Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.056
Filtrar
1.
J Environ Sci (China) ; 147: 165-178, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003037

RESUMO

In this study, two wheat-derived cadmium (Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions. Then, the impacts of the biochar (BC), M14+R27 (MR), and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing, heading, and mature stages of wheat plants under field-plot conditions. A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with the M14 or R27 treatment. The BC+MR treatment reduced the grain Cd content by 51.5%-67.7% and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75% in the rhizosphere soils compared with the BC or MR treatment. Compared with the BC or MR treatment, the relative abundances of the biomarkers associated with Gemmatimonas, Altererythrobacter, Gammaproteobacteria, Xanthomonadaceae, Phenylobacterium, and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents. In the BC+MR-treated root interior microbiome, the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor, while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor. Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes, leading to decreased wheat grain Cd uptake in the contaminated soil.


Assuntos
Cádmio , Carvão Vegetal , Microbiologia do Solo , Poluentes do Solo , Triticum , Triticum/metabolismo , Triticum/microbiologia , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Endófitos/fisiologia , Rizosfera , Solo/química , Biodegradação Ambiental , Microbiota/efeitos dos fármacos
2.
J Food Sci ; 89(7): 4298-4311, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957101

RESUMO

This study explored the mechanism of l-lysine intervention in wheat gluten protein (WG) gel formation under a microwave (MW) field. The results showed that the MW treatment had higher ζ-potential values at the same heating rate. After adding l-lysine, the solution conductivity and dielectric loss were significantly increased. Moreover, the WG gel strength enhanced 4.40% under the MW treatment. The Fourier spectra showed that the α-helix content was decreased 13.78% with the addition of lysine. The ultraviolet absorption spectra and fluorescence spectra indicated that MW irradiation impacted the interactions between WG molecules more effectively than the water bath heating, promoting the denaturation and unfolding of the protein structure. In addition, scanning electron microscopy analysis showed that the incorporation of lysine promoted an ordered network structure formation of the protein, which enhanced the gel properties. This indicated that the zwitterion of l-lysine played a regulatory role in the aggregation of proteins in the MW field.


Assuntos
Glutens , Lisina , Micro-Ondas , Triticum , Lisina/química , Triticum/química , Glutens/química , Agregados Proteicos , Proteínas de Plantas/química , Temperatura Alta , Géis/química
3.
PeerJ ; 12: e17587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952963

RESUMO

Watermelon is commonly affected by Fusarium wilt in a monoculture cropping system. Wheat intercropping alleviates the affection of Fusarium wilt of watermelon. The objective of this study was to determine the effects of wheat and watermelon intercropping on watermelon growth and Fusarium wilt. Our results showed that wheat and watermelon intercropping promoted growth, increased chlorophyll content, and photosynthesis of watermelon. Meanwhile, wheat and watermelon intercropping inhibited watermelon Fusarium wilt occurrence, decreased spore numbers, increased root vigor, increased antioxidant enzyme activities, and decreased malondialdehyde (MDA) content in watermelon roots. Additionally, wheat and watermelon intercropping enhanced the bacterial colonies and total microbes growth in soil, decreased fungi and Fusarium oxysporum f. sp. niveum (FON) colonies, and increased soil enzyme activities in watermelon rhizosphere soil. Our results indicated that wheat and watermelon intercropping enhanced watermelon growth and decreased the incidence of Fusarium wilt in watermelon. These effects could be due to intercropping inducing physiological changes, regulating soil enzyme activities, and/or modulating soil microbial communities.


Assuntos
Citrullus , Fusarium , Doenças das Plantas , Microbiologia do Solo , Triticum , Citrullus/microbiologia , Citrullus/crescimento & desenvolvimento , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento
4.
Sci Rep ; 14(1): 15114, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956155

RESUMO

Wheat straw returning is a common agronomic measure in the farmland. Understanding organic carbon transformation is of great significance for carbon budget under the premise of widespread distribution of cadmium (Cd) contaminated soils. An incubation experiment was conducted to assess the influence of Cd contamination on the decomposition and accumulation of total organic carbon (TOC) as well as the composition and abundance of bacterial communities in eight soil types with wheat straw addition. The results showed that inhibition of Cd contamination on microbially mediated organic carbon decomposition was affected by soil types. The lower cumulative C mineralization and higher TOC content could be observed in the acidic soils relative to that in the alkaline soils. The content of Cd in soil exhibits different effects on the inhibition in decomposition of TOC. The high dosage level of Cd had stronger inhibitory impact due to its high toxicity. The decomposition of TOC was restricted by a reduction in soil bacterial abundance and weakening of bacterial activities. Redundancy analysis (RDA) indicated that Proteobacteria and Gemmatimonadetes were abundant in alkaline Cd-contaminated soils with wheat straw addition, while Bacteroidetes dominated cumulative C mineralization in acidic Cd-contamination soils. Moreover, the abundance of predicted functional bacteria indicated that high-dose Cd-contamination and acid environment all inhibited the decomposition of TOC. The present study suggested that pH played an important role on carbon dynamics in the Cd-contaminated soils with wheat straw addition.


Assuntos
Cádmio , Carbono , Microbiologia do Solo , Poluentes do Solo , Solo , Triticum , Cádmio/metabolismo , Cádmio/análise , Triticum/metabolismo , Triticum/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Carbono/metabolismo , Carbono/análise , Solo/química , Bactérias/metabolismo , Biodegradação Ambiental , Concentração de Íons de Hidrogênio
5.
Commun Biol ; 7(1): 812, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965407

RESUMO

Wheat blast caused by Pyricularia oryzae pathotype Triticum is now becoming a very serious threat to global food security. Here, we report an essential pathogenicity factor of the wheat blast fungus that is recognized and may be targeted by a rice resistance gene. Map-based cloning of Pwt2 showed that its functional allele is the ACE1 secondary metabolite gene cluster of the wheat blast fungus required for its efficient penetration of wheat cell walls. ACE1 is required for the strong aggressiveness of Triticum, Eleusine, and Lolium pathotypes on their respective hosts, but not for that of Oryza and Setaria pathotypes on rice and foxtail millet, respectively. All ACE1 alleles found in wheat blast population are recognized by a rice resistance gene, Pi33, when introduced into rice blast isolates. ACE1 mutations for evading the recognition by Pi33 do not affect the aggressiveness of the rice blast fungus on rice but inevitably impair the aggressiveness of the wheat blast fungus on wheat. These results suggest that a blast resistance gene already defeated in rice may be revived as a durable resistance gene in wheat by targeting an Achilles heel of the wheat blast fungus.


Assuntos
Família Multigênica , Oryza , Doenças das Plantas , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , Oryza/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Resistência à Doença/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Metabolismo Secundário/genética
6.
Theor Appl Genet ; 137(8): 177, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972024

RESUMO

KEY MESSAGE: Underpinned natural variations and key genes associated with yield under different water regimes, and identified genomic signatures of genetic gain in the Indian wheat breeding program. A novel KASP marker for TKW under water stress was developed and validated. A comprehensive genome-wide association study was conducted on 300 spring wheat genotypes to elucidate the natural variations associated with grain yield and its eleven contributing traits under fully irrigated, restricted water, and simulated no water conditions. Utilizing the 35K Wheat Breeders' Array, we identified 1155 quantitative trait nucleotides (QTNs), with 207 QTNs exhibiting stability across diverse conditions. These QTNs were further delimited into 539 genomic regions using a genome-wide LD value of 3.0 Mbp, revealing pleiotropic control across traits and conditions. Sub-genome A was significantly associated with traits under irrigated conditions, while sub-genome B showed more QTNs under water stressed conditions. Favourable alleles with significantly associated QTNs were delineated, with a notable pyramiding effect for enhancing trait performance. Additionally, allele of only 921 QTNs significantly affected the population mean. Allele profiling highlighted C-306 as a most potential source of drought tolerance. Moreover, 762 genes overlapping significant QTNs were identified, narrowing down to 27 putative candidate genes overlapping 29 novel and functional SNPs expressing (≥ 0.5 tpm) relevance across various growth conditions. A new KASP assay was developed, targeting a gene TraesCS2A03G1123700 regulating thousand kernel weight under severe drought condition. Genomic selection models (GBLUP, BayesB, MxE, and R-Norm) demonstrated an average prediction accuracy of 0.06-0.58 across environments, indicating potential for trait selection. Retrospective analysis of the Indian wheat breeding program supported a genetic gain in GY at the rate of ca. 0.56% per breeding cycle, since 1960, supporting the identification of genomic signatures driving trait selection and genetic gain. These findings offer insight into improving the rate of genetic gain in wheat breeding programs globally.


Assuntos
Grão Comestível , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Água , Triticum/genética , Triticum/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Estudos de Associação Genética , Secas , Mapeamento Cromossômico/métodos , Desequilíbrio de Ligação , Alelos , Estudo de Associação Genômica Ampla , Índia
7.
Methods Mol Biol ; 2827: 243-266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985275

RESUMO

Doubled haploid (DH) techniques remain valuable tools for wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) genetic improvement, and DH populations are used extensively in breeding and research endeavors. Several techniques are available for DH production in wheat and barley. Here, we describe two simple, robust anther culture methods used to produce more than 15,000 DH wheat and barley lines annually in Australia.


Assuntos
Flores , Haploidia , Hordeum , Melhoramento Vegetal , Triticum , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/genética , Melhoramento Vegetal/métodos , Flores/crescimento & desenvolvimento , Flores/genética , Técnicas de Cultura de Tecidos/métodos
8.
Methods Mol Biol ; 2830: 35-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977566

RESUMO

Seed dormancy is an important trait in cereal breeding, as it prevents preharvest sprouting (PHS). Although seed dormancy is a multifactorial trait, seed color has been demonstrated to be a major dormancy-related factor controlled by few genes. The R-1 gene is a seed color regulator that encodes a MYB-type transcription factor in wheat. A set of genetic markers designed against R-1 can provide a powerful tool for swift wheat breeding. Depth of seed dormancy varies not only among lines but also during seed development in each line. In this chapter, we describe how developmental seeds can be collected to perform germination tests, how seed color can be observed after NaOH staining, and how to genotype wheat R-1 genes using multiplex PCR.


Assuntos
Germinação , Reação em Cadeia da Polimerase Multiplex , Dormência de Plantas , Sementes , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Dormência de Plantas/genética , Germinação/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Genótipo , Cor , Melhoramento Vegetal/métodos , Marcadores Genéticos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Methods Mol Biol ; 2830: 131-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977574

RESUMO

Seed dormancy genes typically suppress germination and cell division. Therefore, overexpressing these genes can negatively affect tissue culture, interfering with the generation of transgenic plants and thus hampering the analysis of gene function. Transient expression in target cells is a useful approach for studying the function of seed dormancy genes. Here, we describe a protocol for transiently expressing genes related to seed dormancy in the scutellum of immature wheat (Triticum aestivum) embryos to analyze their effects on germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação , Dormência de Plantas , Sementes , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Dormência de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Germinação/genética , Biolística/métodos , Plantas Geneticamente Modificadas/genética , Genes de Plantas , Expressão Gênica/genética
10.
Methods Mol Biol ; 2830: 121-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977573

RESUMO

Genome-wide association study (GWAS) is widely used to characterize genes or quantitative trait loci (QTLs) associated with preharvest sprouting and seed dormancy. GWAS can identify both previously discovered and novel QTLs across diverse genetic panels. The high-throughput SNP arrays or next-generation sequencing technologies have facilitated the identification of numerous genetic markers, thereby significantly enhancing the resolution of GWAS. Although various methods have been developed, the fundamental principles underlying these techniques remain constant. Here, we provide a basic technological flow to perform seed dormancy assay, followed by GWAS using population structure control, and compared it with previous identified QTLs and genes.


Assuntos
Estudo de Associação Genômica Ampla , Germinação , Dormência de Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Estudo de Associação Genômica Ampla/métodos , Triticum/genética , Triticum/crescimento & desenvolvimento , Germinação/genética , Dormência de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Fenótipo
11.
Methods Mol Biol ; 2830: 163-171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977577

RESUMO

Dependency on in vitro culture and regeneration limits the ability to use genome editing on elite wheat (Triticum aestivum L.) varieties. We recently developed an in planta particle bombardment (iPB) technique for gene editing in wheat that utilizes shoot apical meristems (SAMs) as a target tissue. Since the method does not require in vitro culture, it can therefore be used on recalcitrant varieties. In this chapter, we describe in detail the steps used in the iPB method. With this protocol, 3% to 5% of T0 plants grown from bombarded SAMs typically carry mutant alleles and approximately 1% to 2% of the T0 plants inherit mutant alleles in the next generation.


Assuntos
Edição de Genes , Dormência de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Edição de Genes/métodos , Dormência de Plantas/genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética , Meristema/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sistemas CRISPR-Cas
12.
Methods Mol Biol ; 2830: 175-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977578

RESUMO

Different methodologies have been applied for the selection of preharvest sprouting resistance in cereal breeding programs. We describe here a series of methods used in practical wheat breeding programs in Japan, including phenotyping based on germination score after artificial rain treatments and genotyping using DNA markers. These methods can be modified and applied to breeding programs in which preharvest sprouting is a problem during cereal cultivation.


Assuntos
Germinação , Fenótipo , Melhoramento Vegetal , Triticum , Marcadores Genéticos , Genótipo , Germinação/genética , Japão , Melhoramento Vegetal/métodos , Triticum/genética , Triticum/crescimento & desenvolvimento
13.
Methods Mol Biol ; 2830: 137-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977575

RESUMO

Knockout mutants provide definitive information about the functions of genes related to agronomic traits, including seed dormancy. However, it takes many years to produce knockout mutants using conventional techniques in polyploid plants such as hexaploid wheat. Genome editing with sequence-specific nucleases is a promising approach for obtaining knockout mutations in all targeted homoeologs of wheat simultaneously. Here, we describe a procedure to produce a triple recessive mutant in wheat via genome editing. This protocol covers the evaluation of gRNA and Agrobacterium-mediated transformation to obtain edited wheat seedlings.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Inativação de Genes , Dormência de Plantas , Triticum , Triticum/genética , Edição de Genes/métodos , Dormência de Plantas/genética , Técnicas de Inativação de Genes/métodos , Mutação , Plantas Geneticamente Modificadas/genética , Genoma de Planta , RNA Guia de Sistemas CRISPR-Cas/genética , Sementes/genética , Genes de Plantas , Agrobacterium/genética , Plântula/genética
14.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000431

RESUMO

Wheat allergy is a major type of food allergy with the potential for life-threatening anaphylactic reactions. Common wheat, Triticum aestivum (hexaploid, AABBDD genome), was developed using tetraploid wheat (AABB genome) and the ancient diploid wheat progenitor (DD genome)-Aegilops tauschii. The potential allergenicity of gluten from ancient diploid wheat is unknown. In this study, using a novel adjuvant-free gluten allergy mouse model, we tested the hypothesis that the glutenin extract from this ancient wheat progenitor will be intrinsically allergenic in this model. The ancient wheat was grown, and wheat berries were used to extract the glutenin for testing. A plant protein-free colony of Balb/c mice was established and used in this study. The intrinsic allergic sensitization potential of the glutenin was determined by measuring IgE response upon transdermal exposure without the use of an adjuvant. Clinical sensitization for eliciting systemic anaphylaxis (SA) was determined by quantifying the hypothermic shock response (HSR) and the mucosal mast cell response (MMCR) upon intraperitoneal injection. Glutenin extract elicited a robust and specific IgE response. Life-threatening SA associated and a significant MMCR were induced by the glutenin challenge. Furthermore, proteomic analysis of the spleen tissue revealed evidence of in vivo Th2 pathway activation. In addition, using a recently published fold-change analysis method, several immune markers positively and negatively associated with SA were identified. These results demonstrate for the first time that the glutenin from the ancient wheat progenitor is intrinsically allergenic, as it has the capacity to elicit clinical sensitization for anaphylaxis via activation of the Th2 pathway in vivo in mice.


Assuntos
Alérgenos , Anafilaxia , Glutens , Camundongos Endogâmicos BALB C , Células Th2 , Triticum , Hipersensibilidade a Trigo , Animais , Anafilaxia/imunologia , Células Th2/imunologia , Células Th2/metabolismo , Camundongos , Triticum/imunologia , Triticum/química , Glutens/imunologia , Hipersensibilidade a Trigo/imunologia , Alérgenos/imunologia , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Modelos Animais de Doenças , Feminino , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/efeitos dos fármacos , Proteômica/métodos
15.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001090

RESUMO

An electronic device based on the detection of volatile substances was developed in response to the need to distinguish between fungal infestations in food and was applied to wheat grains. The most common pathogens belong to the fungi of the genus Fusarium: F. avenaceum, F. langsethiae, F. poae, and F. sporotrichioides. The electronic nose prototype is a low-cost device based on commercially available TGS series sensors from Figaro Corp. Two types of gas sensors that respond to the perturbation are used to collect signals useful for discriminating between the samples under study. First, an electronic nose detects the transient response of the sensors to a change in operating conditions from clean air to the presence of the gas being measured. A simple gas chamber was used to create a sudden change in gas composition near the sensors. An inexpensive pneumatic system consisting of a pump and a carbon filter was used to supply the system with clean air. It was also used to clean the sensors between measurement cycles. The second function of the electronic nose is to detect the response of the sensor to temperature disturbances of the sensor heater in the presence of the gas to be measured. It has been shown that features extracted from the transient response of the sensor to perturbations by modulating the temperature of the sensor heater resulted in better classification performance than when the machine learning model was built from features extracted from the response of the sensor in the gas adsorption phase. By combining features from both phases of the sensor response, a further improvement in classification performance was achieved. The E-nose enabled the differentiation of F. poae from the other fungal species tested with excellent performance. The overall classification rate using the Support Vector Machine model reached 70 per cent between the four fungal categories tested.


Assuntos
Nariz Eletrônico , Fusarium , Triticum , Fusarium/isolamento & purificação , Fusarium/classificação , Triticum/microbiologia , Triticum/química , Grão Comestível/microbiologia , Grão Comestível/química , Compostos Orgânicos Voláteis/análise , Doenças das Plantas/microbiologia
16.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39001158

RESUMO

Accurate weed detection is essential for the precise control of weeds in wheat fields, but weeds and wheat are sheltered from each other, and there is no clear size specification, making it difficult to accurately detect weeds in wheat. To achieve the precise identification of weeds, wheat weed datasets were constructed, and a wheat field weed detection model, YOLOv8-MBM, based on improved YOLOv8s, was proposed. In this study, a lightweight visual converter (MobileViTv3) was introduced into the C2f module to enhance the detection accuracy of the model by integrating input, local (CNN), and global (ViT) features. Secondly, a bidirectional feature pyramid network (BiFPN) was introduced to enhance the performance of multi-scale feature fusion. Furthermore, to address the weak generalization and slow convergence speed of the CIoU loss function for detection tasks, the bounding box regression loss function (MPDIOU) was used instead of the CIoU loss function to improve the convergence speed of the model and further enhance the detection performance. Finally, the model performance was tested on the wheat weed datasets. The experiments show that the YOLOv8-MBM proposed in this paper is superior to Fast R-CNN, YOLOv3, YOLOv4-tiny, YOLOv5s, YOLOv7, YOLOv9, and other mainstream models in regards to detection performance. The accuracy of the improved model reaches 92.7%. Compared with the original YOLOv8s model, the precision, recall, mAP1, and mAP2 are increased by 10.6%, 8.9%, 9.7%, and 9.3%, respectively. In summary, the YOLOv8-MBM model successfully meets the requirements for accurate weed detection in wheat fields.


Assuntos
Plantas Daninhas , Triticum , Triticum/fisiologia , Plantas Daninhas/fisiologia , Redes Neurais de Computação , Algoritmos
17.
Mol Biol Rep ; 51(1): 791, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990430

RESUMO

BACKGROUND: Heat stress is a detrimental abiotic stress that limits the development of many plant species and is linked to a variety of cellular and physiological problems. Heat stress affects membrane fluidity, which leads to negative effects on cell permeability and ion transport. Research reveals that heat stress causes severe damage to cells and leads to rapid accumulation of reactive oxygen species (ROS), which could cause programmed cell death. METHODS AND RESULTS: This current study aimed to validate the role of Triticum aestivum Salt Stress Root Protein (TaSSRP) in plants' tolerance to heat stress by modulating its expression in tobacco plants. The Relative Water Content (RWC), total chlorophyll content, and Membrane Stability Index (MSI) of the seven distinct transgenic lines (T0 - 2, T0 - 3, T0 - 6, T0 - 8, T0 - 9, T0 - 11, and T0 - 13), increased in response to heat stress. Despite the fact that the same tendency was detected in wild-type (WT) plants, changes in physio-biochemical parameters were greater in transgenic lines than in WT plants. The expression analysis revealed that the transgene TaSSRP expressed from 1.00 to 1.809 folds in different lines in the transgenic tobacco plants. The gene TaSSRP offered resistance to heat stress in Nicotiana tabacum, according to the results of the study. CONCLUSION: These findings could help to improve our knowledge and understanding of the mechanism underlying thermotolerance in wheat, and the novel identified gene TaSSRP could be used in generating wheat varieties with enhanced tolerance to heat stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Triticum , Nicotiana/genética , Nicotiana/metabolismo , Triticum/genética , Triticum/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Térmico/genética , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Termotolerância/genética , Clorofila/metabolismo , Tolerância ao Sal/genética
18.
BMC Plant Biol ; 24(1): 682, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020304

RESUMO

BACKGROUND: Septoria tritici blotch (STB) is considered to be one of the most destructive foliar wheat diseases and is caused by Zymoseptoria tritici. The yield losses are severe and in Northwestern Europe can reach up to 50%. The efficacy of fungicides is diminishing due to changes in the genetic structure of the pathogen. Therefore, resistance breeding is the most effective strategy of disease management. Recently, genome-wide association studies (GWAS) have become more popular due to their robustness in dissecting complex traits, including STB resistance in wheat. This was made possible by the use of large mapping populations and new sequencing technologies. High-resolution mapping benefits from historical recombination and greater allele numbers in GWAS. RESULTS: In our study, 217 wheat genotypes of diverse origin were phenotyped against five Z. tritici isolates (IPO323, IPO88004, IPO92004, IPO86036 and St1-03) and genotyped on the DArTseq platform. In polytunnel tests two disease parameters were evaluated: the percentage of leaf area covered by necrotic lesions (NEC) and the percentage of leaf area covered by lesions bearing pycnidia (PYC). The disease escape parameters heading date (Hd) and plant height (Ht) were also measured. Pearson's correlation showed a positive effect between disease parameters, providing additional information. The Structure analysis indicated four subpopulations which included from 28 (subpopulation 2) to 79 genotypes (subpopulation 3). All of the subpopulations showed a relatively high degree of admixture, which ranged from 60% of genotypes with less than 80% of proportions of the genome attributed to assigned subpopulation for group 2 to 85% for group 4. Haplotype-based GWAS analysis allowed us to identify 27 haploblocks (HBs) significantly associated with analysed traits with a p-value above the genome-wide significance threshold (5%, which was -log10(p) > 3.64) and spread across the wheat genome. The explained phenotypic variation of identified significant HBs ranged from 0.2% to 21.5%. The results of the analysis showed that four haplotypes (HTs) associated with disease parameters cause a reduction in the level of leaf coverage by necrosis and pycnidia, namely: Chr3A_HB98_HT2, Chr5B_HB47_HT1, Chr7B_HB36_HT1 and Chr5D_HB10_HT3. CONCLUSIONS: GWAS analysis enabled us to identify four significant chromosomal regions associated with a reduction in STB disease parameters. The list of valuable HBs and wheat varieties possessing them provides promising material for further molecular analysis of resistance loci and development of breeding programmes.


Assuntos
Ascomicetos , Resistência à Doença , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Mapeamento Cromossômico , Fenótipo , Genoma de Planta
19.
BMC Plant Biol ; 24(1): 695, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044125

RESUMO

The bacterial blight of wheat is an important global disease causing a significant decline in crop yield. Nanotechnology offers a potential solution for managing plant diseases. Therefore, this research aimed to investigate the effectiveness of silver nanoparticles (AgNPs) in controlling bacterial blight in 27 locally grown wheat cultivars. The study examined the impact of AgNPs at three distinct time points: 1, 3, and 5 days after the onset of the disease. Biochemical assay revealed that one day after applying the disease stress, the Inia cultivar had the highest amount of soluble protein (55.60 µg.g-1FW) content in the treatment without AgNPs. The Azadi cultivar, without AgNPs treatment, had the lowest amount of soluble protein content (15.71 µg.g-1FW). The Tabasi cultivar had the highest activity of the superoxide dismutase (SOD) (61.62 mM.g-1FW) with the combination treatment of AgNPs. On the other hand, the Karchia cultivar had the lowest SOD activity (0.6 mM.g-1FW) in the treatment of disease without AgNPs. Furthermore, three days after the application of stress, the Mahdavi cultivar had the highest amount of soluble protein content (54.16 µg.g-1FW) in the treatment of disease without AgNPs. The Niknejad cultivar had the highest activity of the SOD (74.15 mM.g-1FW) with the combined treatment of the disease without AgNPs. The Kavir cultivar had the lowest SOD activity (1.95 mM.g-1FW) and the lowest peroxidase (POX) activity (0.241 mM g-1FW min-1) in the treatment of the disease with AgNPs. Five days after exposure to stress, the Mahooti cultivar had the highest SOD activity (88.12 mM.g-1FW) with the combined treatment of the disease with AgNPs, and the Karchia cultivar had the lowest SOD activity (2.39 mM.g-1FW) in the treatment of the disease with AgNPs. Further, the results indicated that exposure to AgNPs could improve the antioxidant properties of wheat seeds in blight-infected and disease-free conditions in some cultivars.


Assuntos
Nanopartículas Metálicas , Doenças das Plantas , Prata , Triticum , Triticum/microbiologia , Triticum/efeitos dos fármacos , Prata/farmacologia , Doenças das Plantas/microbiologia , Superóxido Dismutase/metabolismo , Proteínas de Plantas/metabolismo
20.
Theor Appl Genet ; 137(8): 191, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046492

RESUMO

KEY MESSAGE: Xinong 511, a new wheat-Thinopyrum ponticum variety with excellent fusarium head blight resistance, the QTLs were mapped to the wheat chromosomes 5B and 7A with named QFhb.nwafu-5B and QFhb.nwafu-7A, respectively. Novel Fusarium head blight (FHB) resistance germplasms and genes are valuable for wheat improvement and breeding efforts. Thinopyrum ponticum, a wild relative of common wheat, is a valuable germplasm of disease resistance for wheat improvement and breeding. Xinong 511 (XN511) is a high-quality wheat variety widely cultivated in the Yellow and Huai Rivers Valley of China with stable FHB-resistance. Through analysis of pedigree materials of the wheat cultivar XN511, we found that the genetic material and FHB resistance from Th. ponticum were transmitted to the introgression line, indicating that the FHB resistance in XN511 likely originates from Th. ponticum. To further explore the genetic basis of FHB resistance in XN511, QTL mapping was conducted using the RILs population of XN511 and the susceptible line Aikang 58 (AK58). Survey with makers closely-linked to Fhb1, Fhb2, Fhb4, Fhb5, and Fhb7, indicated that both XN511 and the susceptible lines do not contain these QTL. Using bulked segregant analysis RNA-seq (BSR-Seq) and newly developed allele-specific PCR (AS-PCR) markers, QTLs in XN511 were successfully located on wheat chromosomes 5B and 7A. These findings are significant for further understanding and utilizing FHB resistance genes in wheat improvement.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença , Fusarium , Doenças das Plantas , Locos de Características Quantitativas , Triticum , Fusarium/patogenicidade , Fusarium/fisiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Melhoramento Vegetal , Fenótipo , Marcadores Genéticos , Poaceae/genética , Poaceae/microbiologia , Ligação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA