. When subjected to low-temperature stress, these treatments resulted in heightened levels of photosynthetic pigments, thereby fostering enhanced photosynthesis in both tomato and cucumber plants. Furthermore, it contributed to a decrease in malondialdehyde (MDA) levels and electrolyte leakage (REP). The effectiveness of the treatment was further validated through the analysis of key gene expressions (CBF1, COR, MIOX4, and MIPS1) in cucumber. Particularly, noteworthy positive outcomes were noted in the treatment involving 0.6 mL L-1 CSL combined with 72 mg L-1 MI. This study provides valuable technical insights into leveraging the synergistic effects of inositol and maize leachate to promote early crop growth and bolster resistance to low temperatures.


Assuntos
Temperatura Baixa , Cucumis sativus , Inositol , Plântula , Solanum lycopersicum , Zea mays , Inositol/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/genética , Zea mays/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Cucumis sativus/genética , Cucumis sativus/fisiologia , Fotossíntese/efeitos dos fármacos , Malondialdeído/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
2.
Sci Rep ; 14(1): 15118, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956171

RESUMO

The use of novel active ingredients for the functional modification of chitosan nanoformulations has attracted global attention. In this study, chitosan has been functionalized via histidine to craft novel chitosan-histidine nanoformulation (C-H NF) using ionic gelation method. C-H NF exhibited elite physico-biochemical properties, influencing physiological and biochemical dynamics in Tomato. These elite properties include homogenous-sized nanoparticles (314.4 nm), lower PDI (0.218), viscosity (1.43 Cps), higher zeta potential (11.2 mV), nanoparticle concentration/ml (3.53 × 108), conductivity (0.046 mS/cm), encapsulation efficiency (53%), loading capacity (24%) and yield (32.17%). FTIR spectroscopy revealed histidine interaction with C-H NF, while SEM and TEM exposed its porous structure. Application of C-H NF to Tomato seedling and potted plants through seed treatment and foliar spray positively impacts growth parameters, antioxidant-defense enzyme activities, reactive oxygen species (ROS) content, and chlorophyll and nitrogen content. We claim that the histidine-functionalized chitosan nanoformulation enhances physico-biochemical properties, highlighting its potential to elevate biochemical and physiological processes of Tomato plant.


Assuntos
Quitosana , Histidina , Nanopartículas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Quitosana/química , Histidina/química , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Clorofila/metabolismo , Clorofila/química , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
3.
BMC Genom Data ; 25(1): 65, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956460

RESUMO

OBJECTIVE: The fresh-market tomato (Solanum lycopersicum) is bred for direct human consumption. It is selected for specific traits to meet market demands and production systems, and unique genetic variations underlying fresh-market tomato yields have been recently identified. However, DNA sequence variant-trait associations are not yet fully examined even for major traits. To provide a rich genome sequence resource for various genetics and breeding goals for fresh-market tomato traits, we report whole genome sequence data of a pool of contemporary U.S. fresh-market tomatoes. DATA DESCRIPTION: Eighty-one tomatoes were nominated by academic tomato breeding programs in the U.S. Of the 81 tomatoes, 68 were contemporary fresh-market tomatoes, whereas the remaining 13 were relevant fresh-market tomato breeding and germplasm accessions. Whole genome sequencing (WGS) of the 81 tomatoes was conducted using the Illumina next-generation sequencing technology. The polymerase chain reaction (PCR)-free, paired-end sequencing libraries were sequenced on an average depth per sequenced base of 24 × for each tomato. This data note enhances visibility and potential for use of the more diverse, freely accessible whole genome sequence data of contemporary fresh-market tomatoes.


Assuntos
Genoma de Planta , Solanum lycopersicum , Sequenciamento Completo do Genoma , Solanum lycopersicum/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala
4.
Mol Plant Pathol ; 25(7): e13469, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956901

RESUMO

Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.


Assuntos
Genoma Viral , Doenças das Plantas , Solanum lycopersicum , Viroides , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Viroides/genética , Viroides/patogenicidade , Genoma Viral/genética , Algoritmos , Genoma de Planta
5.
Mol Plant Pathol ; 25(7): e13491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961768

RESUMO

Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.


Assuntos
Retículo Endoplasmático , Tylenchoidea , Animais , Retículo Endoplasmático/metabolismo , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Imunidade Vegetal , Nicotiana/parasitologia , Nicotiana/imunologia , Nicotiana/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Raízes de Plantas/parasitologia , Raízes de Plantas/imunologia , Interações Hospedeiro-Parasita
6.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969433

RESUMO

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Assuntos
Técnicas Eletroquímicas , Ácidos Indolacéticos , Folhas de Planta , Ácido Salicílico , Solanum lycopersicum , Aço Inoxidável , Solanum lycopersicum/química , Ácidos Indolacéticos/análise , Ácido Salicílico/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Aço Inoxidável/química , Técnicas Eletroquímicas/instrumentação , Agulhas , Doenças das Plantas/microbiologia
7.
Sci Rep ; 14(1): 15365, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965302

RESUMO

Endophytic fungal-based biopesticides are sustainable and ecologically-friendly biocontrol agents of several pests and diseases. However, their potential in managing tomato fusarium wilt disease (FWD) remains unexploited. This study therefore evaluated effectiveness of nine fungal isolates against tomato fusarium wilt pathogen, Fusarium oxysporum f. sp. lycopersici (FOL) in vitro using dual culture and co-culture assays. The efficacy of three potent endophytes that inhibited the pathogen in vitro was assessed against FWD incidence, severity, and ability to enhance growth and yield of tomatoes in planta. The ability of endophytically-colonized tomato (Solanum lycopersicum L.) plants to systemically defend themselves upon exposure to FOL were also assessed through defence genes expression using qPCR. In vitro assays showed that endophytes inhibited and suppressed FOL mycelial growth better than entomopathogenic fungi (EPF). Endophytes Trichoderma asperellum M2RT4, Hypocrea lixii F3ST1, Trichoderma harzianum KF2R41, and Trichoderma atroviride ICIPE 710 had the highest (68.84-99.61%) suppression and FOL radial growth inhibition rates compared to EPF which exhibited lowest (27.05-40.63%) inhibition rates. Endophytes T. asperellum M2RT4, H. lixii F3ST1 and T. harzianum KF2R41 colonized all tomato plant parts. During the in planta experiment, endophytically-colonized and FOL-infected tomato plants showed significant reduction of FWD incidence and severity compared to non-inoculated plants. In addition, these endophytes contributed to improved growth promotion parameters and yield. Moreover, there was significantly higher expression of tomato defence genes in T. asperellum M2RT4 colonized than in un-inoculated tomato plants. These findings demonstrated that H. lixii F3ST1 and T. asperellum M2RT4 are effective biocontrol agents against FWD and could sustainably mitigate tomato yield losses associated with fusarium wilt.


Assuntos
Endófitos , Fusarium , Doenças das Plantas , Solanum lycopersicum , Fusarium/patogenicidade , Fusarium/fisiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Endófitos/fisiologia , Hypocreales/fisiologia , Hypocreales/patogenicidade , Antibiose , Controle Biológico de Vetores/métodos , Agentes de Controle Biológico
8.
Biochemistry (Mosc) ; 89(6): 1146-1157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981707

RESUMO

Water shortage induces physiological, biochemical, and molecular alterations in plant leaves that play an essential role in plant adaptive response. The effects of drought and post-drought rewatering on the activity of antioxidant enzymes and levels of H2O2, phenolic compounds, ascorbic acid, and proline were studied in six local tomato (Solanum lycopersicum L.) varieties. The contents of H2O2 and ascorbic acid increased in all drought-exposed tomato plants and then decreased upon rewatering. The level of phenolic compounds also decreased in response to water shortage and then recovered upon rehydration, although the extent of this response was different in different varieties. The activities of ascorbate peroxidase (APX) and guaiacol peroxidase (POX) and the content of proline significantly increased in the drought-stressed plants and then decreased when the plants were rewatered. The activities of 8 constitutive APX isoforms and 2 constitutive POX isoforms varied upon exposure to drought and were observed after rewatering in all studied varieties. The information on the response of tomato plants to drought and subsequent rewatering is of great importance for screening and selection of drought-tolerant varieties, as well as for development of strategies for increasing plant productivity under adverse environmental conditions.


Assuntos
Antioxidantes , Ascorbato Peroxidases , Secas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico , Água/metabolismo , Ácido Ascórbico/metabolismo , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Prolina/metabolismo
9.
PLoS One ; 19(7): e0305402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985801

RESUMO

Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic loss to tomato production, and the Sw-5b resistance gene is widely deployed for management. Here, we show (i) the emergence of resistance-breaking (RB) TSWV strains in processing and fresh market tomato production in California over the past ten years, and (ii) evolutionary relationships with RB strains from other areas. A specific RT-PCR test was used to show the C118Y RB strain that emerged in Fresno County in 2016 quickly became predominant in the central production area and remained so through this study. In 2021, the C118Y strain was detected in the Northern production area, and was predominant in 2022. However, in 2023, the C118Y strain was unexpectedly detected in fewer spotted wilt samples from resistant varieties. This was due to emergence of the T120N RB strain, previously known to occur in Spain. A specific RT-PCR test was developed and used to show that the T120N RB strain was predominant in Colusa and Sutter counties (detected in 75-80% of samples), and detected in ~50% of samples from Yolo County. Pathogenicity tests confirmed California isolates of the T120N strain infected Sw-5b tomato varieties and induced severe symptoms. Another RB strain, C118F, was associated with spotted wilt samples of Sw-5 varieties from fresh market tomato production in southern California. Phylogenetic analyses with complete NSm sequences revealed that the C118Y and T120N RB strains infecting resistant processing tomato in California emerged locally, whereas those from fresh market production were more closely related to isolates from Mexico. Thus, widespread deployment of this single dominant resistance gene in California has driven the local emergence of multiple RB strains in different tomato production areas and types. These results further emphasize the need for ongoing monitoring for RB strains, and identification of sources of resistance to these strains.


Assuntos
Resistência à Doença , Doenças das Plantas , Solanum lycopersicum , Tospovirus , Solanum lycopersicum/virologia , Solanum lycopersicum/genética , California , Doenças das Plantas/virologia , Doenças das Plantas/genética , Tospovirus/genética , Tospovirus/patogenicidade , Resistência à Doença/genética , Filogenia
10.
J Texture Stud ; 55(4): e12845, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992972

RESUMO

In this study, Provence tomato variety was chosen for investigating the environmental causes of tomato fruit cracking, cracks characteristics, and their propagation prediction in a greenhouse. Fruit bagging approach was used to alter the temperature and humidity and to create a microclimate around the fruit to induce fruit cracking for testing. Results showed that the fruit cracking rate increased when the environment temperature exceeded 30°C, and the difference between the highest and lowest temperature values in a day was greater than 20°C. The cracking rate was aggravated when the difference between the highest and lowest humidity values in a day was less than 20%. The proportions of top cracking, longitudinal cracking, ring cracking, radial cracking, and combined cracking were 5.4%, 16.1%, 28.3%, 26.8%, and 32.1%, respectively. The fruit shoulder was the most susceptible region to crack, followed by fruit belly and top regions, whereas longer cracks were observed in the fruit belly region indicating a higher propensity to crack propagation in that region. Finally, the measured data were used to validate an extended finite element method developed to effectively predict cracking susceptibility and propagation in tomato fruit with a relative error of 4.68%.


Assuntos
Frutas , Solanum lycopersicum , Temperatura , Umidade , Meio Ambiente
11.
Plant Mol Biol ; 114(4): 85, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995464

RESUMO

Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.


Assuntos
Aciltransferases , Proteínas F-Box , Regulação da Expressão Gênica de Plantas , Fenilalanina Amônia-Liase , Filogenia , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Flavonoides/metabolismo , Flavonoides/biossíntese , Plantas Geneticamente Modificadas , Propanóis/metabolismo
12.
BMC Plant Biol ; 24(1): 641, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971719

RESUMO

BACKGROUND: Early blight and brown leaf spot are often cited as the most problematic pathogens of tomato in many agricultural regions. Their causal agents are Alternaria spp., a genus of Ascomycota containing numerous necrotrophic pathogens. Breeding programs have yielded quantitatively resistant commercial cultivars, but fungicide application remains necessary to mitigate the yield losses. A major hindrance to resistance breeding is the complexity of the genetic determinants of resistance and susceptibility. In the absence of sufficiently resistant germplasm, we sequenced the transcriptomes of Heinz 1706 tomatoes treated with strongly virulent and weakly virulent isolates of Alternaria spp. 3 h post infection. We expanded existing functional gene annotations in tomato and using network statistics, we analyzed the transcriptional modules associated with defense and susceptibility. RESULTS: The induced responses are very distinct. The weakly virulent isolate induced a defense response of calcium-signaling, hormone responses, and transcription factors. These defense-associated processes were found in a single transcriptional module alongside secondary metabolite biosynthesis genes, and other defense responses. Co-expression and gene regulatory networks independently predicted several D clade ethylene response factors to be early regulators of the defense transcriptional module, as well as other transcription factors both known and novel in pathogen defense, including several JA-associated genes. In contrast, the strongly virulent isolate elicited a much weaker response, and a separate transcriptional module bereft of hormone signaling. CONCLUSIONS: Our findings have predicted major defense regulators and several targets for downstream functional analyses. Combined with our improved gene functional annotation, they suggest that defense is achieved through induction of Alternaria-specific immune pathways, and susceptibility is mediated by modulating hormone responses. The implication of multiple specific clade D ethylene response factors and upregulation of JA-associated genes suggests that host defense in this pathosystem involves ethylene response factors to modulate jasmonic acid signaling.


Assuntos
Alternaria , Resistência à Doença , Redes Reguladoras de Genes , Doenças das Plantas , Solanum lycopersicum , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Alternaria/fisiologia , Alternaria/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo , Etilenos/metabolismo
13.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39001041

RESUMO

Hyperspectral imaging was used to predict the total polyphenol content in low-temperature stressed tomato seedlings for the development of a multispectral image sensor. The spectral data with a full width at half maximum (FWHM) of 5 nm were merged to obtain FWHMs of 10 nm, 25 nm, and 50 nm using a commercialized bandpass filter. Using the permutation importance method and regression coefficients, we developed the least absolute shrinkage and selection operator (Lasso) regression models by setting the band number to ≥11, ≤10, and ≤5 for each FWHM. The regression model using 56 bands with an FWHM of 5 nm resulted in an R2 of 0.71, an RMSE of 3.99 mg/g, and an RE of 9.04%, whereas the model developed using the spectral data of only 5 bands with a FWHM of 25 nm (at 519.5 nm, 620.1 nm, 660.3 nm, 719.8 nm, and 980.3 nm) provided an R2 of 0.62, an RMSE of 4.54 mg/g, and an RE of 10.3%. These results show that a multispectral image sensor can be developed to predict the total polyphenol content of tomato seedlings subjected to low-temperature stress, paving the way for energy saving and low-temperature stress damage prevention in vegetable seedling production.


Assuntos
Imageamento Hiperespectral , Polifenóis , Plântula , Solanum lycopersicum , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Polifenóis/análise , Plântula/química , Imageamento Hiperespectral/métodos , Temperatura Baixa
14.
Plant Cell Rep ; 43(7): 184, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951262

RESUMO

KEY MESSAGE: Whole-genome QTL mining and meta-analysis in tomato for resistance to bacterial and fungal diseases identified 73 meta-QTL regions with significantly refined/reduced confidence intervals. Tomato production is affected by a range of biotic stressors, causing yield losses and quality reductions. While sources of genetic resistance to many tomato diseases have been identified and characterized, stability of the resistance genes or quantitative trait loci (QTLs) across the resources has not been determined. Here, we examined 491 QTLs previously reported for resistance to tomato diseases in 40 independent studies and 54 unique mapping populations. We identified 29 meta-QTLs (MQTLs) for resistance to bacterial pathogens and 44 MQTLs for resistance to fungal pathogens, and were able to reduce the average confidence interval (CI) of the QTLs by 4.1-fold and 6.7-fold, respectively, compared to the average CI of the original QTLs. The corresponding physical length of the CIs of MQTLs ranged from 56 kb to 6.37 Mb, with a median of 921 kb, of which 27% had a CI lower than 500 kb and 53% had a CI lower than 1 Mb. Comparison of defense responses between tomato and Arabidopsis highlighted 73 orthologous genes in the MQTL regions, which were putatively determined to be involved in defense against bacterial and fungal diseases. Intriguingly, multiple genes were identified in some MQTL regions that are implicated in plant defense responses, including PR-P2, NDR1, PDF1.2, Pip1, SNI1, PTI5, NSL1, DND1, CAD1, SlACO, DAD1, SlPAL, Ph-3, EDS5/SID1, CHI-B/PR-3, Ph-5, ETR1, WRKY29, and WRKY25. Further, we identified a number of candidate resistance genes in the MQTL regions that can be useful for both marker/gene-assisted breeding as well as cloning and genetic transformation.


Assuntos
Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Solanum lycopersicum , Locos de Características Quantitativas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Mapeamento Cromossômico
15.
Plant Cell Rep ; 43(8): 200, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039312

RESUMO

KEY MESSAGE: Volatile compounds released from basil prime the tomato wound response by promoting jasmonic acid, mitogen-activated protein kinase, and reactive oxygen species signaling. Within mixed planting systems, companion plants can promote growth or enhance stress responses in target plants. However, the mechanisms underlying these effects remain poorly understood. To gain insight into the molecular nature of the effects of companion plants, we investigated the effects of basil plants (Ocimum basilicum var. minimum) on the wound response in tomato plants (Solanum lycopersicum cv. 'Micro-Tom') within a mixed planting system under environmentally controlled chamber. The results showed that the expression of Pin2, which specifically responds to mechanical wounding, was induced more rapidly and more strongly in the leaves of tomato plants cultivated with companion basil plants. This wound response priming effect was replicated through the exposure of tomato plants to an essential oil (EO) prepared from basil leaves. Tomato leaves pre-exposed to basil EO showed enhanced expression of genes related to jasmonic acid, mitogen-activated protein kinase (MAPK), and reactive oxygen species (ROS) signaling after wounding stress. Basil EO also enhanced ROS accumulation in wounded tomato leaves. The wound response priming effect of basil EO was confirmed in wounded Arabidopsis plants. Loss-of-function analysis of target genes revealed that MAPK genes play pivotal roles in controlling the observed priming effects. Spodoptera litura larvae-fed tomato leaves pre-exposed to basil EO showed reduced growth compared with larvae-fed control leaves. Thus, mixed planting with basil may enhance defense priming in both tomato and Arabidopsis plants through the activation of volatile signaling.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Ocimum basilicum , Oxilipinas , Folhas de Planta , Espécies Reativas de Oxigênio , Transdução de Sinais , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ocimum basilicum/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Animais , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Spodoptera/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
16.
BMC Plant Biol ; 24(1): 693, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039437

RESUMO

Climate change is one of the biggest challenges to the world at present. Tomato is also suffered from devastating yield loss due to climate change. The domesticated tomato (Solanum lycopersicum) is presumed to be originated from the wild tomato (S. pimpinellifolium). In this study, we compared the climate data of S. pimpinellifollium with the domesticated tomato, predicted the suitable regions of S. pimpinellifollium in China using MaxEnt model and assessed their tolerance to drought stress. We found that the predicted suitable regions of wild tomato are highly consistent with the current cultivated regions of domesticated tomato, suggesting that the habitat demand of domesticated tomato descended largely from its ancestor, hence the habitat information of wild tomato could provide a reference for tomato cultivation. We further predicted suitable regions of wild tomato in the future in China. Finally, we found that while average drought tolerance between wild and domesticated tomato accessions shows no difference, tolerance levels among wild tomato accessions exhibit higher variation, which could be used for future breeding to improve drought resistance. To summarize, our study shows that suitable regions of wild tomato provide insights into domesticated tomato cultivation in China.


Assuntos
Domesticação , Secas , Solanum lycopersicum , Solanum lycopersicum/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , China , Mudança Climática , Ecossistema , Produtos Agrícolas/crescimento & desenvolvimento
17.
J Agric Food Chem ; 72(29): 16390-16402, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38994823

RESUMO

MicroRNAs (miRNAs) are the processing products of primary miRNAs (pri-miRNAs) that regulate the expression of target genes. Recent studies have demonstrated that some pri-miRNAs can encode small peptides (miPEPs) that perform significant biological functions. The function of miPEPs in tomatoes, an important model horticultural crop, remains to be investigated. Here, we characterized the primary sequence of tomato miR396a using 5' RACE and confirmed the presence of miPEP396a in tomato by verifying the translational activity of the start codon. It primarily resides in the nucleus to exert its function and additionally regulates the expression of pri-miR396a, miR396a, and its target genes. Transcriptomic and metabolomic analyses showed that in vitro synthesis of miPEP396a significantly increased the expression of genes related to phenylpropanoid biosynthesis and hormones in tomato. Meanwhile, our in vitro application of miPEP396a in tomato significantly inhibited the elongation of tomato primary roots. In conclusion, our results indicate that miPEP396a regulates root growth in tomato by specifically promoting miR396a expression, provide insight into the function of miPEPs in tomato and potential applications.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , Proteínas de Plantas , Raízes de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/química , RNA de Plantas/genética , RNA de Plantas/metabolismo
18.
J Agric Food Chem ; 72(29): 16128-16139, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39003764

RESUMO

Currently, allosteric inhibitors have emerged as an effective strategy in the development of preservatives against the drug-resistant Botrytis cinerea (B. cinerea). However, their passively driven development efficiency has proven challenging to meet the practical demands. Here, leveraging the deep learning Neural Relational Inference (NRI) framework, we actively identified an allosteric inhibitor targeting B. cinerea Chitinase, namely, 2-acetonaphthone. 2-Acetonaphthone binds to the crucial domain of Chitinase, forming the strong interaction with the allosteric sites. Throughout the interaction process, 2-acetonaphthone diminished the overall connectivity of the protein, inducing conformational changes. These findings align with the results obtained from Chitinase activity experiments, revealing an IC50 value of 67.6 µg/mL. Moreover, 2-acetonaphthone exhibited outstanding anti-B. cinerea activity by inhibiting Chitinase. In the gray mold infection model, 2-acetonaphthone significantly extended the preservation time of cherry tomatoes, positioning it as a promising preservative for fruit storage.


Assuntos
Botrytis , Quitinases , Doenças das Plantas , Solanum lycopersicum , Botrytis/efeitos dos fármacos , Quitinases/química , Quitinases/metabolismo , Quitinases/antagonistas & inibidores , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Conservação de Alimentos/métodos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Frutas/química , Frutas/microbiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas
19.
J Agric Food Chem ; 72(29): 16359-16367, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39011851

RESUMO

In our screening program for natural products that are effective in controlling plant diseases, we found that the culture filtrate of Paraconiothyrium sporulosum SFC20160907-M11 effectively suppressed the development of tomato late blight disease caused by Phytophthora infestans. Using a bioassay-guided fractionation of antioomycete activity, 12 active compounds (1-12) were obtained from an ethyl acetate extract of the culture filtrate. Chemical structures of five new compounds 1-5 were determined by the extensive analyses of nuclear magnetic resonance (NMR), high resolution mass spectrometry (HRMS), and circular dichroism (CD) data. Interestingly, mycosporulonol (1) and botrallin (8) completely inhibited the growth of P. infestans at concentrations of 8 and 16 µg/mL, respectively. Furthermore, the spray treatment of 1 and 8 (500 µg/mL) successfully protected tomato seedlings against P. infestans with disease control values of 92%. Taken together, these results suggest that the culture filtrates of P. sporulosum SFC20160907-M11 and their bioactive metabolites can be used as new antioomycete agents for Phytophthora late blight control.


Assuntos
Ascomicetos , Fungicidas Industriais , Phytophthora infestans , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/química , Doenças das Plantas/microbiologia , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/crescimento & desenvolvimento , Ascomicetos/química , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética
20.
BMC Plant Biol ; 24(1): 687, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39026164

RESUMO

BACKGROUND: The effect of azelaic acid (Aza) on the response of tomato plants to Alternaria solani was investigated in this study. After being treated with Aza, tomato plants were infected with A. solani, and their antioxidant, biochemical, and molecular responses were analyzed. RESULTS: The results demonstrated that H2O2 and MDA accumulation increased in control plants after pathogen infection. Aza-treated plants exhibited a remarkable rise in peroxidase (POD) and catalase (CAT) activities during the initial stages of A. solani infection. Gene expression analysis revealed that both Aza treatment and pathogen infection altered the expression patterns of the SlNPR1, SlERF2, SlPR1, and SlPDF1.2 genes. The expression of SlPDF1.2, a marker gene for the jasmonic acid/ethylene (JA/ET) signaling pathway, showed a remarkable increase of 4.2-fold upon pathogen infection. In contrast, for the SlNPR1, a key gene in salicylic acid (SA) pathway, this increased expression was recorded with a delay at 96 hpi. Also, the phytohormone analysis showed significantly increased SA accumulation in plant tissues with disease development. It was also revealed that tissue accumulation of JA in Aza-treated plants was increased following pathogen infection, while it was not increased in plants without pathogen inoculation. CONCLUSION: The results suggest that the resistance induced by Aza is mainly a result of modulations in both SA and JA pathways following complex antioxidant and molecular defense responses in tomato plants during A. solani infection. These findings provide novel information regarding inducing mechanisms of azelaic acid which would add to the current body of knowledge of SAR induction in plants as result of Aza application.


Assuntos
Alternaria , Ciclopentanos , Ácidos Dicarboxílicos , Resistência à Doença , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Alternaria/fisiologia , Ácidos Dicarboxílicos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA