Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.906
Filtrar
1.
PLoS One ; 19(5): e0300573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739594

RESUMO

The intercropping system is a promising approach to augmenting the soil nutrient status and promoting sustainable crop production. However, it is not known whether intercropping improves the soil phosphorus (P) status in alluvial soils with low P under subtropical climates. Over two growing seasons--2019-2020 and 2020-2021--two experimental fields were employed to explore the effect of durum wheat (Dw) and chickpea (Cp) cropping systems on the soil available P. A randomized complete block design was used in this experiment, with three blocks each divided into three plots. Each plot was used for one of the following three treatments with three replications: Dw monocrop (Dw-MC), Cp monocrop (Cp-MC), and Dw + Cp intercrop (CpDw-InC), with bulk soil (BS) used as a control. A reduction in the rhizosphere soil pH (-0.44 and -0.11 unit) was observed in the (Cp-MC) and (CpDw-InC) treatments over BS, occurring concomitantly with a significant increase in available P in the rhizosphere soil of around 28.45% for CpDw-InC and 24.9% for Cp-MC over BS. Conversely, the rhizosphere soil pH was significantly higher (+0.12 units) in the Dw-MC treatments. In addition, intercropping enhanced the soil microbial biomass P, with strong positive correlations observed between the biomass P and available P in the Cp-MC treatment, whereas this correlation was negative in the CpDw-InC and Dw-MC treatments. These findings suggested that Cp intercropped with Dw could be a viable approach in enhancing the available P through improved pH variation and biomass P when cultivated on alluvial soil under a subtropical climate.


Assuntos
Biomassa , Cicer , Fósforo , Solo , Triticum , Fósforo/análise , Fósforo/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Solo/química , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Agricultura/métodos , Rizosfera , Clima Tropical , Produtos Agrícolas/crescimento & desenvolvimento , Produção Agrícola/métodos , Concentração de Íons de Hidrogênio , Clima
2.
BMC Plant Biol ; 24(1): 427, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769501

RESUMO

BACKGROUND: Our meta-analysis examines the effects of melatonin on wheat under varying abiotic stress conditions, focusing on photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. We initially collected 177 publications addressing the impact of melatonin on wheat. After meticulous screening, 31 published studies were selected, encompassing 170 observations on photosynthetic parameters, 73 on chlorophyll fluorescence, 65 on leaf water status, 240 on photosynthetic pigments. RESULTS: The analysis revealed significant heterogeneity across studies (I² > 99.90%) for the aforementioned parameters and evidence of publication bias, emphasizing the complex interaction between melatonin application and plant physiological responses. Melatonin enhanced the overall response ratio (lnRR) for photosynthetic rates, stomatal conductance, transpiration rates, and fluorescence yields by 20.49, 22.39, 30.96, and 1.09%, respectively, compared to the control (no melatonin). The most notable effects were under controlled environmental conditions. Moreover, melatonin significantly improved leaf water content and reduced water potential, particularly under hydroponic conditions and varied abiotic stresses, highlighting its role in mitigating water stress. The analysis also revealed increases in chlorophyll pigments with soil drenching and foliar spray, and these were considered the effective application methods. Furthermore, melatonin influenced chlorophyll SPAD and intercellular CO2 concentrations, suggesting its capacity to optimize photosynthetic efficiency. CONCLUSIONS: This synthesis of meta-analysis confirms that melatonin significantly enhances wheat's resilience to abiotic stress by improving photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. Despite observed heterogeneity and publication bias, the consistent beneficial effects of melatonin, particularly under controlled conditions with specific application methods e.g. soil drenching and foliar spray, demonstrate its utility as a plant growth regulator for stress management. These findings encourage focused research and application strategies to maximize the benefits of melatonin in wheat farming, and thus contributing to sustainable agricultural practices.


Assuntos
Melatonina , Fotossíntese , Estresse Fisiológico , Triticum , Melatonina/farmacologia , Triticum/fisiologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia
3.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732273

RESUMO

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Assuntos
Secas , Melatonina , Raízes de Plantas , Salinidade , Plântula , Sementes , Triticum , Melatonina/farmacologia , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo , Água/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731798

RESUMO

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Assuntos
Afídeos , Triticum , Animais , Afídeos/fisiologia , Triticum/parasitologia , Triticum/genética , Triticum/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Adaptação Fisiológica , Doenças das Plantas/parasitologia , Regulação da Expressão Gênica de Plantas , Nicotiana/parasitologia , Nicotiana/genética , Ciclopentanos/metabolismo , Oxilipinas
5.
Planta ; 259(6): 151, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733553

RESUMO

MAIN CONCLUSION: The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Assuntos
Nitrogênio , Raízes de Plantas , Estresse Fisiológico , Tetraploidia , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Nitrogênio/metabolismo , Estresse Fisiológico/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Adaptação Fisiológica/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas
6.
J Agric Food Chem ; 72(20): 11759-11772, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738668

RESUMO

This study aimed to investigate alterations in gut microbiota and metabolites mediated by wheat-resistant starch and its repair of gut barrier dysfunction induced by a high-fat diet (HFD). Structural data revealed that chlorogenic acid (CA)/linoleic acid (LA) functioned through noncovalent interactions to form a more ordered structure and fortify antidigestibility in wheat starch (WS)-CA/LA complexes; the resistant starch (RS) contents of WS-CA, WS-LA, and WS-CA-LA complexes were 23.40 ± 1.56%, 21.25 ± 1.87%, and 35.47 ± 2.16%, respectively. Dietary intervention with WS-CA/LA complexes effectively suppressed detrimental alterations in colon tissue morphology induced by HFD and repaired the gut barrier in ZO-1 and MUC-2 levels. WS-CA/LA complexes could augment gut barrier-promoting microbes including Parabacteroides, Bacteroides, and Muribaculum, accompanied by an increase in short-chain fatty acids (SCFAs) and elevated expression of SCFA receptors. Moreover, WS-CA/LA complexes modulated secondary bile acid metabolism by decreasing taurochenodeoxycholic, cholic, and deoxycholic acids, leading to the activation of bile acid receptors. Collectively, this study offered guiding significance in the manufacture of functional diets for a weak gut barrier.


Assuntos
Ácido Clorogênico , Dieta Hiperlipídica , Microbioma Gastrointestinal , Ácido Linoleico , Camundongos Endogâmicos C57BL , Amido , Triticum , Ácido Clorogênico/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/química , Dieta Hiperlipídica/efeitos adversos , Triticum/química , Triticum/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Masculino , Camundongos , Amido/metabolismo , Amido/química , Ácido Linoleico/metabolismo , Ácido Linoleico/química , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Humanos , Ácidos Graxos Voláteis/metabolismo , Amido Resistente/metabolismo
7.
Sci Rep ; 14(1): 11050, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745054

RESUMO

Phosphorus (P) is a crucial macronutrient for plant growth and development. Basic metabolic processes regulate growth; however, the molecular detail of these pathways under low phosphorous (LP) in wheat is still unclear. This study aims to elucidate the varied regulatory pathways responses to LP stress in wheat genotypes. Phenotypic, physiological, and transcriptome analyses were conducted on Fielder (P efficient) and Ardito (P inefficient) wheat genotypes after four days of normal phosphorous (NP) and LP stress. In response to LP, Fielder outperformed Ardito, displaying higher chlorophyll content-SPAD values (13%), plant height (45%), stem diameter (12%), shoot dry weight (42%), and root biomass (75%). Root structure analysis revealed that Fielder had greater total root length (50%), surface area (56%), volume (15%), and diameter (4%) than Ardito under LP. These findings highlight Fielder's superior performance and adaptation to LP stress. Transcriptome analysis of wheat genotype roots identified 3029 differentially expressed genes (DEGs) in Fielder and 1430 in Ardito, highlighting LP-induced changes. Key DEGs include acid phosphatases (PAPs), phosphate transporters (PHT1 and PHO1), SPX, and transcription factors (MYB, bHLH, and WRKY). KEGG enrichment analysis revealed key pathways like plant hormones signal transduction, biosynthesis of secondary metabolites, and carbohydrate biosynthesis metabolism. This study unveils crucial genes and the intricate regulatory process in wheat's response to LP stress, offering genetic insights for enhancing plant P utilization efficiency.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Fósforo , Raízes de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Fósforo/deficiência , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo
8.
BMC Genomics ; 25(1): 474, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745148

RESUMO

BACKGROUND: Flowering time has an important effect on regional adaptation and yields for crops. The tyrosine kinase-like (TKL) gene family is widely existed and participates in many biological processes in plants. Furthermore, only few TKLs have been characterized functions in controlling flowering time in wheat. RESULTS: Here, we report that TaCTR1, a tyrosine kinase-like (TKL) gene, regulates flowering time in wheat. Based on identification and evolutionary analysis of TKL_CTR1-DRK-2 subfamily in 15 plants, we proposed an evolutionary model for TaCTR1, suggesting that occurrence of some exon fusion events during evolution. The overexpression of TaCTR1 caused early flowering time in transgenic lines. Transcriptomics analysis enabled identification of mass differential expression genes including plant hormone (ET, ABA, IAA, BR) signaling, flavonoid biosynthesis, phenolamides and antioxidant, and flowering-related genes in TaCTR1 overexpression transgenic lines compared with WT plants. qRT-PCR results showed that the expression levels of ethylene (ET) signal-related genes (ETR, EIN, ERF) and flowering-related genes (FT, PPD1, CO, PRR, PHY) were altered in TaCTR1-overexpressing wheat compared with WT plants. Metabonomics analysis showed that flavonoid contents were altered. CONCLUSIONS: Thus, the results show that TaCTR1 plays a positive role in controlling flowering time by activating various signaling pathways and regulating flowering-related genes, and will provide new insights on the mechanisms of wheat flowering regulation.


Assuntos
Evolução Molecular , Flores , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta
9.
Sci Rep ; 14(1): 11100, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750032

RESUMO

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Assuntos
Antioxidantes , Regulação da Expressão Gênica de Plantas , Extratos Vegetais , Tolerância ao Sal , Plântula , Triticum , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Tolerância ao Sal/genética , Tolerância ao Sal/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Extratos Vegetais/farmacologia , Gleiquênias/efeitos dos fármacos , Gleiquênias/genética , Gleiquênias/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Salinidade , Cloreto de Sódio/farmacologia , Estresse Oxidativo/efeitos dos fármacos
10.
PLoS One ; 19(5): e0300287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696388

RESUMO

The phosphorylation of eukaryotic translational initiation factors has been shown to play a significant role in controlling the synthesis of protein. Viral infection, environmental stress, and growth circumstances cause phosphorylation or dephosphorylation of plant initiation factors. Our findings indicate that casein kinase 2 can phosphorylate recombinant wheat eIFiso4E and eIFiso4G generated from E. coli in vitro. For wheat eIFiso4E, Ser-207 was found to be the in vitro phosphorylation site. eIFiso4E lacks an amino acid that can be phosphorylated at the position corresponding to Ser-209, the phosphorylation site in mammalian eIF4E, yet phosphorylation of eIFiso4E has effects on VPg binding affinity that are similar to those of phosphorylation of mammalian eIF4E. The addition of VPg and phosphorylated eIFiso4F to depleted wheat germ extract (WGE) leads to enhancement of translation of both uncapped and capped viral mRNA. The addition of PABP together with eIFiso4Fp and eIF4B to depleted WGE increases both uncapped and capped mRNA translation. However, it exhibits a translational advantage specifically for uncapped mRNA, implying that the phosphorylation of eIFiso4F hinders cap binding while promoting VPg binding, thereby facilitating uncapped translation. These findings indicate TEV virus mediates VPg-dependent translation by engaging a mechanism entailing phosphorylated eIFiso4Fp and PABP. To elucidate the molecular mechanisms underlying these observed effects, we studied the impact of PABP and/or eIF4B on the binding of VPg with eIFiso4Fp. The inclusion of PABP and eIF4B with eIFiso4Fp resulted in about 2-fold increase in affinity for VPg (Kd = 24 ± 1.7 nM), as compared to the affinity of eIFiso4Fp alone (Kd = 41.0 ± 3.1 nM). The interactions between VPg and eIFiso4Fp were determined to be both enthalpically and entropically favorable, with the enthalpic contribution accounting for 76-97% of the ΔG at 25°C, indicating a substantial role of hydrogen bonding in enhancing the stability of the complex. The binding of PABP to eIFiso4Fp·4B resulted in a conformational alteration, leading to a significant enhancement in the binding affinity to VPg. These observations suggest PABP enhances the affinity between eIFiso4Fp and VPg, leading to an overall conformational change that provides a stable platform for efficient viral translation.


Assuntos
Fatores de Iniciação em Eucariotos , Proteínas de Ligação a Poli(A) , Potyvirus , Ligação Proteica , Biossíntese de Proteínas , Triticum , Fosforilação , Potyvirus/metabolismo , Potyvirus/genética , Triticum/virologia , Triticum/metabolismo , Triticum/genética , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Caseína Quinase II/metabolismo , Caseína Quinase II/genética
11.
Physiol Plant ; 176(3): e14329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695156

RESUMO

Although tetraploid wheat has rich genetic variability for cultivar improvement, its physiological mechanisms associated with photosynthetic productivity and resilience under nitrogen (N) deficit stress have not been investigated. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese Spring (CS, hexaploid) as materials and investigated the differences in net photosynthetic rate (Pn), carboxylation capacity, electron transfer capacity, photosynthetic product output, and photosynthetic N allocation under normal N (CK) and low N (LN) through hydroponic experiments. Tetraploid emmer wheat (Kronos) had a stronger photosynthetic capacity than hexaploid wheat (YM25, CS) under low N stress, which mainly associated with the higher degree of PSII opening, electron transfer rate, Rubisco content and activity, ATP/ADP ratio, Rubisco activase (Rca) activity and Rubisco activation state, and more leaves N allocation to the photosynthetic apparatus, especially the proportion of N allocation to carboxylation under low N stress. Moreover, Kronos reduced the feedback inhibition of photosynthesis by sucrose accumulation through higher sucrose phosphate synthetase (SPS) activity and triose phosphate utilization rate (VTPU). Overall, Kronos could allocate more N to the photosynthetic components to improve Rubisco content and activity to maintain photosynthetic capacity under low N stress while enhancing triose phosphate output to reduce feedback inhibition of photosynthesis. This study reveals the physiological mechanisms of emmer wheat that maintain the photosynthetic capacity under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Assuntos
Nitrogênio , Fotossíntese , Ribulose-Bifosfato Carboxilase , Triticum , Fotossíntese/fisiologia , Triticum/fisiologia , Triticum/genética , Triticum/metabolismo , Nitrogênio/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Estresse Fisiológico , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Adaptação Fisiológica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética
12.
Physiol Plant ; 176(3): e14325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715548

RESUMO

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Assuntos
Bacillus , Frutanos , Doenças das Plantas , Solanum lycopersicum , Triticum , Frutanos/metabolismo , Triticum/microbiologia , Triticum/metabolismo , Triticum/imunologia , Triticum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Bacillus/fisiologia , Botrytis , Imunidade Vegetal , Resistência à Doença , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/imunologia , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Sementes/imunologia , Ascomicetos
13.
Carbohydr Polym ; 337: 122190, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710564

RESUMO

Starch structure is often characterized by the chain-length distribution (CLD) of the linear molecules formed by breaking each branch-point. More information can be obtained by expanding into a second dimension: in the present case, the total undebranched-molecule size. This enables answers to questions unobtainable by considering only one variable. The questions considered here are: (i) are the events independent which control total size and CLD, and (ii) do ultra-long amylopectin (AP) chains exist (these chains cannot be distinguished from amylose chains using simple size separation). This was applied here to characterize the structures of one normal (RS01) wheat and two high-amylose (AM) mutant wheats (an SBEIIa knockout and an SBEIIa and SBEIIb knockout). Absolute ethanol was used to precipitate collected fractions, then size-exclusion chromatography for total molecular size and for the size of branches. The SBEIIa and SBEIIb mutations significantly increased AM and IC contents and chain length. The 2D plots indicated the presence of small but significant amounts of long-chain amylopectin, and the asymmetry of these plots shows that the corresponding mechanisms share some causal effects. These results could be used to develop plants producing improved starches, because different ranges of the chain-length distribution contribute independently to functional properties.


Assuntos
Amilopectina , Amilose , Sintase do Amido , Triticum , Triticum/metabolismo , Triticum/química , Triticum/genética , Amilopectina/química , Amilopectina/biossíntese , Amilose/química , Amilose/biossíntese , Sintase do Amido/genética , Sintase do Amido/metabolismo , Sintase do Amido/química , Amido/química , Amido/biossíntese , Amido/metabolismo , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Metabolomics ; 20(3): 58, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773056

RESUMO

INTRODUCTION: Bio stimulants are substances and/or microorganisms that are used to improve plant growth and crop yields by modulating physiological processes and metabolism of plants. While research has primarily focused on the broad effects of bio stimulants in crops, understanding their cellular and molecular influences in plants, using metabolomic analysis, could elucidate their effectiveness and offer possibilities for fine-tuning their application. One such bio stimulant containing galacturonic acid as elicitor is used in agriculture to improve wheat vigor and strengthen resistance to lodging. OBJECTIVE: However, whether a metabolic response is evolved by plants treated with this bio stimulant and the manner in which the latter might regulate plant metabolism have not been studied. METHOD: Therefore, the present study used 1H-NMR and LC-MS to assess changes in primary and secondary metabolites in the roots, stems, and leaves of wheat (Triticum aestivum) treated with the bio stimulant. Orthogonal partial least squares discriminant analysis effectively distinguished between treated and control samples, confirming a metabolic response to treatment in the roots, stems, and leaves of wheat. RESULTS: Fold-change analysis indicated that treatment with the bio stimulation solution appeared to increase the levels of hydroxycinnamic acid amides, lignin, and flavonoid metabolism in different plant parts, potentially promoting root growth, implantation, and developmental cell wall maturation and lignification. CONCLUSION: These results demonstrate how non-targeted metabolomic approaches can be utilized to investigate and monitor the effects of new agroecological solutions based on systemic responses.


Assuntos
Metabolômica , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Metabolômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética/métodos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Espectrometria de Massa com Cromatografia Líquida
15.
Sci Total Environ ; 931: 172907, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703846

RESUMO

The presence of dissolved Fe(III) and Fe(III)-containing minerals has been found to alleviate cadmium (Cd) accumulation in wheat plants grown in Cd-contaminated soils, but the specific mechanism remains elusive. In this work, hydroponic experiments were conducted to dissect the mechanism for dissolved Fe(III) (0-2000 µmol L-1) to decrease Cd uptake of wheat plants and study the influence of Fe(III) concentration and Cd(II) pollution level (0-20 µmol L-1) on the Cd uptake process. The results indicated that dissolved Fe(III) significantly decreased Cd uptake through rhizosphere passivation, competitive absorption, and physiological regulation. The formation of poorly crystalline Fe(III) oxides facilitated the adsorption and immobilization of Cd(II) on the rhizoplane (over 80.4 %). In wheat rhizosphere, the content of CaCl2-extractable Cd decreased by 52.7 % when Fe(III) concentration was controlled at 2000 µmol L-1, and the presence of Fe(III) may reduce the formation of Cd(II)-organic acid complexes (including malic acid and succinic acid secreted by wheat roots), which could be attributed to competitive reactions. Down-regulation of Cd uptake genes (TaNramp5-a and TaNramp5-b) and transport genes (TaHMA3-a, TaHMA3-b and TaHMA2), along with up-regulation of the Cd efflux gene TaPDR8-4A7A, contributed much to the reduction of Cd accumulation in wheat plants in the presence of Fe(III). The inhibitory effect of Fe(III) on Cd uptake and transport in wheat plants declined with increasing Cd(II) concentration, particularly at 20 µmol L-1. This work provides important implications for remediating Cd-contaminated farmland soil and ensuring the safe production of wheat by using dissolved Fe(III) and Fe(III)-containing minerals.


Assuntos
Cádmio , Rizosfera , Poluentes do Solo , Triticum , Triticum/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Ferro/metabolismo , Compostos Férricos , Raízes de Plantas/metabolismo , Solo/química
16.
Sci Rep ; 14(1): 10940, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740888

RESUMO

Improving the baking quality is a primary challenge in the wheat flour production value chain, as baking quality represents a crucial factor in determining its overall value. In the present study, we conducted a comparative RNA-Seq analysis on the high baking quality mutant "O-64.1.10" genotype and its low baking quality wild type "Omid" cultivar to recognize potential genes associated with bread quality. The cDNA libraries were constructed from immature grains that were 15 days post-anthesis, with an average of 16.24 and 18.97 million paired-end short-read sequences in the mutant and wild-type, respectively. A total number of 733 transcripts with differential expression were identified, 585 genes up-regulated and 188 genes down-regulated in the "O-64.1.10" genotype compared to the "Omid". In addition, the families of HSF, bZIP, C2C2-Dof, B3-ARF, BES1, C3H, GRF, HB-HD-ZIP, PLATZ, MADS-MIKC, GARP-G2-like, NAC, OFP and TUB were appeared as the key transcription factors with specific expression in the "O-64.1.10" genotype. At the same time, pathways related to baking quality were identified through Kyoto Encyclopedia of Genes and Genomes. Collectively, we found that the endoplasmic network, metabolic pathways, secondary metabolite biosynthesis, hormone signaling pathway, B group vitamins, protein pathways, pathways associated with carbohydrate and fat metabolism, as well as the biosynthesis and metabolism of various amino acids, have a great deal of potential to play a significant role in the baking quality. Ultimately, the RNA-seq results were confirmed using quantitative Reverse Transcription PCR for some hub genes such as alpha-gliadin, low molecular weight glutenin subunit and terpene synthase (gibberellin) and as a resource for future study, 127 EST-SSR primers were generated using RNA-seq data.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , RNA-Seq , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , RNA-Seq/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Grão Comestível/genética , Grão Comestível/metabolismo , Culinária , Pão , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genótipo , Farinha
17.
BMC Plant Biol ; 24(1): 233, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561647

RESUMO

BACKGROUND: The study focuses on the global challenge of drought stress, which significantly impedes wheat production, a cornerstone of global food security. Drought stress disrupts cellular and physiological processes in wheat, leading to substantial yield losses, especially in arid and semi-arid regions. The research investigates the use of Spirulina platensis aqueous extract (SPAE) as a biostimulant to enhance the drought resistance of two Egyptian wheat cultivars, Sakha 95 (drought-tolerant) and Shandawel 1 (drought-sensitive). Each cultivar's grains were divided into four treatments: Cont, DS, SPAE-Cont, and SPAE + DS. Cont and DS grains were presoaked in distilled water for 18 h while SPAE-Cont and SPAE + DS were presoaked in 10% SPAE, and then all treatments were cultivated for 96 days in a semi-field experiment. During the heading stage (45 days: 66 days), two drought treatments, DS and SPAE + DS, were not irrigated. In contrast, the Cont and SPAE-Cont treatments were irrigated during the entire experiment period. At the end of the heading stage, agronomy, pigment fractions, gas exchange, and carbohydrate content parameters of the flag leaf were assessed. Also, at the harvest stage, yield attributes and biochemical aspects of yielded grains (total carbohydrates and proteins) were evaluated. RESULTS: The study demonstrated that SPAE treatments significantly enhanced the growth vigor, photosynthetic rate, and yield components of both wheat cultivars under standard and drought conditions. Specifically, SPAE treatments increased photosynthetic rate by up to 53.4%, number of spikes by 76.5%, and economic yield by 190% for the control and 153% for the drought-stressed cultivars pre-soaked in SPAE. Leaf agronomy, pigment fractions, gas exchange parameters, and carbohydrate content were positively influenced by SPAE treatments, suggesting their effectiveness in mitigating drought adverse effects, and improving wheat crop performance. CONCLUSION: The application of S. platensis aqueous extract appears to ameliorate the adverse effects of drought stress on wheat, enhancing the growth vigor, metabolism, and productivity of the cultivars studied. This indicates the potential of SPAE as an eco-friendly biostimulant for improving crop resilience, nutrition, and yield under various environmental challenges, thus contributing to global food security.


Assuntos
Secas , População da Ásia Setentrional , Spirulina , Triticum , Triticum/metabolismo , Água/metabolismo , Carboidratos , Grão Comestível/metabolismo
18.
Food Chem ; 448: 139117, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608398

RESUMO

This study aimed to determine the impact of supplementation with probiotically fermented chickpea (Cicer arietinum L) seeds on the quality parameters and functional characteristics of wheat bread. The addition of chickpea seeds caused significant changes in the chemical composition of the control wheat bread. The legume-supplemented products exhibited higher values of a* and b* color parameters and higher hardness after 24 h of storage than the control. The application of fermented or unfermented chickpeas contributed to an increase in total polyphenol and flavonoid contents, iron chelating capacity, and antioxidant properties of the final product. The variant containing unfermented seeds had the highest riboflavin content (29.53 ± 1.11 µg/100 g d.w.), Trolox equivalent antioxidant capacity (227.02 ± 7.29 µmol·L-1 TX/100 g d.w.), and free radical scavenging activity (71.37 ± 1.30 % DPPH inhibition). The results of this preliminary research have practical importance in the production of innovative bakery products with potential properties of functional food.


Assuntos
Antioxidantes , Pão , Cicer , Fermentação , Probióticos , Cicer/química , Pão/análise , Antioxidantes/química , Antioxidantes/análise , Probióticos/análise , Probióticos/química , Sementes/química , Flavonoides/análise , Flavonoides/química , Polifenóis/química , Polifenóis/análise , Alimento Funcional/análise , Triticum/química , Triticum/metabolismo
19.
Ying Yong Sheng Tai Xue Bao ; 35(3): 721-730, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646760

RESUMO

Metal nanoparticles could be accumulated in soils, which threatens the ecological stability of crops. Investigating the effects of cuprous oxide nanoparticles (Cu2O-NPs) on photosystem Ⅱ (PSⅡ) of wheat seedling leaves holds considerable importance in comprehending the implications of Cu2O-NPs on crop photosynthesis. Following the hydroponic method, we investigated the effects of 0, 10, 50, 100, and 200 mg·L-1 Cu2O-NPs on chlorophyll fluorescence induction kinetics and photosynthetic-related genes in wheat seedlings of "Zhoumai 18". The results showed that, with the increases of Cu2O-NPs concentrations, chlorophyll contents in wheat leaves decreased, and the standardization of the OJIP curve showed a clearly K-phase (ΔK>0). Cu2O-NPs stress increased the parameters of active PSⅡ reaction centers, including the absorption flux per active RC (ABS/RC), the trapping flux per active RC (TRo/RC), the electron transport flux per active RC (ETo/RC), and the dissipation flux per active RC (DIo/RC). Cu2O-NPs stress decreased the parameters of PSⅡ energy distribution ratio including the maximum quantum yield of PSⅡ (φPo), the quantum yield of electron transport from QA (φEo), and the probability that a trapped exciton moved an electron further than QA (Ψo), while increased the quantum ratio for heat dissipation (φDo). Moreover, there was a decrease in photosynthetic quantum yield Y(Ⅱ), photochemical quenching coefficient (qP), net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of leaves with the increases of Cu2O-NPs concentration. Under Cu2O-NPs stress, the expression levels of genes which included PSⅡ genes (PsbD, PsbP, Lhcb1), Rubisco large subunit genes (RbcL), cytochrome b6/f complex genes (PetD, Rieske), and ATP synthase genes (AtpA, AtpB, AtpE, AtpI) were downregulated. These results indicated that Cu2O-NPs stress altered the activity and structure of PSⅡ in wheat seedlings, affected the activity of PSⅡ reaction centers, performance parameters of PSⅡ donor and acceptor sides. PSⅡ related genes were downregulated and exhibited significant concentration effects.


Assuntos
Clorofila , Cobre , Nanopartículas Metálicas , Fotossíntese , Complexo de Proteína do Fotossistema II , Plântula , Triticum , Triticum/metabolismo , Triticum/genética , Cobre/toxicidade , Clorofila/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/efeitos dos fármacos , Fluorescência , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cinética
20.
Mol Biol Rep ; 51(1): 527, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637351

RESUMO

BACKGROUND: SnRK2 plays vital role in responding to adverse abiotic stimuli. The applicability of TaSnRK2.4 and TaSnRK2.9 was investigated to leverage the potential of these genes in indigenous wheat breeding programs. METHODS: Genetic diversity was assessed using pre-existing markers for TaSnRK2.4 and TaSnRK2.9. Furthermore, new markers were also developed to enhance their broader applicability. KASP markers were designed for TaSnRK2.4, while CAPS-based markers were tailored for TaSnRK2.9. RESULTS: Analysis revealed lack of polymorphism in TaSnRK2.4 among Pakistani wheat germplasm under study. To validate this finding, available gel-based markers for TaSnRK2.4 were employed, producing consistent results and offering limited potential for application in marker-assisted wheat breeding with Pakistani wheat material. For TaSnRK2.9-5A, CAPS2.9-5A-1 and CAPS2.9-5A-2 markers were designed to target SNP positions at 308 nt and 1700 nt revealing four distinct haplotypes. Association analysis highlighted the significance of Hap-5A-1 of TaSnRK2.9-5A, which exhibited association with an increased number of productive tillers (NPT), grains per spike (GPS), and reduced plant height (PH) under well-watered (WW) conditions. Moreover, it showed positive influence on NPT under WW conditions, GPS under water-limited (WL) conditions, and PH under both WW and WL conditions. High selection intensity observed for Hap-5A-1 underscores the valuable role it has played in Pakistani wheat breeding programs. Gene expression studies of TaSnRK2.9-5A revealed the involvement of this gene in response to PEG, NaCl, low temperature and ABA treatments. CONCLUSION: These findings propose that TaSnRK2.9 can be effectively employed for improving wheat through marker-assisted selection in wheat breeding efforts.


Assuntos
Resistência à Seca , Triticum , Triticum/metabolismo , Genótipo , Melhoramento Vegetal , Pão , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...