Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.239
Filtrar
1.
Nat Commun ; 15(1): 6160, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039080

RESUMO

Sperm length is highly variable across species and many questions about its variation remain open. Although variation in body mass may affect sperm length evolution through its influence on multiple factors, the extent to which sperm length variation is linked to body mass remains elusive. Here, we use the Pareto multi-task evolution framework to investigate the relationship between sperm length and body mass across tetrapods. We find that tetrapods occupy a triangular Pareto front, indicating that trade-offs shape the evolution of sperm length in relation to body mass. By exploring the factors predicted to influence sperm length evolution, we find that sperm length evolution is mainly driven by sperm competition and clutch size, rather than by genome size. Moreover, the triangular Pareto front is maintained within endotherms, internal fertilizers, mammals and birds, suggesting similar evolutionary trade-offs within tetrapods. Finally, we demonstrate that the Pareto front is robust to phylogenetic dependencies and finite sampling bias. Our findings provide insights into the evolutionary mechanisms driving interspecific sperm length variation and highlight the importance of considering multiple trade-offs in optimizing reproductive traits.


Assuntos
Evolução Biológica , Mamíferos , Filogenia , Espermatozoides , Animais , Masculino , Espermatozoides/fisiologia , Aves/fisiologia , Tamanho da Ninhada , Tamanho do Genoma , Tamanho Corporal
2.
Proc Natl Acad Sci U S A ; 121(30): e2403805121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39018195

RESUMO

It is commonly held that there is a fundamental relationship between genome size and error rate, manifest as a notional "error threshold" that sets an upper limit on genome sizes. The genome sizes of RNA viruses, which have intrinsically high mutation rates due to a lack of mechanisms for error correction, must therefore be small to avoid accumulating an excessive number of deleterious mutations that will ultimately lead to population extinction. The proposed exceptions to this evolutionary rule are RNA viruses from the order Nidovirales (such as coronaviruses) that encode error-correcting exonucleases, enabling them to reach genome lengths greater than 40 kb. The recent discovery of large-genome flavi-like viruses (Flaviviridae), which comprise genomes up to 27 kb in length yet seemingly do not encode exonuclease domains, has led to the proposal that a proofreading mechanism is required to facilitate the expansion of nonsegmented RNA virus genomes above 30 kb. Herein, we describe a ~40 kb flavi-like virus identified in a Haliclona sponge metatranscriptome that does not encode a known exonuclease. Structural analysis revealed that this virus may have instead captured cellular domains associated with nucleic acid metabolism that have not been previously found in RNA viruses. Phylogenetic inference placed this virus as a divergent pesti-like lineage, such that we have provisionally termed it "Maximus pesti-like virus." This virus represents an instance of a flavi-like virus achieving a genome size comparable to that of the Nidovirales and demonstrates that RNA viruses have evolved multiple solutions to overcome the error threshold.


Assuntos
Genoma Viral , Animais , Filogenia , Tamanho do Genoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Exonucleases/metabolismo , Exonucleases/genética , RNA Viral/genética
3.
Sci Data ; 11(1): 793, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025921

RESUMO

To understand the genomic characteristics of Arctic plants, we generated 28-44 Gb of short-read sequencing data from 13 Arctic plants collected from the High Arctic Svalbard. We successfully estimated the genome sizes of eight species by using the k-mer-based method (180-894 Mb). Among these plants, the mountain sorrel (Oxyria digyna) and Greenland scurvy grass (Cochlearia groenlandica) had relatively small genome sizes and chromosome numbers. We obtained 45 × and 121 × high-fidelity long-read sequencing data. We assembled their reads into high-quality draft genomes (genome size: 561 and 250 Mb; contig N50 length: 36.9 and 14.8 Mb, respectively), and correspondingly annotated 43,105 and 29,675 genes using ~46 and ~85 million RNA sequencing reads. We identified 765,012 and 88,959 single-nucleotide variants, and 18,082 and 7,698 structural variants (variant size ≥ 50 bp). This study provided high-quality genome assemblies of O. digyna and C. groenlandica, which are valuable resources for the population and molecular genetic studies of these plants.


Assuntos
Genoma de Planta , Sequenciamento Completo do Genoma , Regiões Árticas , Tamanho do Genoma , Hydrocharitaceae/genética
4.
Genes (Basel) ; 15(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927647

RESUMO

Sesamum indicum L. (Pedaliaceae) is one of the most economically important oil crops in the world, thanks to the high oil content of its seeds and its nutritional value. It is cultivated all over the world, mainly in Asia and Africa. Well adapted to arid environments, sesame offers a good opportunity as an alternative subsistence crop for farmers in Africa, particularly Niger, to cope with climate change. For the first time, the variation in genome size among 75 accessions of the Nigerien germplasm was studied. The sample was collected throughout Niger, revealing various morphological, biochemical and phenological traits. For comparison, an additional accession from Thailand was evaluated as an available Asian representative. In the Niger sample, the 2C DNA value ranged from 0.77 to 1 pg (753 to 978 Mbp), with an average of 0.85 ± 0.037 pg (831 Mbp). Statistical analysis showed a significant difference in 2C DNA values among 58 pairs of Niger accessions (p-value < 0.05). This significant variation indicates the likely genetic diversity of sesame germplasm, offering valuable insights into its possible potential for climate-resilient agriculture. Our results therefore raise a fundamental question: is intraspecific variability in the genome size of Nigerien sesame correlated with specific morphological and physiological traits?


Assuntos
Tamanho do Genoma , Genoma de Planta , Sesamum , Sesamum/genética , Níger , Variação Genética , Sementes/genética
5.
BMC Genomics ; 25(1): 614, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890559

RESUMO

BACKGROUND: To unravel the evolutionary history of a complex group, a comprehensive reconstruction of its phylogenetic relationships is crucial. This requires meticulous taxon sampling and careful consideration of multiple characters to ensure a complete and accurate reconstruction. The phylogenetic position of the Orestias genus has been estimated partly on unavailable or incomplete information. As a consequence, it was assigned to the family Cyprindontidae, relating this Andean fish to other geographically distant genera distributed in the Mediterranean, Middle East and North and Central America. In this study, using complete genome sequencing, we aim to clarify the phylogenetic position of Orestias within the Cyprinodontiformes order. RESULTS: We sequenced the genome of three Orestias species from the Andean Altiplano. Our analysis revealed that the small genome size in this genus (~ 0.7 Gb) was caused by a contraction in transposable element (TE) content, particularly in DNA elements and short interspersed nuclear elements (SINEs). Using predicted gene sequences, we generated a phylogenetic tree of Cyprinodontiformes using 902 orthologs extracted from all 32 available genomes as well as three outgroup species. We complemented this analysis with a phylogenetic reconstruction and time calibration considering 12 molecular markers (eight nuclear and four mitochondrial genes) and a stratified taxon sampling to consider 198 species of nearly all families and genera of this order. Overall, our results show that phylogenetic closeness is directly related to geographical distance. Importantly, we found that Orestias is not part of the Cyprinodontidae family, and that it is more closely related to the South American fish fauna, being the Fluviphylacidae the closest sister group. CONCLUSIONS: The evolutionary history of the Orestias genus is linked to the South American ichthyofauna and it should no longer be considered a member of the Cyprinodontidae family. Instead, we submit that Orestias belongs to the Orestiidae family, as suggested by Freyhof et al. (2017), and that it is the sister group of the Fluviphylacidae family, distributed in the Amazonian and Orinoco basins. These two groups likely diverged during the Late Eocene concomitant with hydrogeological changes in the South American landscape.


Assuntos
Ciprinodontiformes , Evolução Molecular , Genoma , Filogenia , Animais , Ciprinodontiformes/genética , Ciprinodontiformes/classificação , Elementos de DNA Transponíveis/genética , Tamanho do Genoma
6.
Environ Microbiol ; 26(6): e16634, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38881319

RESUMO

Understanding intricate microbial interactions in the environment is crucial. This is especially true for the relationships between nutrients and bacteria, as phosphorus, nitrogen and organic carbon availability are known to influence bacterial population dynamics. It has been suggested that low nutrient conditions prompt the evolutionary process of genome streamlining. This process helps conserve scarce nutrients and allows for proliferation. Genome streamlining is associated with genomic properties such as %GC content, genes encoding sigma factors, percent coding regions, gene redundancy, and functional shifts in processes like cell motility and ATP binding cassette transporters, among others. The current study aims to unveil the impact of nutrition on the genome size, %GC content, and functional properties of pelagic freshwater bacteria. We do this at finer taxonomic resolutions for many metagenomically characterized communities. Our study confirms the interplay of trophic level and genomic properties. It also highlights that different nutrient types, particularly phosphorus and nitrogen, impact these properties differently. We observed a covariation of functional traits with genome size. Larger genomes exhibit enriched pathways for motility, environmental interaction, and regulatory genes. ABC transporter genes reflect the availability of nutrients in the environment, with small genomes presumably relying more on metabolites from other organisms. We also discuss the distinct strategies different phyla adopt to adapt to oligotrophic environments. The findings contribute to our understanding of genomic adaptations within complex microbial communities.


Assuntos
Bactérias , Genoma Bacteriano , Lagos , Metagenômica , Nitrogênio , Nutrientes , Fósforo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Metagenômica/métodos , Fósforo/metabolismo , Nutrientes/metabolismo , Nitrogênio/metabolismo , Lagos/microbiologia , Europa (Continente) , Composição de Bases , Carbono/metabolismo , Tamanho do Genoma , Microbiota/genética , Filogenia
7.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38869151

RESUMO

BACKGROUND: The Coreopsideae tribe, a subset of the Asteraceae family, encompasses economically vital genera like Dahlia, Cosmos, and Bidens, which are widely employed in medicine, horticulture, ecology, and food applications. Nevertheless, the lack of reference genomes hinders evolutionary and biological investigations in this tribe. RESULTS: Here, we present 3 haplotype-resolved chromosome-level reference genomes of the tribe Coreopsideae, including 2 popular flowering plants (Dahlia pinnata and Cosmos bipinnatus) and 1 invasive weed plant (Bidens alba), with assembled genome sizes 3.93 G, 1.02 G, and 1.87 G, respectively. We found that Gypsy transposable elements contribute mostly to the larger genome size of D. pinnata, and multiple chromosome rearrangements have occurred in tribe Coreopsideae. Besides the shared whole-genome duplication (WGD-2) in the Heliantheae alliance, our analyses showed that D. pinnata and B. alba each underwent an independent recent WGD-3 event: in D. pinnata, it is more likely to be a self-WGD, while in B. alba, it is from the hybridization of 2 ancestor species. Further, we identified key genes in the inulin metabolic pathway and found that the pseudogenization of 1-FEH1 and 1-FEH2 genes in D. pinnata and the deletion of 3 key residues of 1-FFT proteins in C. bipinnatus and B. alba may probably explain why D. pinnata produces much more inulin than the other 2 plants. CONCLUSIONS: Collectively, the genomic resources for the Coreopsideae tribe will promote phylogenomics in Asteraceae plants, facilitate ornamental molecular breeding improvements and inulin production, and help prevent invasive weeds.


Assuntos
Evolução Molecular , Genoma de Planta , Inulina , Poliploidia , Inulina/metabolismo , Asteraceae/genética , Filogenia , Bidens/genética , Bidens/metabolismo , Tamanho do Genoma
8.
Ecol Lett ; 27(6): e14447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844351

RESUMO

Host specialization plays a critical role in the ecology and evolution of plant-microbe symbiosis. Theory predicts that host specialization is associated with microbial genome streamlining and is influenced by the abundance of host species, both of which can vary across latitudes, leading to a latitudinal gradient in host specificity. Here, we quantified the host specificity and composition of plant-bacteria symbioses on leaves across 329 tree species spanning a latitudinal gradient. Our analysis revealed a predominance of host-specialized leaf bacteria. The degree of host specificity was negatively correlated with bacterial genome size and the local abundance of host plants. Additionally, we found an increased host specificity at lower latitudes, aligning with the high prevalence of small bacterial genomes and rare host species in the tropics. These findings underscore the importance of genome streamlining and host abundance in the evolution of host specificity in plant-associated bacteria along the latitudinal gradient.


Assuntos
Tamanho do Genoma , Especificidade de Hospedeiro , Folhas de Planta , Simbiose , Folhas de Planta/microbiologia , Bactérias/genética , Bactérias/classificação , Genoma Bacteriano , Árvores/microbiologia
9.
Sci Data ; 11(1): 673, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909040

RESUMO

Most phloem-feeding insects face nutritional deficiency and rely on their intracellular symbionts to provide nutrients, and most of endosymbiont genomes have undergone reduction. However, the study of genome reduction processes of endosymbionts has been constrained by the limited availability of genome data from different insect lineages. The obligate relationship between aphids and Buchnera aphidicola (hereafter Buchnera) makes them a classic model for studying insect-endosymbiont interaction. Here, we report 29 newly sequenced Buchnera genomes from 11 aphid subfamilies, and a comprehensive dataset based on 90 Buchnera genomes from 14 aphid subfamilies. The dataset shows a significant genomic difference of Buchnera among different aphid lineages. The dataset exhibits a more balanced distribution of Buchnera (from 14 aphid subfamilies) genome sizes, ranging from 400 kb to 600 kb, which can illustrate the genome reduction process of Buchnera. The new genome data provide valuable insights into the microevolutionary processes leading to genomic reduction of insect endosymbionts.


Assuntos
Afídeos , Buchnera , Genoma Bacteriano , Simbiose , Animais , Afídeos/microbiologia , Buchnera/genética , Tamanho do Genoma , Filogenia
10.
Genome Biol Evol ; 16(6)2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38753031

RESUMO

Genome size varies greatly across the tree of life and transposable elements are an important contributor to this variation. Among vertebrates, amphibians display the greatest variation in genome size, making them ideal models to explore the causes and consequences of genome size variation. However, high-quality genome assemblies for amphibians have, until recently, been rare. Here, we generate a high-quality genome assembly for the dyeing poison frog, Dendrobates tinctorius. We compare this assembly to publicly available frog genomes and find evidence for both large-scale conserved synteny and widespread rearrangements between frog lineages. Comparing conserved orthologs annotated in these genomes revealed a strong correlation between genome size and gene size. To explore the cause of gene-size variation, we quantified the location of transposable elements relative to gene features and find that the accumulation of transposable elements in introns has played an important role in the evolution of gene size in D. tinctorius, while estimates of insertion times suggest that many insertion events are recent and species-specific. Finally, we carry out population-scale mobile-element sequencing and show that the diversity and abundance of transposable elements in poison frog genomes can complicate genotyping from repetitive element sequence anchors. Our results show that transposable elements have clearly played an important role in the evolution of large genome size in D. tinctorius. Future studies are needed to fully understand the dynamics of transposable element evolution and to optimize primer or bait design for cost-effective population-level genotyping in species with large, repetitive genomes.


Assuntos
Anuros , Elementos de DNA Transponíveis , Evolução Molecular , Tamanho do Genoma , Genoma , Animais , Anuros/genética , Rãs Venenosas
11.
Nat Plants ; 10(6): 923-935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802561

RESUMO

The chloroplast genomes of most plants and algae contain a large inverted repeat (IR) region that separates two single-copy regions and harbours the ribosomal RNA operon. We have addressed the functional importance of the IR region by removing an entire copy of the 25.3-kb IR from the tobacco plastid genome. Using plastid transformation and subsequent selectable marker gene elimination, we precisely excised the IR, thus generating plants with a substantially reduced plastid genome size. We show that the lack of the IR results in a mildly reduced plastid ribosome number, suggesting a gene dosage benefit from the duplicated presence of the ribosomal RNA operon. Moreover, the IR deletion plants contain an increased number of plastid genomes, suggesting that genome copy number is regulated by measuring total plastid DNA content rather than by counting genomes. Together, our findings (1) demonstrate that the IR can enhance the translation capacity of the plastid, (2) reveal the relationship between genome size and genome copy number, and (3) provide a simplified plastid genome structure that will facilitate future synthetic biology applications.


Assuntos
Dosagem de Genes , Genomas de Plastídeos , Sequências Repetidas Invertidas , Nicotiana , Nicotiana/genética , Sequências Repetidas Invertidas/genética , Plastídeos/genética , Tamanho do Genoma , Variações do Número de Cópias de DNA , Genoma de Planta
12.
Am J Bot ; 111(5): e16332, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38762794

RESUMO

PREMISE: Apomixis in ferns is relatively common and obligatory. Sterile hybrids may restore fertility via apomixis at a cost of long-term genetic stagnation. In this study, we outlined apomixis as a possible temporary phase leading to sexuality and analyzed factors relating to transitioning to and away from apomixis, such as unreduced and reduced spore formation in apomict and apo-sex hybrid ferns. METHODS: We analyzed the genome size of 15 fern species or hybrids ("taxa") via flow cytometry. The number of reduced and unreduced gametophytes was established as a proxy for viable spore formation of either type. We also calculated the spore abortion ratio (sign of reduced spores) in several taxa, including the apo-sex hybrid Dryopteris × critica and its 16 apomictically formed offspring. RESULTS: Four of 15 sampled taxa yielded offspring variable in genome size. Specifically, each variable taxon formed one viable reduced plant among 12-451 sampled gametophytes per taxon. Thus, haploid spore formation in the studied apomicts was very rare but possible. Spore abortion analyses indicated gradually decreasing abortion (haploid spore formation) over time. In Dryopteris × critica, abortion decreased from 93.8% to mean 89.5% in one generation. CONCLUSIONS: Our results support apomixis as a transitionary phase toward sexuality. Newly formed apomicts hybridize with sexual relatives and continue to form haploid spores early on. Thus, they may get the genomic content necessary for regular meiosis and restore sexuality. If the missing relative goes extinct, the lineage gets locked into apomixis as may be the case with the Dryopteris affinis complex.


Assuntos
Apomixia , Gleiquênias , Tamanho do Genoma , Genoma de Planta , Esporos , Gleiquênias/genética , Gleiquênias/fisiologia , Apomixia/genética , Esporos/fisiologia , Esporos/genética , Hibridização Genética
13.
Mol Ecol Resour ; 24(5): e13966, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695851

RESUMO

Parasitic plants have a heterotrophic lifestyle, in which they withdraw all or part of their nutrients from their host through the haustorium. Despite the release of many draft genomes of parasitic plants, the genome evolution related to the parasitism feature of facultative parasites remains largely unknown. In this study, we present a high-quality chromosomal-level genome assembly for the facultative parasite Pedicularis kansuensis (Orobanchaceae), which invades both legume and grass host species in degraded grasslands on the Qinghai-Tibet Plateau. This species has the largest genome size compared with other parasitic species, and expansions of long terminal repeat retrotransposons accounting for 62.37% of the assembly greatly contributed to the genome size expansion of this species. A total of 42,782 genes were annotated, and the patterns of gene loss in P. kansuensis differed from other parasitic species. We also found many mobile mRNAs between P. kansuensis and one of its host species, but these mobile mRNAs could not compensate for the functional losses of missing genes in P. kansuensis. In addition, we identified nine horizontal gene transfer (HGT) events from rosids and monocots, as well as one single-gene duplication events from HGT genes, which differ distinctly from that of other parasitic species. Furthermore, we found evidence for HGT through transferring genomic fragments from phylogenetically remote host species. Taken together, these findings provide genomic insights into the evolution of facultative parasites and broaden our understanding of the diversified genome evolution in parasitic plants and the molecular mechanisms of plant parasitism.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma de Planta , Pedicularis , Genoma de Planta/genética , Pedicularis/genética , Tamanho do Genoma , Filogenia , Cromossomos de Plantas/genética , Retroelementos/genética , Tibet
14.
Environ Sci Pollut Res Int ; 31(23): 33960-33974, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693457

RESUMO

The quantity of DNA in angiosperms exhibits variation attributed to many external influences, such as environmental factors, geographical features, or stress factors, which exert constant selection pressure on organisms. Since invasive species possess adaptive capabilities to acclimate to novel environmental conditions, ragweed (Ambrosia artemisiifolia L.) was chosen as a subject for investigating their influence on genome size variation. Slovakia has diverse climatic conditions, suitable for testing the hypothesis that air temperature and precipitation, the main limiting factors of ragweed occurrence, would also have an impact on its genome size. Our results using flow cytometry confirmed this hypothesis and also found a significant association with geographical features such as latitude, altitude, and longitude. We can conclude that plants growing in colder environments farther from oceanic influences exhibit smaller DNA amounts, while optimal growth conditions result in a greater variability in genome size, reflecting the diminished effect of selection pressure.


Assuntos
Ambrosia , Tamanho do Genoma , Ambrosia/genética , Eslováquia , Genoma de Planta
15.
Sci Data ; 11(1): 526, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778063

RESUMO

Ficus species (Moraceae) play pivotal roles in tropical and subtropical ecosystems. Thriving across diverse habitats, from rainforests to deserts, they harbor a multitude of mutualistic and antagonistic interactions with insects, nematodes, and pathogens. Despite their ecological significance, knowledge about the genomic background of Ficus remains limited. In this study, we report a chromosome-level reference genome of F. hirta, with a total size of 297.27 Mb, containing 28,625 protein-coding genes and 44.67% repeat sequences. These findings illuminate the genetic basis of Ficus responses to environmental challenges, offering valuable genomic resources for understanding genome size, adaptive evolution, and co-evolution with natural enemies and mutualists within the genus.


Assuntos
Ficus , Genoma de Planta , Ficus/genética , Cromossomos de Plantas , Tamanho do Genoma
16.
Virology ; 595: 110090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718447

RESUMO

Nowadays finding the new antimicrobials is necessary due to the emerging of multidrug resistant strains. The present study aimed to isolate and characterize bacteriophages against S. aureus. Strains Huma and Simurgh were the two podovirus morphology phages which isolated and then characterized. Huma and Simurgh had a genome size of 16,853 and 17,245 bp, respectively and both were Rosenblumvirus with G + C content of 29%. No lysogeny-related genes, nor virulence genes were identified in their genomes. They were lytic only against two out of four S. aureus strains. They also were able to inhibit S. aureus for 8 h in-vitro. Both showed a rapid adsorption. Huma and Simurgh had the latent period of 80 and 60 m and the burst sizes of 45 and 40 PFU/ml and also, they showed very low cell toxicity of 1.23%-1.79% on HT-29 cells, respectively. Thus, they can be considered potential candidates for biocontrol applications.


Assuntos
Genoma Viral , Fagos de Staphylococcus , Staphylococcus aureus , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/fisiologia , Fagos de Staphylococcus/isolamento & purificação , Staphylococcus aureus/virologia , Staphylococcus aureus/genética , Humanos , Composição de Bases , Podoviridae/genética , Podoviridae/isolamento & purificação , Podoviridae/classificação , Podoviridae/fisiologia , Células HT29 , Tamanho do Genoma
17.
BMC Genomics ; 25(1): 511, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783171

RESUMO

BACKGROUND: Transposable elements (TEs) are mobile DNA sequences that propagate within genomes, occupying a significant portion of eukaryotic genomes and serving as a source of genetic variation and innovation. TEs can impact genome dynamics through their repetitive nature and mobility. Nematodes are incredibly versatile organisms, capable of thriving in a wide range of environments. The plant-parasitic nematodes are able to infect nearly all vascular plants, leading to significant crop losses and management expenses worldwide. It is worth noting that plant parasitism has evolved independently at least three times within this nematode group. Furthermore, the genome size of plant-parasitic nematodes can vary substantially, spanning from 41.5 Mbp to 235 Mbp. To investigate genome size variation and evolution in plant-parasitic nematodes, TE composition, diversity, and evolution were analysed in 26 plant-parasitic nematodes from 9 distinct genera in Clade IV. RESULTS: Interestingly, despite certain species lacking specific types of DNA transposons or retrotransposon superfamilies, they still exhibit a diverse range of TE content. Identification of species-specific TE repertoire in nematode genomes provides a deeper understanding of genome evolution in plant-parasitic nematodes. An intriguing observation is that plant-parasitic nematodes possess extensive DNA transposons and retrotransposon insertions, including recent sightings of LTR/Gypsy and LTR/Pao superfamilies. Among them, the Gypsy superfamilies were found to encode Aspartic proteases in the plant-parasitic nematodes. CONCLUSIONS: The study of the transposable element (TE) composition in plant-parasitic nematodes has yielded insightful discoveries. The findings revealed that certain species exhibit lineage-specific variations in their TE makeup. Discovering the species-specific TE repertoire in nematode genomes is a crucial element in understanding the evolution of genomes in plant-parasitic nematodes. It allows us to gain a deeper insight into the intricate workings of these organisms and their genetic makeup. With this knowledge, we are gaining a fundamental piece in the puzzle of understanding the evolution of these parasites. Moreover, recent transpositions have led to the acquisition of new TE superfamilies, especially Gypsy and Pao retrotransposons, further expanding the diversity of TEs in these nematodes. Significantly, the widely distributed Gypsy superfamily possesses proteases that are exclusively associated with parasitism during nematode-host interactions. These discoveries provide a deeper understanding of the TE landscape within plant-parasitic nematodes.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Variação Genética , Nematoides , Filogenia , Plantas , Animais , Elementos de DNA Transponíveis/genética , Nematoides/genética , Plantas/parasitologia , Plantas/genética , Retroelementos/genética , Tamanho do Genoma
18.
DNA Res ; 31(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38590243

RESUMO

Calophaca sinica is a rare plant endemic to northern China which belongs to the Fabaceae family and possesses rich nutritional value. To support the preservation of the genetic resources of this plant, we have successfully generated a high-quality genome of C. sinica (1.06 Gb). Notably, transposable elements (TEs) constituted ~73% of the genome, with long terminal repeat retrotransposons (LTR-RTs) dominating this group of elements (~54% of the genome). The average intron length of the C. sinica genome was noticeably longer than what has been observed for closely related species. The expansion of LTR-RTs and elongated introns emerged had the largest influence on the enlarged genome size of C. sinica in comparison to other Fabaceae species. The proliferation of TEs could be explained by certain modes of gene duplication, namely, whole genome duplication (WGD) and dispersed duplication (DSD). Gene family expansion, which was found to enhance genes associated with metabolism, genetic maintenance, and environmental stress resistance, was a result of transposed duplicated genes (TRD) and WGD. The presented genomic analysis sheds light on the genetic architecture of C. sinica, as well as provides a starting point for future evolutionary biology, ecology, and functional genomics studies centred around C. sinica and closely related species.


Assuntos
Genoma de Planta , Retroelementos , Fabaceae/genética , Cromossomos de Plantas , Duplicação Gênica , Tamanho do Genoma , Elementos de DNA Transponíveis , Evolução Molecular , Sequências Repetidas Terminais , Genômica , Íntrons , Filogenia
19.
Gene ; 8942024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38572145

RESUMO

The Lemon shark Negaprion brevirostris is an important species experiencing conservation issues that is in need of genomic resources. Herein, we conducted a genome survey sequencing in N. brevirostris and determined genome size, explored repetitive elements, assembled and annotated the 45S rRNA DNA operon, and assembled and described in detail the mitochondrial genome. Lastly, the phylogenetic position of N. brevirostris in the family Carcharhinidae was examined using translated protein coding genes. The estimated haploid genome size ranged between 2.29 and 2.58 Gbp using a k-mer analysis, which is slightly below the genome size estimated for other sharks belonging to the family Carcharhinidae. Using a k-mer analysis, approx. 64-71 % of the genome of N. brevirostris was composed of repetitive elements. A relatively large proportion of the 'repeatome' could not be annotated. Taking into account only annotated repetitive elements, Class I - Long Interspersed Nuclear Element (LINE) were the most abundant repetitive elements followed by Class I - Penelope and Satellite DNA. The nuclear ribosomal operon was fully assembled. The AT-rich complete mitochondrial genome was 16,703 bp long and encoded 13 protein coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Negaprion brevirostris is closely related to the genera Carcharhinus, Glyphis and Lamiopsis in the family Carcharinidae. This new genomic resources will aid with the development of conservation plans for this large coastal shark.


Assuntos
Genoma Mitocondrial , Tubarões , Animais , Tamanho do Genoma , Filogenia , DNA , Tubarões/genética
20.
BMC Plant Biol ; 24(1): 261, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594606

RESUMO

BACKGROUND: Rhubarb is one of common traditional Chinese medicine with a diverse array of therapeutic efficacies. Despite its widespread use, molecular research into rhubarb remains limited, constraining our comprehension of the geoherbalism. RESULTS: We assembled the genome of Rheum palmatum L., one of the source plants of rhubarb, to elucidate its genome evolution and unpack the biosynthetic pathways of its bioactive compounds using a combination of PacBio HiFi, Oxford Nanopore, Illumina, and Hi-C scaffolding approaches. Around 2.8 Gb genome was obtained after assembly with more than 99.9% sequences anchored to 11 pseudochromosomes (scaffold N50 = 259.19 Mb). Transposable elements (TE) with a continuous expansion of long terminal repeat retrotransposons (LTRs) is predominant in genome size, contributing to the genome expansion of R. palmatum. Totally 30,480 genes were predicted to be protein-coding genes with 473 significantly expanded gene families enriched in diverse pathways associated with high-altitude adaptation for this species. Two successive rounds of whole genome duplication event (WGD) shared by Fagopyrum tataricum and R. palmatum were confirmed. We also identified 54 genes involved in anthraquinone biosynthesis and other 97 genes entangled in flavonoid biosynthesis. Notably, RpALS emerged as a compelling candidate gene for the octaketide biosynthesis after the key residual screening. CONCLUSION: Overall, our findings offer not only an enhanced understanding of this remarkable medicinal plant but also pave the way for future innovations in its genetic breeding, molecular design, and functional genomic studies.


Assuntos
Rheum , Rheum/genética , Melhoramento Vegetal , Antraquinonas , Cromossomos , Tamanho do Genoma , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA