Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.921
Filtrar
1.
Stem Cell Res Ther ; 15(1): 195, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956738

RESUMO

BACKGROUND: Nowadays, companion and working dogs hold significant social and economic importance. Dry eye, also known as dry keratoconjunctivitis (KCS), a common disease in ophthalmology, can readily impact a dog's working capacity and lead to economic losses. Although there are several medications available for this disease, all of them only improve the symptoms on the surface of the eye, and they are irritating and not easy to use for long periods of time. Adipose-derived mesenchymal stem cells (ADMSC) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of ADMSC. Here, we aimed to use ADMSC overexpressing Secreted Protein Acidic and Rich in Cysteine (SPARC) to treat 0.25% benzalkonium chloride-treated dogs with dry eye to verify its efficacy. For in vitro validation, we induced corneal epithelial cell (HCECs) damage using 1 µg/mL benzalkonium chloride. METHODS: Fifteen male crossbred dogs were randomly divided into five groups: normal, dry eye self-healing control, cyclosporine-treated, ADMSC-CMV-treated and ADMSC-OESPARC-treated. HCECs were divided into four groups: normal control group, untreated model group, ADMSC-CMV supernatant culture group and ADMSC-OESRARC supernatant culture group. RESULTS: SPARC-modified ADMSC had the most significant effect on canine ocular surface inflammation, corneal injury, and tear recovery, and the addition of ADMSC-OESPARC cell supernatant also had a salvage effect on HCECs cellular damage, such as cell viability and cell proliferation ability. Moreover, analysis of the co-transcriptome sequencing data showed that SPARC could promote corneal epithelial cell repair by enhancing the in vitro viability, migration and proliferation and immunosuppression of ADMSC. CONCLUSION: The in vitro cell test and in vivo model totally suggest that the combination of SPARC and ADMSC has a promising future in novel dry eye therapy.


Assuntos
Compostos de Benzalcônio , Modelos Animais de Doenças , Síndromes do Olho Seco , Células-Tronco Mesenquimais , Osteonectina , Animais , Cães , Compostos de Benzalcônio/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Síndromes do Olho Seco/terapia , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Osteonectina/metabolismo , Osteonectina/genética , Masculino , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
2.
J Transl Med ; 22(1): 619, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961436

RESUMO

BACKGROUND: Carbohydrate antigen 125 (CA125) is a proteolytic fragment of MUC-16 that is increased in heart failure (HF) and associated with inflammation, fluid overload, and worse adverse events. Our main objective was to study the expression of CA125 on epicardium and its association with inflammation, adipogenesis, and fibrosis. METHODS: Epicardial fat biopsies and blood were obtained from 151 non-selected patients undergoing open heart surgery. Immunohistochemistry, ELISA, or real-time PCR were used for analyzing protein or mRNA expression levels of CA125 and markers of inflammatory cells, fibroblasts, and adipocytes. Epithelial or stromal cells from epicardium were isolated and cultured to identify CA125 and its association with the adipogenesis and fibrosis pathways, respectively. RESULTS: The median age was 71 (63-74) years, 106 patients (70%) were male, and 62 (41%) had an established diagnosis of HF before surgery. The slice of epicardial fat biopsy determined a positive and colorimetric staining on the epithelial layer after incubating with the CA125 M11 antibody, providing the first description of CA125 expression in the human epicardium. Epicardial CA125 showed a strong and positive correlation with markers of inflammation and fibrosis in the epicardial fat tissue while exhibiting a negative correlation with markers of the adipogenesis pathway. This relationship remained significant after adjusting for potential confounders such as a prior HF diagnosis and plasma CA125 levels. CONCLUSION: Epicardial cells express CA125, which is positively associated with inflammatory and fibroblast markers in epicardial adipose tissue. These results suggest that CA125 may be biologically involved in HF progression (transition from adipogenesis to fibrosis).


Assuntos
Tecido Adiposo , Biomarcadores , Antígeno Ca-125 , Fibrose , Inflamação , Pericárdio , Humanos , Pericárdio/patologia , Pericárdio/metabolismo , Masculino , Pessoa de Meia-Idade , Inflamação/patologia , Feminino , Idoso , Biomarcadores/metabolismo , Biomarcadores/sangue , Antígeno Ca-125/sangue , Antígeno Ca-125/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adipogenia , Tecido Adiposo Epicárdico
3.
J Transl Med ; 22(1): 623, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965596

RESUMO

BACKGROUND: Obesity is a worldwide epidemic characterized by adipose tissue (AT) inflammation. AT is also a source of extracellular vesicles (EVs) that have recently been implicated in disorders related to metabolic syndrome. However, our understanding of mechanistic aspect of obesity's impact on EV secretion from human AT remains limited. METHODS: We investigated EVs from human Simpson Golabi Behmel Syndrome (SGBS) adipocytes, and from AT as well as plasma of subjects undergoing bariatric surgery. SGBS cells were treated with TNFα, palmitic acid, and eicosapentaenoic acid. Various analyses, including nanoparticle tracking analysis, electron microscopy, high-resolution confocal microscopy, and gas chromatography-mass spectrometry, were utilized to study EVs. Plasma EVs were analyzed with imaging flow cytometry. RESULTS: EVs from mature SGBS cells differed significantly in size and quantity compared to preadipocytes, disagreeing with previous findings in mouse adipocytes and indicating that adipogenesis promotes EV secretion in human adipocytes. Inflammatory stimuli also induced EV secretion, and altered EV fatty acid (FA) profiles more than those of cells, suggesting the role of EVs as rapid responders to metabolic shifts. Visceral AT (VAT) exhibited higher EV secretion compared to subcutaneous AT (SAT), with VAT EV counts positively correlating with plasma triacylglycerol (TAG) levels. Notably, the plasma EVs of subjects with obesity contained a higher number of adiponectin-positive EVs than those of lean subjects, further demonstrating higher AT EV secretion in obesity. Moreover, plasma EV counts of people with obesity positively correlated with body mass index and TNF expression in SAT, connecting increased EV secretion with AT expansion and inflammation. Finally, EVs from SGBS adipocytes and AT contained TAGs, and EV secretion increased despite signs of less active lipolytic pathways, indicating that AT EVs could be involved in the mobilization of excess lipids into circulation. CONCLUSIONS: We are the first to provide detailed FA profiles of human AT EVs. We report that AT EV secretion increases in human obesity, implicating their role in TAG transport and association with adverse metabolic parameters, thereby emphasizing their role in metabolic disorders. These findings promote our understanding of the roles that EVs play in human AT biology and metabolic disorders.


Assuntos
Adipócitos , Tecido Adiposo , Vesículas Extracelulares , Inflamação , Obesidade , Humanos , Vesículas Extracelulares/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Adipócitos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Metabolismo dos Lipídeos , Feminino , Masculino , Adulto , Ácidos Graxos/metabolismo
4.
Front Endocrinol (Lausanne) ; 15: 1353087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978618

RESUMO

More than 619 million people in the world suffer from low back pain (LBP). As two potential inducers of LBP, intervertebral disc degeneration (IVDD) and fat infiltration of paraspinal muscles (PSMs) have attracted extensive attention in recent years. So far, only one review has been presented to summarize their relationship and relevant mechanisms. Nevertheless, it has several noticeable drawbacks, such as incomplete categorization and discussion, lack of practical proposals, etc. Consequently, this paper aims to systematically summarize and classify the interaction between IVDD and fat infiltration of PSMs, thus providing a one-stop search handbook for future studies. As a result, four mechanisms of IVDD leading to fat infiltration of PSMs and three mechanisms of fat infiltration in PSMs causing IVDD are thoroughly analyzed and summarized. The typical reseaches are tabulated and evaluated from four aspects, i.e., methods, conclusions, benefits, and drawbacks. We find that IVDD and fat infiltration of PSMs is a vicious cycle that can promote the occurrence and development of each other, ultimately leading to LBP and disability. Finally, eight perspectives are proposed for future in-depth research.


Assuntos
Tecido Adiposo , Degeneração do Disco Intervertebral , Dor Lombar , Vértebras Lombares , Músculos Paraespinais , Humanos , Músculos Paraespinais/patologia , Degeneração do Disco Intervertebral/patologia , Tecido Adiposo/patologia , Tecido Adiposo/metabolismo , Vértebras Lombares/patologia , Dor Lombar/patologia , Dor Lombar/etiologia
5.
Front Endocrinol (Lausanne) ; 15: 1379293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978626

RESUMO

Background: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder with wide-ranging metabolic implications, including obesity. RNA editing, a post-transcriptional modification, can fine-tune protein function and introduce heterogeneity. However, the role of RNA editing and its impact on adipose tissue function in PCOS remain poorly understood. Methods: This study aimed to comprehensively analyze RNA-editing events in abdominal and subcutaneous adipose tissue of PCOS patients and healthy controls using high-throughput whole-genome sequencing (WGS) and RNA sequencing. Results: Our results revealed that PCOS patients exhibited more RNA-editing sites, with adenosine-to-inosine (A-to-I) editing being prevalent. The expression of ADAR genes, responsible for A-to-I editing, was also higher in PCOS. Aberrant RNA-editing sites in PCOS adipose tissue was enriched in immune responses, and interleukin-12 biosynthetic process. Tumor necrosis factor (TNF) signaling, nuclear factor kappa B (NF-κB) signaling, Notch signaling, terminal uridylyl transferase 4 (TUT4), hook microtubule tethering protein 3 (HOOK3), and forkhead box O1 (FOXO1) were identified to be of significant differences. Differentially expressed genes (DEGs) in PCOS adipose tissue were enriched in immune responses compared with controls, and the DEGs between subcutaneous and abdominal adipose tissue were also enriched in immune responses suggesting the important role of subcutaneous adipose tissue. Furthermore, we identified the correlations between RNA editing levels and RNA expression levels of specific genes, such as ataxia-telangiectasia mutated (ATM) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) in inflammation pathways and ATM, TUT4, and YTH N6-methyladenosine RNA-binding protein C2 (YTHDC2) in oocyte development pathway. Conclusions: These findings suggest that RNA-editing dysregulation in PCOS adipose tissue may contribute to inflammatory dysregulations. Understanding the interplay between RNA editing and adipose tissue function may unveil potential therapeutic targets for PCOS management. However, further research and validation are required to fully elucidate the molecular mechanisms underlying these associations.


Assuntos
Tecido Adiposo , Obesidade , Síndrome do Ovário Policístico , Edição de RNA , Humanos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/imunologia , Síndrome do Ovário Policístico/patologia , Feminino , Obesidade/genética , Obesidade/metabolismo , Adulto , Tecido Adiposo/metabolismo , Estudos de Casos e Controles , Sequenciamento Completo do Genoma
6.
FASEB J ; 38(14): e23733, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38995329

RESUMO

High-quality fat (HQF) improves the survival rate of fat and volumetric filling compared to traditional Coleman fat. However, this HQF strategy inevitably leads to a significant amount of unused fat being wasted. "CEFFE" (cell-free fat extract) is an acellular aqueous-phase liquid, rich in bioactive proteins. The remaining fat from preparing HQF can be further processed into CEFFE to promote the survival of HQF. HQF was obtained and the remaining fat was processed into CEFFE, then HQF was transplanted subcutaneously in nude mice. Animal studies showed that CEFFE significantly improved the survival rate of HQF. Histological analysis revealed that CEFFE improved the survival rate of HQF, by enhancing cell proliferation activity, reducing apoptosis, increasing angiogenesis, and improving the inflammatory state. Under simulated anaerobic conditions, CEFFE also improved the viability of HQF. In vitro, studies demonstrated that CEFFE enhanced the survival rate of HQF through multiple mechanisms. Transcriptomic analysis and qPCR showed that CEFFE increased the expression of angiogenesis-related genes in ADSCs while enhancing their proliferation-related gene expression and suppressing the expression of three differentiation-related genes. Moreover, functional experiments demonstrated that CEFFE-induced ADSCs exhibited stronger proliferation and adipogenic differentiation abilities. Tube formation and migration assays revealed that CEFFE promoted tube formation and migration of HUVECs, indicating its inherent pro-angiogenic properties. CEFFE facilitated the development of M0 to M2 macrophages, suggesting its role in improving the inflammatory state. This innovative clinical strategy optimizes HQF transplantation strategy, minimizing fat wastage and enhancing the efficiency of fat utilization.


Assuntos
Proliferação de Células , Camundongos Nus , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Sobrevivência Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Masculino , Apoptose/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/citologia
7.
Cell Biochem Funct ; 42(5): e4089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978329

RESUMO

Adipose tissue in the obese state can lead to low-grade chronic inflammation while inducing or exacerbating obesity-related metabolic diseases and impairing overall health.T cells, which are essential immune cells similar to macrophages, are widely distributed in adipose tissue and perform their immunomodulatory function; they also cross-talk with other cells in the vascular stromal fraction. Based on a large number of studies, it has been found that N6 methyl adenine (m6A) is one of the most representative of epigenetic modifications, which affects the crosstalk between T cells, as well as other immune cells, in several ways and plays an important role in the development of adipose tissue inflammation and related metabolic diseases. In this review, we first provide an overview of the widespread presence of T cells in adipose tissue and summarize the key role of T cells in adipose tissue inflammation. Next, we explored the effects of m6A modifications on T cells in adipose tissue from the perspective of adipose tissue inflammation. Finally, we discuss the impact of m6a-regulated crosstalk between T cells and immune cells on the prospects for improving adipose tissue inflammation research, providing additional new ideas for the treatment of obesity.


Assuntos
Tecido Adiposo , Inflamação , Linfócitos T , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/imunologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Obesidade/metabolismo , Obesidade/patologia , Obesidade/imunologia , Epigênese Genética , Adenosina/metabolismo
8.
Sci Adv ; 10(28): eadn2831, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996032

RESUMO

Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.


Assuntos
Células-Tronco Mesenquimais , Proteoma , Proteômica , Análise de Célula Única , Humanos , Proteômica/métodos , Proteoma/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Análise de Célula Única/métodos , Tecido Adiposo/metabolismo , Transcriptoma , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Perfilação da Expressão Gênica
9.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000259

RESUMO

Molecular breeding accelerates animal breeding and improves efficiency by utilizing genetic mutations. Structural variations (SVs), a significant source of genetic mutations, have a greater impact on phenotypic variation than SNPs. Understanding SV functional mechanisms and obtaining precise information are crucial for molecular breeding. In this study, association analysis revealed significant correlations between 198-bp SVs in the GSTA2 promoter region and abdominal fat weight, intramuscular fat content, and subcutaneous fat thickness in chickens. High expression of GSTA2 in adipose tissue was positively correlated with the abdominal fat percentage, and different genotypes of GSTA2 exhibited varied expression patterns in the liver. The 198-bp SVs regulate GSTA2 expression by binding to different transcription factors. Overexpression of GSTA2 promoted preadipocyte proliferation and differentiation, while interference had the opposite effect. Mechanistically, the 198-bp fragment contains binding sites for transcription factors such as C/EBPα that regulate GSTA2 expression and fat synthesis. These SVs are significantly associated with chicken fat traits, positively influencing preadipocyte development by regulating cell proliferation and differentiation. Our work provides compelling evidence for the use of 198-bp SVs in the GSTA2 promoter region as molecular markers for poultry breeding and offers new insights into the pivotal role of the GSTA2 gene in fat generation.


Assuntos
Adipogenia , Galinhas , Glutationa Transferase , Regiões Promotoras Genéticas , Animais , Adipogenia/genética , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Tecido Adiposo/metabolismo
10.
Stem Cell Res Ther ; 15(1): 215, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020413

RESUMO

BACKGROUND: A favorable regenerative microenvironment is essential for peripheral nerve regeneration. Neural tissue-specific extracellular matrix (ECM) is a natural material that helps direct cell behavior and promote axon regeneration. Both bone marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived mesenchymal stem cells (ADSCs) transplantation are effective in repairing peripheral nerve injury (PNI). However, there is no study that characterizes the in vivo microenvironmental characteristics of these two MSCs for the early repair of PNI when combined with neural tissue-derived ECM materials, i.e., acellular nerve allograft (ANA). METHODS: In order to investigate biological characteristics, molecular mechanisms of early stage, and effectiveness of ADSCs- or BMSCs-injected into ANA for repairing PNI in vivo, a rat 10 mm long sciatic nerve defect model was used. We isolated primary BMSCs and ADSCs from bone marrow and adipose tissue, respectively. First, to investigate the in vivo response characteristics and underlying molecular mechanisms of ANA combined with BMSCs or ADSCs, eighty-four rats were randomly divided into three groups: ANA group, ANA+BMSC group, and ANA+ADSC group. We performed flow cytometry, RT-PCR, and immunofluorescence staining up to 4 weeks postoperatively. To further elucidate the underlying molecular mechanisms, changes in long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) were systematically investigated using whole transcriptome sequencing. We then constructed protein-protein interaction networks to find 10 top ranked hub genes among differentially expressed mRNAs. Second, in order to explore the effectiveness of BMSCs and ADSCs on neural tissue-derived ECM materials for repairing PNI, sixty-eight rats were randomized into four groups: ANA group, ANA+BMSC group, ANA+ADSC group, and AUTO group. In the ANA+BMSC and ANA+ADSC groups, ADSCs/BMSCs were equally injected along the long axis of the 10-mm ANA. Then, we performed histological and functional assessments up to 12 weeks postoperatively. RESULTS: The results of flow cytometry and RT-PCR showed that ANA combined with BMSCs exhibited more significant immunomodulatory effects, as evidenced by the up-regulation of interleukin (IL)-10, down-regulation of IL-1ß and tumor necrosis factor-alpha (TNF-α) expression, promotion of M1-type macrophage polarization to M2-type, and a significant increase in the number of regulatory T cells (Tregs). ANA combined with ADSCs exhibited more pronounced features of pro-myelination and angiogenesis, as evidenced by the up-regulation of myelin-associated protein gene (MBP and MPZ) and angiogenesis-related factors (TGF-ß, VEGF). Moreover, differentially expressed genes from whole transcriptome sequencing results further indicated that ANA loaded with BMSCs exhibited notable immunomodulatory effects and ANA loaded with ADSCs was more associated with angiogenesis, axonal growth, and myelin formation. Notably, ANA infused with BMSCs or ADSCs enhanced peripheral nerve regeneration and motor function recovery with no statistically significant differences. CONCLUSIONS: This study revealed that both ANA combined with BMSCs and ADSCs enhance peripheral nerve regeneration and motor function recovery, but their biological characteristics (mainly including immunomodulatory effects, pro-vascular regenerative effects, and pro-myelin regenerative effects) and underlying molecular mechanisms in the process of repairing PNI in vivo are different, providing new insights into MSC therapy for peripheral nerve injury and its clinical translation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Ratos Sprague-Dawley , Engenharia Tecidual , Animais , Ratos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Masculino , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo
11.
Stem Cell Res Ther ; 15(1): 209, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020442

RESUMO

BACKGROUND: Facial infiltrating lipomatosis is characterized by excessive growth of adipose tissue. Its etiology is associated with somatic phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) variants, but the specific mechanisms are not yet fully understood. METHODS: We collected facial adipose tissue from both FIL patients and non-FIL individuals, isolated the stromal vascular fraction (SVF) and performed single-cell transcriptome sequencing on these samples. RESULTS: We mapped out the cellular landscape within the SVF, with a specific focus on a deeper analysis of fibro-adipogenic precursor cells (FAPs). Our analysis revealed that FAPs from FIL patients (FIL-FAPs) significantly overexpressed FK506 binding protein 51 (FKBP5) compared to FAPs from individuals without FIL. Further experiments indicated that FKBP5 is regulated by the PI3K-AKT signaling pathway. The overactivation of this pathway led to an increase in FKBP5 expression. In vitro experiments demonstrated that FKBP5 promoted adipogenic differentiation of FAPs, a process that could be hindered by FKBP5 knockdown or inhibition. Additionally, in vivo assessments confirmed FKBP5's role in adipogenesis. CONCLUSIONS: These insights into the pathogenesis of FIL underscore FKBP5 as a promising target for developing non-surgical interventions to manage the excessive adipose tissue growth in FIL.


Assuntos
Tecido Adiposo , Análise de Célula Única , Proteínas de Ligação a Tacrolimo , Humanos , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Tecido Adiposo/metabolismo , Análise de Célula Única/métodos , Lipomatose/metabolismo , Lipomatose/patologia , Lipomatose/genética , Face , Feminino , Adipogenia , Masculino , Animais , Camundongos , Transdução de Sinais , Pessoa de Meia-Idade , Diferenciação Celular , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética
12.
Lipids Health Dis ; 23(1): 221, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039573

RESUMO

BACKGROUND: Compared with moderate-intensity continuous training (MICT), high-intensity interval training (HIIT) has at least a comparable effect on inhibiting an increase in fat. However, few studies have been conducted to examine the effects of detraining on body fat in rats fed a high-fat diet. The present study aimed to compare the effects of 10 weeks of HIIT or MICT as well as 6 weeks of detraining on body fat in rats fed a high-fat diet. METHODS: After being fed a high-fat diet for 8 weeks, 54 female rats were randomly assigned to six groups: (1) CON-10, sedentary control for 10 weeks; (2) MICT-10, 10 weeks of MICT; (3) HIIT-10, 10 weeks of HIIT; (4) CON-16, sedentary control for 16 weeks; (5) MICT-16, 10 weeks of MICT followed by 6 weeks of training cessation; and (6) HIIT-16, 10 weeks of HIIT followed by 6 weeks of training cessation. The training was performed 5 days/week. The subcutaneous adipose tissue (inguinal; SCAT), visceral adipose tissue (periuterine; VAT) and serum lipid profile were analysed after 10 or 16 weeks. Adipose tissue triglyceride lipase (ATGL) protein expression in VAT was assessed by western blotting. RESULTS: HIIT-10 and MICT-10 prevented the increase in SCAT, VAT and serum lipid levels seen in the CON group. During the 6-week detraining period, HIIT continued to prevent the increase in adipose tissue mass observed in the CON group, whereas MICT at least maintained this inhibition. The inhibition of fat mass increase was mainly the result of preventing adipocyte hypertrophy. The HIIT-10 and HIIT-16 groups showed the highest ATGL protein expression. CONCLUSIONS: HIIT has a comparable effect to MICT on inhibiting fat accumulation in female rats; however, the inhibition of SCAT and VAT increase by HIIT is superior to MICT after short-term training cessation.


Assuntos
Dieta Hiperlipídica , Treinamento Intervalado de Alta Intensidade , Condicionamento Físico Animal , Animais , Feminino , Treinamento Intervalado de Alta Intensidade/métodos , Dieta Hiperlipídica/efeitos adversos , Ratos , Gordura Intra-Abdominal/metabolismo , Lipase/metabolismo , Ratos Sprague-Dawley , Tecido Adiposo/metabolismo , Gordura Subcutânea/metabolismo , Aciltransferases
13.
Nutrients ; 16(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999741

RESUMO

BN-202M is derived from humans and consists of two strains, Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53. Body fat reduction effect and safety of BN-202M were assessed in overweight participants. A total of 150 participants were randomly assigned to the BN-202M and placebo groups at a 1:1 ratio. Dual-energy X-ray absorptiometry was used to objectively measure body fat. After 12 weeks of oral administration, the body fat percentage (-0.10 ± 1.32% vs. 0.48 ± 1.10%; p = 0.009) and body fat mass (-0.24 ± 1.19 kg vs. 0.23 ± 1.05 kg; p = 0.023) of the BN-202M group decreased significantly compared to those of the placebo group. The body weight (-0.58 kg, p = 0.004) and body mass index (BMI; -0.23, p = 0.003) was found to decrease significantly at 12 weeks in the BN-202M group, but not in the placebo group. Metabolome analysis revealed that ß-alanine, 3-aminoisobutyric acid, glutamic acid, and octopamine decreased in the weight-decreased BN-202M post-intake group. In the gut microbiota analysis, Akkermansia showed a statistically significant increase in the BN-202M group post-intake compared to the placebo group. No serious adverse events were observed in either group. These results suggest that BN-202M is safe and effective for reducing body fat and weight.


Assuntos
Tecido Adiposo , Sobrepeso , Probióticos , Humanos , Masculino , Feminino , Método Duplo-Cego , Probióticos/administração & dosagem , Adulto , Pessoa de Meia-Idade , Tecido Adiposo/metabolismo , Lacticaseibacillus paracasei , Índice de Massa Corporal , Lactobacillus plantarum , Absorciometria de Fóton
14.
Nutrients ; 16(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38999907

RESUMO

BACKGROUND: Obesity constitutes a public health problem worldwide and causes non-alcoholic fatty liver disease (MALFD), the leading cause of liver disease in developed countries, which progresses to liver cirrhosis and liver cancer. MAFLD is associated with obesity and can be evaluated by validated formulas to assess MAFLD risk using different parameters such as the body mass index (BMI) and waist circumference (WC). However, these parameters do not accurately measure body fat. As MAFLD is strongly associated with obesity, we hypothesize that measuring body and visceral fat by electrical bioimpedance is an efficient method to predict the risk of MAFLD. The objective of our work was to demonstrate that electrical bioimpedance is a more efficient method than the BMI or WC to predict an elevated risk of MAFLD. METHODS: A cross-sectional, descriptive study involving 8590 Spanish workers in the Balearic Islands was carried out. The study's sample of employees was drawn from those who underwent occupational medicine examinations between January 2019 and December 2020. Five MAFLD risk scales were determined for evaluating very high levels of body fat and visceral fat. The determination of body and visceral fat was performed using bioimpedanciometry. Student's t-test was employed to ascertain the mean and standard deviation of quantitative data. The chi-square test was used to find prevalences for qualitative variables, while ROC curves were used to define the cut-off points for body and visceral fat. The calculations included the area under the curve (AUC), the cut-off points along with their Youden index, sensitivity, and specificity. Correlation and concordance between the various scales were determined using Pearson's correlation index and Cohen's kappa, respectively. RESULTS: As both total body fat and visceral fat increase, the risk of MAFLD increases with a statistically significant result (p < 0.001), presenting a higher risk in men. The areas under the curve (AUC) of the five scales that assess overweight and obesity to determine the occurrence of high values of the different MAFLD risk scales were very high, most of them exceeding 0.9. These AUC values were higher for visceral and body fat than for the BMI or waist circumference. FLD-high presented the best results in men and women with the AUC at around 0.97, both for visceral fat and total body fat, with a high Youden index in all cases (women body fat = 0.830, visceral fat = 0.892; men body fat = 0.780, visceral fat = 0.881). CONCLUSIONS: In our study, all the overweight and obesity scales show a very good association with the scales assessing the risk of MAFLD. These values are higher for visceral and body fat than for waist circumference and the BMI. Both visceral fat and body fat are better associated than the BMI and waist circumference with MAFLD risk scales.


Assuntos
Tecido Adiposo , Impedância Elétrica , Gordura Intra-Abdominal , Hepatopatia Gordurosa não Alcoólica , Medição de Risco , Gordura Intra-Abdominal/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Espanha , Estudos Transversais , Medição de Risco/métodos , Valor Preditivo dos Testes , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Idoso
15.
Nutrients ; 16(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999918

RESUMO

This study aimed to investigate the therapeutic potential of Citrullus mucosospermus extract (CME) in counteracting adipogenesis and its associated metabolic disturbances in murine models. In vitro experiments utilizing 3T3-L1 preadipocytes revealed that CME potently inhibited adipocyte differentiation, as evidenced by a dose-dependent reduction in lipid droplet formation. Remarkably, CME also attenuated glucose uptake and intracellular triglyceride accumulation in fully differentiated adipocytes, suggesting its ability to modulate metabolic pathways in mature adipose cells. Translating these findings to an in vivo setting, we evaluated the effects of CME in C57BL/6N mice fed a high-fat diet (HFD) for 10 weeks. CME administration, concomitantly with the HFD, resulted in a significant attenuation of body weight gain compared to the HFD control group. Furthermore, CME treatment led to substantial reductions in liver weight, total fat mass, and deposits of visceral and retroperitoneal adipose tissue, underscoring its targeted impact on adipose expansion. Histological analyses revealed the remarkable effects of CME on hepatic steatosis. While the HFD group exhibited severe lipid accumulation within liver lobules, CME dose-dependently mitigated this pathology, with the highest dose virtually abolishing hepatic fat deposition. An examination of adipose tissue revealed a progressive reduction in adipocyte hypertrophy upon CME treatment, culminating in a near-normalization of adipocyte morphology at the highest dose. Notably, CME exhibited potent anti-inflammatory properties, significantly attenuating the upregulation of pro-inflammatory cytokines' mRNA levels (TNF-α, IL-1ß and IL-6) in the livers of HFD-fed mice. This suggests a potential mechanism through which CME may exert protective effects against inflammation associated with obesity and fatty liver disease.


Assuntos
Células 3T3-L1 , Adipogenia , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Extratos Vegetais , Aumento de Peso , Animais , Dieta Hiperlipídica/efeitos adversos , Extratos Vegetais/farmacologia , Camundongos , Aumento de Peso/efeitos dos fármacos , Masculino , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Obesidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo
16.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999932

RESUMO

The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.


Assuntos
Tecido Adiposo , Pulmão , Mycobacterium tuberculosis , Animais , Feminino , Masculino , Camundongos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Pulmão/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Tuberculose Pulmonar/microbiologia , Camundongos Transgênicos , Fatores Sexuais , Modelos Animais de Doenças , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Caracteres Sexuais , Camundongos Endogâmicos C57BL
17.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000134

RESUMO

Stem cells possess the ability to differentiate into different lineages and the ability to self-renew, thus representing an excellent tool for regenerative medicine. They can be isolated from different tissues, including the adipose tissue. Adipose tissue and human adipose-derived stem cells (hADSCs) are privileged candidates for regenerative medicine procedures or other plastic reconstructive surgeries. The cellular environment is able to influence the fate of stem cells residing in the tissue. In a previous study, we exposed hADSCs to an exhausted medium of a breast cancer cell line (MCF-7) recovered at different days (4, 7, and 10 days). In the same paper, we inferred that the medium was able to influence the behaviour of stem cells. Considering these results, in the present study, we evaluated the expression of the major genes related to adipogenic and osteogenic differentiation. To confirm the gene expression data, oil red and alizarin red colorimetric assays were performed. Lastly, we evaluated the expression of miRNAs influencing the differentiation process and the proliferation rate, maintaining a proliferative state. The data obtained confirmed that cells exposed to the medium maintained a stem and proliferative state that could lead to a risky proliferative phenotype.


Assuntos
Tecido Adiposo , Diferenciação Celular , Proliferação de Células , Osteogênese , Humanos , Diferenciação Celular/efeitos dos fármacos , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Adipogenia/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Meios de Cultura/farmacologia , Meios de Cultura/química
18.
Front Endocrinol (Lausanne) ; 15: 1404697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38982993

RESUMO

Adipose tissue, an indispensable organ, fulfils the pivotal role of energy storage and metabolism and is instrumental in maintaining the dynamic equilibrium of energy and health of the organism. Adipocyte hypertrophy and adipocyte hyperplasia (adipogenesis) are the two primary mechanisms of fat deposition. Mature adipocytes are obtained by differentiating mesenchymal stem cells into preadipocytes and redifferentiation. However, the mechanisms orchestrating adipogenesis remain unclear. Autophagy, an alternative cell death pathway that sustains intracellular energy homeostasis through the degradation of cellular components, is implicated in regulating adipogenesis. Furthermore, adipose tissue functions as an endocrine organ, producing various cytokines, and certain inflammatory factors, in turn, modulate autophagy and adipogenesis. Additionally, autophagy influences intracellular redox homeostasis by regulating reactive oxygen species, which play pivotal roles in adipogenesis. There is a growing interest in exploring the involvement of autophagy, inflammation, and oxidative stress in adipogenesis. The present manuscript reviews the impact of autophagy, oxidative stress, and inflammation on the regulation of adipogenesis and, for the first time, discusses their interactions during adipogenesis. An integrated analysis of the role of autophagy, inflammation and oxidative stress will contribute to elucidating the mechanisms of adipogenesis and expediting the exploration of molecular targets for treating obesity-related metabolic disorders.


Assuntos
Adipogenia , Autofagia , Inflamação , Estresse Oxidativo , Adipogenia/fisiologia , Humanos , Autofagia/fisiologia , Estresse Oxidativo/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Animais , Adipócitos/metabolismo , Adipócitos/patologia , Obesidade/metabolismo , Obesidade/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia
19.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38984977

RESUMO

Cholesteryl ester transfer protein (CETP) increases the atherosclerosis risk by lowering HDL-cholesterol levels. It also exhibits tissue-specific effects independent of HDL. However, sexual dimorphism of CETP effects remains largely unexplored. Here, we hypothesized that CETP impacts the perivascular adipose tissue (PVAT) phenotype and function in a sex-specific manner. PVAT function, gene and protein expression, and morphology were examined in male and female transgenic mice expressing human or simian CETP and their non-transgenic counterparts (NTg). PVAT exerted its anticontractile effect in aortas from NTg males, NTg females, and CETP females, but not in CETP males. CETP male PVAT had reduced NO levels, decreased eNOS and phospho-eNOS levels, oxidative stress, increased NOX1 and 2, and decreased SOD2 and 3 expressions. In contrast, CETP-expressing female PVAT displayed increased NO and phospho-eNOS levels with unchanged NOX expression. NOX inhibition and the antioxidant tempol restored PVAT anticontractile function in CETP males. Ex vivo estrogen treatment also restored PVAT function in CETP males. Moreover, CETP males, but not female PVAT, show increased inflammatory markers. PVAT lipid content increased in CETP males but decreased in CETP females, while PVAT cholesterol content increased in CETP females. CETP male PVAT exhibited elevated leptin and reduced Prdm16 (brown adipocyte marker) expression. These findings highlight CETP sex-specific impact on PVAT. In males, CETP impaired PVAT anticontractile function, accompanied by oxidative stress, inflammation, and whitening. Conversely, in females, CETP expression increased NO levels, induced an anti-inflammatory phenotype, and preserved the anticontractile function. This study reveals sex-specific vascular dysfunction mediated by CETP.


Assuntos
Tecido Adiposo , Proteínas de Transferência de Ésteres de Colesterol , Camundongos Transgênicos , Estresse Oxidativo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/genética , Animais , Masculino , Feminino , Camundongos , Tecido Adiposo/metabolismo , Humanos , Caracteres Sexuais , Óxido Nítrico/metabolismo
20.
Adipocyte ; 13(1): 2376571, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38989805

RESUMO

Dedifferentiated adipose tissue (DFAT) has been proposed as a promising source of patient-specific multipotent progenitor cells (MPPs). During induced dedifferentiation, adipocytes exhibit profound gene expression and cell morphology changes. However, dedifferentiation of post-mitotic cells is expected to enable proliferation, which is critical if enough MPPs are to be obtained. Here, lineage tracing was employed to quantify cell proliferation in mouse adipocytes subjected to a dedifferentiation-inducing protocol commonly used to obtain DFAT cells. No evidence of cell proliferation in adipocyte-derived cells was observed, in contrast to the robust proliferation of non-adipocyte cells present in adipose tissue. We conclude that proliferative MPPs derived using the ceiling culture method most likely arise from non-adipocyte cells in adipose tissue.


Assuntos
Adipócitos , Ciclo Celular , Desdiferenciação Celular , Proliferação de Células , Animais , Adipócitos/citologia , Adipócitos/metabolismo , Camundongos , Células Cultivadas , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA