Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.088
Filtrar
1.
Methods Mol Biol ; 2829: 21-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951325

RESUMO

The baculovirus expression vector system (BEVS) is recognized as a powerful platform for producing challenging proteins and multiprotein complexes both in academia and industry. Since a baculovirus was first used to produce heterologous human IFN-ß protein in insect cells, the BEVS has continuously been developed and its applications expanded. We have recently established a multigene expression toolbox (HR-bac) composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. Unlike platforms that rely on Tn7-medidated transposition for the construction of baculoviruses, HR-bac relies on homologous recombination, which allows to evaluate expression constructs in 2 weeks and is thus perfectly adapted to parallel expression screening. In this chapter, we detail our standard operating procedures for the preparation of the reagents, the construction and evaluation of baculoviruses, and the optimization of protein production for both intracellularly expressed and secreted proteins.


Assuntos
Baculoviridae , Vetores Genéticos , Proteínas Recombinantes , Baculoviridae/genética , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vetores Genéticos/genética , Células Sf9 , Expressão Gênica , Humanos , Insetos/genética , Spodoptera , Linhagem Celular , Recombinação Homóloga , Análise Custo-Benefício
2.
Methods Mol Biol ; 2829: 13-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951324

RESUMO

The success of using the insect cell-baculovirus expression technology (BEST) relies on the efficient construction of recombinant baculovirus with genetic stability and high productivity, ideally within a short time period. Generation of recombinant baculoviruses requires the transfection of insect cells, harvesting of recombinant baculovirus pools, isolation of plaques, and the expansion of baculovirus stocks for their use for recombinant protein production. Moreover, many options exist for selecting the genetic elements to be present in the recombinant baculovirus. This chapter describes the most commonly used homologous recombination systems for the production of recombinant baculoviruses, as well as strategies to maximize generation efficiency and recombinant protein or baculovirus production. The key steps for generating baculovirus stocks and troubleshooting strategies are described.


Assuntos
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Animais , Proteínas Recombinantes/genética , Vetores Genéticos/genética , Transfecção/métodos , Recombinação Homóloga , Células Sf9 , Linhagem Celular , Spodoptera/virologia , Insetos/genética , Insetos/virologia
3.
Methods Mol Biol ; 2829: 159-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951332

RESUMO

The baculovirus expression vector system (BEVS) is a powerful platform for protein expression in insect cells. A prevalent application is the expression of complex protein structures consisting of multiple, interacting proteins. Coinfection with multiple baculoviruses allows for production of complex structures, facilitating structure-function studies, allowing augmentation of insect cell functionality, and production of clinically relevant products such as virus-like particles (VLPs) and adeno-associated viral vectors (AAV). Successful coinfections require the generation of robust and well-quantified recombinant baculovirus stocks. Virus production through homologous recombination, combined with rigorous quantification of viral titers, allows for synchronous coinfections producing high end-product titers. In this chapter, we describe the streamlined workflow for generation and quantification of high-quality recombinant baculovirus stocks and successful coinfection as defined by a preponderance of dually infected cells in the insect cell culture.


Assuntos
Baculoviridae , Vetores Genéticos , Proteínas Recombinantes , Baculoviridae/genética , Animais , Vetores Genéticos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Linhagem Celular , Spodoptera/virologia
4.
Methods Mol Biol ; 2829: 185-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951334

RESUMO

Insect cell expression has been successfully used for the production of viral antigens as part of commercial vaccine development. As expression host, insect cells offer advantage over bacterial system by presenting the ability of performing post-translational modifications (PTMs) such as glycosylation and phosphorylation thus preserving the native functionality of the proteins especially for viral antigens. Insect cells have limitation in exactly mimicking some proteins which require complex glycosylation pattern. The recent advancement in insect cell engineering strategies could overcome this limitation to some extent. Moreover, cost efficiency, timelines, safety, and process adoptability make insect cells a preferred platform for production of subunit antigens for human and animal vaccines. In this chapter, we describe the method for producing the SARS-CoV2 spike ectodomain subunit antigen for human vaccine development and the virus like particle (VLP), based on capsid protein of porcine circovirus virus 2 (PCV2d) antigen for animal vaccine development using two different insect cell lines, SF9 & Hi5, respectively. This methodology demonstrates the flexibility and broad applicability of insect cell as expression host.


Assuntos
Antígenos Virais , Baculoviridae , Glicoproteína da Espícula de Coronavírus , Animais , Baculoviridae/genética , Antígenos Virais/genética , Antígenos Virais/imunologia , Células Sf9 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Recombinantes/genética , Linhagem Celular , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Glicosilação , Insetos/genética , Spodoptera , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia
5.
Methods Mol Biol ; 2829: 247-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951340

RESUMO

The Baculovirus Expression Vector System (BEVS) is used with cultured insect cells to produce a wide variety of heterologous proteins, which can be secreted into the culture medium during the transient infection process (Smith et al. Mol Cell Biol 12:2156-2165, 1983). When the infection process is complete, centrifugation is often used to separate the desired protein from the spent insect cells. The desired product in the harvested supernatant is contaminated with baculovirus, amino acids, lipids, detergents, oils, lysed cells from the infection process, genomic DNA from the insect cells, and proteases due to the lytic nature of the baculovirus infection process and many other contaminants (Ikonomou et al. Appl Microbiol Biotechnol 62:1-20, 2003). All these contaminants that are present in the centrifuged supernatant with the desired secreted protein make the initial chromatographic capture step critical for effective purification of the desired protein. A purification scheme will be outlined for a slightly acidic secreted protein using cation exchange chromatography (Lundanes et al. Chromatography: basic principles, sample preparations and related methods, 1st edn. Wiley, 2013).


Assuntos
Baculoviridae , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Cromatografia por Troca Iônica/métodos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Insetos/citologia , Células Sf9 , Vetores Genéticos/genética , Linhagem Celular , Spodoptera
6.
Methods Mol Biol ; 2829: 217-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951337

RESUMO

Purification of rAAV is a crucial unit operation of the AAV production process. It enables the capture of AAV and removal of contaminants such as host cell proteins, host cell DNA, and other cell culture-related impurities. Here we describe the purification of rAAV produced in insect cells Sf9/rBEV by immuno-affinity capture chromatography. The method is fully scale-amenable unlike other traditional purification methods based on ultracentrifugation. The method reported herein has two main steps: (1) the clarification of cell lysate by depth filtration and (2) the selective capture and single-step purification of AAV via immune-affinity chromatography. This purification method has been successfully implemented to purify the majority of wild-type AAV serotypes.


Assuntos
Cromatografia de Afinidade , Dependovirus , Dependovirus/genética , Dependovirus/isolamento & purificação , Animais , Cromatografia de Afinidade/métodos , Células Sf9 , Vetores Genéticos/genética , Humanos , Spodoptera/virologia
7.
Methods Mol Biol ; 2829: 289-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951345

RESUMO

Nonviral transfection has been used to express various recombinant proteins, therapeutics, and virus-like particles (VLP) in mammalian and insect cells. Virus-free methods for protein expression require fewer steps for obtaining protein expression by eliminating virus amplification and measuring the infectivity of the virus. The nonviral method uses a nonlytic plasmid to transfect the gene of interest into the insect cells instead of using baculovirus, a lytic system. In this chapter, we describe one of the transfection methods, which uses polyethyleneimine (PEI) as a DNA delivery material into the insect cells to express the recombinant protein in both adherent and suspension cells.


Assuntos
Polietilenoimina , Proteínas Recombinantes , Transfecção , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção/métodos , Polietilenoimina/química , Plasmídeos/genética , Insetos/genética , Células Sf9 , Linhagem Celular , Expressão Gênica , Spodoptera
8.
Methods Mol Biol ; 2829: 267-270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951342

RESUMO

There are many methods that can be used to determine the infectious titer of your baculovirus stock. The TCID50 method is a simple end-point dilution method that determines the amount of baculovirus virus needed to produce a cytopathic effect or kill 50% of inoculated insect cells. Serial dilutions of baculovirus stock are added to Sf9 cells cultivated in 96-well plates and 3-5 days after infection, cells are monitored for cell death or cytopathic effect. The titer can then be calculated by the Reed-Muench method as described in this method.


Assuntos
Baculoviridae , Baculoviridae/genética , Animais , Células Sf9 , Efeito Citopatogênico Viral , Spodoptera/virologia , Carga Viral/métodos , Linhagem Celular
9.
Methods Mol Biol ; 2829: 259-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951341

RESUMO

Plaque assay method enables the quantification of infectious baculovirus when defined as plaque forming units (PFU). It allows to determine the amount of infectious virus needed to infect the cells at a specific multiplicity of infection (MOI). Serial dilutions of baculovirus stock are added to the Sf9 cells monolayer followed by addition of 5% Agarose overlay. Six days after infection clear infection halos are observed using a neutral red solution. Here we describe the quantification of recombinant baculovirus expression vector (rBEV) carrying a transgene in an rAAV expression cassette. Reproducible quantification of PFU is obtained with this method.


Assuntos
Baculoviridae , Vetores Genéticos , Ensaio de Placa Viral , Baculoviridae/genética , Células Sf9 , Ensaio de Placa Viral/métodos , Animais , Vetores Genéticos/genética , Transgenes , Vírion/genética , Dependovirus/genética , Spodoptera/virologia
10.
Sci Rep ; 14(1): 15122, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956289

RESUMO

Natalisin (NTL) is a conserved neuropeptide, only present in insects, that has been reported to regulate their sexual activity. In this study, we investigated the involvement of NTL in the reproductive behaviors of a major invasive pest, Spodoptera frugiperda. We identified NTL precursor-encoded transcripts, and evaluated their transcript levels in different stages and tissues of S. frugiperda. The results showed that the NTL transcript level was expressed in both male and female pupae and both male and female adults in the later stage. It was highly expressed in male pupae, 3-day-old male and female adults, and 5-day-old male adults. In different tissues, the expression level is higher in the male and female adult brain and male testis. Immunohistochemical staining of the brain of S. frugiperda female and male adults revealed that three pairs of brain neurons of S. frugiperda adults of both sexes secreted and expressed NTL. To study the role of NTL in reproductive behaviors, NTL was silenced in S. frugiperda male and female adults by RNA interference (RNAi) technology, the results showed that silencing NTL could significantly affect the sexual activity behavior of the adults, reducing the calling rate of females, the courtship rate of males, and the mating rate. In summary, this study emphasizes the important role of NTL in regulating the mating behavior and sexual activity of S. frugiperda in both male and female adults, potentially laying a foundation to employ NTL as a new insect-specific target to control populations of pest insects.


Assuntos
Neuropeptídeos , Comportamento Sexual Animal , Spodoptera , Animais , Spodoptera/genética , Spodoptera/fisiologia , Masculino , Feminino , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Comportamento Sexual Animal/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Encéfalo/metabolismo , Interferência de RNA , Reprodução
11.
Sci Rep ; 14(1): 16823, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039220

RESUMO

Exploring host plant resistance and elevating plant defense mechanisms through the application of exogenous elicitors stands as a promising strategy for integrated pest management. The fall armyworm, a pernicious menace to grain crops in tropical and subtropical regions, stands as a formidable threat due to its capacity for devastation and a wide-ranging spectrum of host plants. There is no literature regarding artificially induced resistance in maize against fall armyworm (Spodoptera frugiperda) by exogenous application of phytohormones. The present investigation was performed to evaluate the role of jasmonic acid (JA) and salicylic acid (SA) on two maize hybrids namely FH-1046 and YH-1898 against fall armyworm. Results showed that plant height, biomass and lengths, fresh and dry weight of root shoot which decreased with armyworm infestation improved with phytohormonal application. JA treatment resulted in a higher increase in all attributes as compared to SA treatment. Improvement in relative water contents, photosynthetic pigments and pronounced levels of phenol and proline accumulation were observed in infested plants after JA treatment. Infested plants recovered from oxidative stress as JA application activated and increased the antioxidant enzyme activity of superoxide dismutase, peroxidase and polyphenol oxidase activity in both FH-1046 and YH-1898 . The oxidative stress reduction in infested plants after JA treatment was also evident from a fair decrease in MDA and H2O2 in both varieties. The SA and JA mediated genes expression was studied and it was found that in FH1046 maize cultivar, JA dependent genes, particularly marker genes PR1 and Lox5 were highly expressed along with TPS10 and BBT12. Whereas SPI, WRKY28, ICS and PAL were shown to be activated upon SA application. Evidently, both JA and SA elicited a robust defensive response within the maize plants against the voracious S. frugiperda, which in consequence exerted a discernible influence over the pest's developmental trajectory and physiological dynamics. A decrease in detoxification enzyme activity of the insects was observed after feeding on treated plants. Moreover, it was recorded that the survival and weight gain of FAW feeding on phytohormone treated maize plants also decelerated. In conclusion, FH-1046 was found to be more tolerant than YH-1898 against fall armyworm infestation and 1 mM JA was more effective than 1 mM SA for alleviation of fall armyworm stress. Therefore, it was inferred that phytohormones regulated redox homeostasis to circumvent oxidative damage and mediate essential metabolic events in maize under stress. To our current understanding, this study is the very first presentation of induced resistance in maize against S. frugiperda with the phytohormonal application (JA and SA).


Assuntos
Ciclopentanos , Oxilipinas , Ácido Salicílico , Spodoptera , Zea mays , Zea mays/parasitologia , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/genética , Spodoptera/efeitos dos fármacos , Animais , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Oxirredução/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Doenças das Plantas/parasitologia , Estresse Oxidativo/efeitos dos fármacos
12.
Plant Cell Rep ; 43(8): 200, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039312

RESUMO

KEY MESSAGE: Volatile compounds released from basil prime the tomato wound response by promoting jasmonic acid, mitogen-activated protein kinase, and reactive oxygen species signaling. Within mixed planting systems, companion plants can promote growth or enhance stress responses in target plants. However, the mechanisms underlying these effects remain poorly understood. To gain insight into the molecular nature of the effects of companion plants, we investigated the effects of basil plants (Ocimum basilicum var. minimum) on the wound response in tomato plants (Solanum lycopersicum cv. 'Micro-Tom') within a mixed planting system under environmentally controlled chamber. The results showed that the expression of Pin2, which specifically responds to mechanical wounding, was induced more rapidly and more strongly in the leaves of tomato plants cultivated with companion basil plants. This wound response priming effect was replicated through the exposure of tomato plants to an essential oil (EO) prepared from basil leaves. Tomato leaves pre-exposed to basil EO showed enhanced expression of genes related to jasmonic acid, mitogen-activated protein kinase (MAPK), and reactive oxygen species (ROS) signaling after wounding stress. Basil EO also enhanced ROS accumulation in wounded tomato leaves. The wound response priming effect of basil EO was confirmed in wounded Arabidopsis plants. Loss-of-function analysis of target genes revealed that MAPK genes play pivotal roles in controlling the observed priming effects. Spodoptera litura larvae-fed tomato leaves pre-exposed to basil EO showed reduced growth compared with larvae-fed control leaves. Thus, mixed planting with basil may enhance defense priming in both tomato and Arabidopsis plants through the activation of volatile signaling.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Ocimum basilicum , Oxilipinas , Folhas de Planta , Espécies Reativas de Oxigênio , Transdução de Sinais , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ocimum basilicum/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Animais , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Spodoptera/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
13.
Funct Integr Genomics ; 24(4): 129, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039331

RESUMO

Genetically modified (GM) crops, expressing Bacillus thuringiensis (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like Spodoptera frugiperda, known as the fall armyworm (FAW). FAW's adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 - 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW's resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Resistência a Inseticidas , Spodoptera , Transcriptoma , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Animais , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência a Inseticidas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Zea mays/genética , Zea mays/parasitologia , Perfilação da Expressão Gênica
14.
Mol Biol Rep ; 51(1): 843, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042338

RESUMO

BACKGROUND: Energy homeostasis is vital for insects to survive food shortages. This study investigated the starvation tolerance of Spodoptera frugiperda, which invaded China in 2019, focusing on its storage protein family, crucial for energy balance. 10 storage protein family members were identified and their expression patterns at different development stages and under different starvation stress were analyzed. METHODS AND RESULTS: We used qPCR to evaluate the expression levels of storage protein family members under various larval instars and starvation conditions. We discovered that, among above 10 members, only 2 storage proteins, SfSP8 and SfSP7 showed significant upregulation in response to starvation stress. Notably, SfSP8 upregulated markedly after 24 h of fasting, whereas SfSP7 exhibited a delayed response, with significant upregulation observed only after 72 h of starvation. Then we significantly reduced the starvation tolerance of larvae through RNAi-mediated knockdown of SfSP8 and also altered the starvation response of SfSP7 from a late to an early activation pattern. Finally, we constructed transgenic Drosophila melanogaster with heterologous overexpressing SfSP8 revealed that the starvation tolerance of the transgenic line was significantly stronger than that of wild-type lines. CONCLUSIONS: SfSP8 was the core storage protein member that mediated the starvation tolerance of larvae of S. frugiperda. Our study on the novel function of storage proteins in mediating larval starvation tolerance of S. frugiperda is conducive to understanding the strong colonization of this terrible invasive pest.


Assuntos
Proteínas de Insetos , Larva , Spodoptera , Inanição , Animais , Spodoptera/genética , Larva/genética , Larva/metabolismo , Inanição/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animais Geneticamente Modificados , Estresse Fisiológico/genética
15.
J Agric Food Chem ; 72(28): 15624-15632, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38952111

RESUMO

Phytophagous insects are more predisposed to evolve insecticide resistance than other insect species due to the "preadaptation hypothesis". Cytochrome P450 monooxygenases have been strongly implicated in insecticide and phytochemical detoxification in insects. In this study, RNA-seq results reveal that P450s of Spodoptera litura, especially the CYP3 clan, are dominant in cyantraniliprole, nicotine, and gossypol detoxification. The expression of a Malpighian tubule-specific P450 gene, SlCYP9A75a, is significantly upregulated in xenobiotic treatments except α-cypermethrin. The gain-of-function and loss-of-function analyses indicate that SlCYP9A75a contributes to cyantraniliprole, nicotine, and α-cypermethrin tolerance, and SlCYP9A75a is capable of binding to these xenobiotics. This study indicates the roles of inducible SlCYP9A75a in detoxifying man-made insecticides and phytochemicals and may provide an insight into the development of cross-tolerance in omnivorous insects.


Assuntos
Sistema Enzimático do Citocromo P-450 , Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Túbulos de Malpighi , Spodoptera , Xenobióticos , Animais , Spodoptera/genética , Spodoptera/efeitos dos fármacos , Spodoptera/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Xenobióticos/metabolismo , Inseticidas/farmacologia , Túbulos de Malpighi/metabolismo , Túbulos de Malpighi/enzimologia , Túbulos de Malpighi/efeitos dos fármacos , Resistência a Inseticidas/genética , Inativação Metabólica/genética , Larva/crescimento & desenvolvimento , Larva/genética , Larva/efeitos dos fármacos
16.
Microbiol Res ; 286: 127819, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986181

RESUMO

Beauveria bassiana (Bb) is a widespread entomopathogenic fungus widely used in agriculture for crop protection. Other than pest control, fungi belonging to the B. bassiana complex represent an important microbial resource in agroecosystems, considering their multiple interactions with other microorganisms as antagonists of phytopathogens, or with plants as endophytic colonizers and growth promoters. Here, we characterised field collected or commercial isolates of B. bassiana relative to the environmental factors that affect their growth. We further compared the metabolome, the entomopathogenic potential and biocontrol activity of the tested isolates respectively on the insect pest Spodoptera littoralis or against the fungal plant pathogen Fusarium oxysporum. Our analysis revealed that the B. bassiana complex is characterised by a high level of inter-isolate heterogeneity in terms of nutritional requirements, establishment of intra- or inter-kingdom interactions, and the nature of metabolites produced. Interestingly, certain B. bassiana isolates demonstrated a preference for low nutrient plant-derived media, which hints at their adaptation towards an endophytic lifestyle over a saprophytic one. In addition, there was a noticeable variation among different B. bassiana isolates in their capacity to kill S. littoralis larvae in a contact infection test, but not in an intrahaemocoelic injection experiment, suggesting a unique level of adaptability specific to the host. On the other hand, most B. bassiana isolates exhibited similar biocontrol efficacy against the soil-dwelling ascomycete F. oxysporum f. sp. lycopersici, a pathogen responsible for vascular wilt disease in tomato plants, effectively averting wilting. Overall, we show that the effectiveness of B. bassiana isolates can greatly vary, emphasising the importance of isolate selection and nutritional adaptability consideration for their use in sustainable agriculture.


Assuntos
Beauveria , Fusarium , Larva , Controle Biológico de Vetores , Spodoptera , Beauveria/fisiologia , Beauveria/isolamento & purificação , Beauveria/metabolismo , Animais , Spodoptera/microbiologia , Larva/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Agricultura , Metaboloma , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/fisiologia , Endófitos/classificação
17.
PLoS One ; 19(7): e0304958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39018338

RESUMO

Eicosanoids mediate insect immune responses and synthesized by the catalytic activity of phospholipase A2 (PLA2). A uniquely encoded secretory PLA2 (sPLA2) is associated with immune responses of a lepidopteran insect, Spodoptera exigua. Its deletion mutant was generated using a CRISPR/Cas9 genome editing technology. Both wild and mutant lines were then immune-challenged, and the resulting transcripts were compared with their naïve transcripts by RNASeq using the Illumina-HiSeq platform. In total, 12,878 unigenes were further analyzed by differentially expressed gene tools. Over 69% of the expressed genes in S. exigua larvae are modulated in their expression levels by eicosanoids, recorded from CRISPR/Cas9 mutagenesis against an eicosanoid-synthetic gene, Se-sPLA2. Further, about 36% of the immune-associated genes are controlled by the eicosanoids in S. exigua. Indeed, the deletion mutant suffered significant immunosuppression in both cellular and humoral responses in response to bacterial challenge as well as severely reduced developmental and reproductive potentials.


Assuntos
Sistemas CRISPR-Cas , Eicosanoides , Fosfolipases A2 , Spodoptera , Animais , Eicosanoides/metabolismo , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Transdução de Sinais , Larva/genética , Larva/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Deleção de Sequência , Genes de Insetos , Edição de Genes , Deleção de Genes
18.
PLoS Biol ; 22(7): e3002704, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954724

RESUMO

The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has been produced by transgenic crops to counter pest resistance to the widely used crystalline (Cry) insecticidal proteins from Bt. To proactively manage pest resistance, there is an urgent need to better understand the genetic basis of resistance to Vip3Aa, which has been largely unknown. We discovered that retrotransposon-mediated alternative splicing of a midgut-specific chitin synthase gene was associated with 5,560-fold resistance to Vip3Aa in a laboratory-selected strain of the fall armyworm, a globally important crop pest. The same mutation in this gene was also detected in a field population. Knockout of this gene via CRISPR/Cas9 caused high levels of resistance to Vip3Aa in fall armyworm and 2 other lepidopteran pests. The insights provided by these results could help to advance monitoring and management of pest resistance to Vip3Aa.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias , Quitina Sintase , Resistência a Inseticidas , Retroelementos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitina Sintase/genética , Quitina Sintase/metabolismo , Retroelementos/genética , Bacillus thuringiensis/genética , Resistência a Inseticidas/genética , Sistemas CRISPR-Cas , Processamento Alternativo/genética , Processamento Alternativo/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Plantas Geneticamente Modificadas , Mariposas/efeitos dos fármacos , Mariposas/genética
19.
Sci Rep ; 14(1): 13721, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877078

RESUMO

The beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), has become a significant pest of chickpea in recent years. The polyphagous nature allows it to survive on various hosts during the off-season, creating a great menace to the crop in the following season. To assess the incidence and document the alternate hosts of S. exigua, a rapid roving survey was conducted in 11 chickpea-growing areas of Prakasam district, Andhra Pradesh, India. Additionally, the life history traits of S. exigua were studied on major alternate host plants under laboratory conditions (27 ± 1 °C and 70 ± 2% RH) to understand the survival, life expectancy and potential contribution to future populations. The results show that, among the different crops surveyed, the maximum larval incidence was noticed in maize (1.93 larvae/plant), cowpea (1.73 larvae/plant), and sunflower (1.68 larvae/plant) during the off-season. Life history studies of S. exigua showed that highest larval survival percentage was observed on chickpea (83.6%), while the lowest was on maize (44.5%). The mean developmental time for larvae was longest on maize (27.1 days) and shortest on chickpea (14.9 days). Larvae did not develop beyond the third instar when fed with chilli. The growth index statistics showed chickpea (9.2) was the most suitable host plant, whereas maize (0.9) was the least suitable host. The age-stage-specific survival rate (Sxj) varied across developmental stages, and the survival curves overlapped, indicating different growth rates among individuals. The life expectancy (exj) at age zero was highest on groundnut (37.06 days). The intrinsic rate of increase (r) of S. exigua was lowest on maize (0.10 ± 0.0013) and highest on chickpea (0.22 ± 0.0010). Similarly, the net reproductive rate (R0) was highest on chickpea (846.39 ± 18.22) and lowest on maize (59.50 ± 2.06). The population doubled every 3.08 ± 0.011 days on chickpea compared to 7.22 ± 0.80 days on maize. The study conclusively indicates that chickpea and sunflower, primarily cultivated during the rabi season in India, are the most preferred hosts for S. exigua. In contrast, maize and cotton, mainly grown during the kharif season, are less preferred and merely support the pest's survival. Consequently, S. exigua switches hosts between different crops growing seasons, so effective management of S. exigua during the kharif season can help prevent pest outbreaks during the rabi season.


Assuntos
Cicer , Larva , Estações do Ano , Spodoptera , Animais , Spodoptera/crescimento & desenvolvimento , Spodoptera/fisiologia , Larva/crescimento & desenvolvimento , Cicer/parasitologia , Produtos Agrícolas/parasitologia , Índia , Zea mays/parasitologia , Vigna/parasitologia , Vigna/crescimento & desenvolvimento
20.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932173

RESUMO

Alphabaculoviruses are lethal dsDNA viruses of Lepidoptera that have high genetic diversity and are transmitted in aggregates within proteinaceous occlusion bodies. This mode of transmission has implications for their efficacy as biological insecticides. A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV-NIC) comprising nine genotypic variants has been the subject of considerable study due to the influence of variant interactions on the insecticidal properties of mixed-variant occlusion bodies. As part of a systematic study on the replication and transmission of variant mixtures, a tool for the accurate quantification of a selection of genotypic variants was developed based on the quantitative PCR technique (qPCR). First, primer pairs were designed around a region of high variability in four variants named SfNic-A, SfNic-B, SfNic-C and SfNic-E to produce amplicons of 103-150 bp. Then, using cloned purified amplicons as standards, amplification was demonstrated over a dynamic range of 108-101 copies of each target. The assay was efficient (mean ± SD: 98.5 ± 0.8%), reproducible, as shown by low inter- and intra-assay coefficients of variation (<5%), and specific to the target variants (99.7-100% specificity across variants). The quantification method was validated on mixtures of genotype-specific amplicons and demonstrated accurate quantification. Finally, mixtures of the four variants were quantified based on mixtures of budded virions and mixtures of DNA extracted from occlusion-derived virions. In both cases, mixed-variant preparations compared favorably to total viral genome numbers by quantification of the polyhedrin (polh) gene that is present in all variants. This technique should prove invaluable in elucidating the influence of variant diversity on the transmission and insecticidal characteristics of this pathogen.


Assuntos
Variação Genética , Genótipo , Nucleopoliedrovírus , Reação em Cadeia da Polimerase em Tempo Real , Spodoptera , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Animais , Spodoptera/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA