Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.009
Filtrar
1.
J Environ Sci (China) ; 147: 165-178, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003037

RESUMO

In this study, two wheat-derived cadmium (Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions. Then, the impacts of the biochar (BC), M14+R27 (MR), and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing, heading, and mature stages of wheat plants under field-plot conditions. A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with the M14 or R27 treatment. The BC+MR treatment reduced the grain Cd content by 51.5%-67.7% and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75% in the rhizosphere soils compared with the BC or MR treatment. Compared with the BC or MR treatment, the relative abundances of the biomarkers associated with Gemmatimonas, Altererythrobacter, Gammaproteobacteria, Xanthomonadaceae, Phenylobacterium, and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents. In the BC+MR-treated root interior microbiome, the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor, while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor. Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes, leading to decreased wheat grain Cd uptake in the contaminated soil.


Assuntos
Cádmio , Carvão Vegetal , Microbiologia do Solo , Poluentes do Solo , Triticum , Triticum/metabolismo , Triticum/microbiologia , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Endófitos/fisiologia , Rizosfera , Solo/química , Biodegradação Ambiental , Microbiota/efeitos dos fármacos
2.
Sci Rep ; 14(1): 15114, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956155

RESUMO

Wheat straw returning is a common agronomic measure in the farmland. Understanding organic carbon transformation is of great significance for carbon budget under the premise of widespread distribution of cadmium (Cd) contaminated soils. An incubation experiment was conducted to assess the influence of Cd contamination on the decomposition and accumulation of total organic carbon (TOC) as well as the composition and abundance of bacterial communities in eight soil types with wheat straw addition. The results showed that inhibition of Cd contamination on microbially mediated organic carbon decomposition was affected by soil types. The lower cumulative C mineralization and higher TOC content could be observed in the acidic soils relative to that in the alkaline soils. The content of Cd in soil exhibits different effects on the inhibition in decomposition of TOC. The high dosage level of Cd had stronger inhibitory impact due to its high toxicity. The decomposition of TOC was restricted by a reduction in soil bacterial abundance and weakening of bacterial activities. Redundancy analysis (RDA) indicated that Proteobacteria and Gemmatimonadetes were abundant in alkaline Cd-contaminated soils with wheat straw addition, while Bacteroidetes dominated cumulative C mineralization in acidic Cd-contamination soils. Moreover, the abundance of predicted functional bacteria indicated that high-dose Cd-contamination and acid environment all inhibited the decomposition of TOC. The present study suggested that pH played an important role on carbon dynamics in the Cd-contaminated soils with wheat straw addition.


Assuntos
Cádmio , Carbono , Microbiologia do Solo , Poluentes do Solo , Solo , Triticum , Cádmio/metabolismo , Cádmio/análise , Triticum/metabolismo , Triticum/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Carbono/metabolismo , Carbono/análise , Solo/química , Bactérias/metabolismo , Biodegradação Ambiental , Concentração de Íons de Hidrogênio
3.
Mol Biol Rep ; 51(1): 791, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990430

RESUMO

BACKGROUND: Heat stress is a detrimental abiotic stress that limits the development of many plant species and is linked to a variety of cellular and physiological problems. Heat stress affects membrane fluidity, which leads to negative effects on cell permeability and ion transport. Research reveals that heat stress causes severe damage to cells and leads to rapid accumulation of reactive oxygen species (ROS), which could cause programmed cell death. METHODS AND RESULTS: This current study aimed to validate the role of Triticum aestivum Salt Stress Root Protein (TaSSRP) in plants' tolerance to heat stress by modulating its expression in tobacco plants. The Relative Water Content (RWC), total chlorophyll content, and Membrane Stability Index (MSI) of the seven distinct transgenic lines (T0 - 2, T0 - 3, T0 - 6, T0 - 8, T0 - 9, T0 - 11, and T0 - 13), increased in response to heat stress. Despite the fact that the same tendency was detected in wild-type (WT) plants, changes in physio-biochemical parameters were greater in transgenic lines than in WT plants. The expression analysis revealed that the transgene TaSSRP expressed from 1.00 to 1.809 folds in different lines in the transgenic tobacco plants. The gene TaSSRP offered resistance to heat stress in Nicotiana tabacum, according to the results of the study. CONCLUSION: These findings could help to improve our knowledge and understanding of the mechanism underlying thermotolerance in wheat, and the novel identified gene TaSSRP could be used in generating wheat varieties with enhanced tolerance to heat stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Triticum , Nicotiana/genética , Nicotiana/metabolismo , Triticum/genética , Triticum/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Térmico/genética , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Termotolerância/genética , Clorofila/metabolismo , Tolerância ao Sal/genética
4.
PLoS One ; 19(7): e0307393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39038025

RESUMO

Global warming has led to the expansion of arid lands and more frequent droughts, which are the largest cause of global food production losses. In our previous study, we developed TaPYLox wheat overexpressing the plant hormone abscisic acid (ABA) receptor, which is important for the drought stress response in plants. TaPYLox showed resistance to drought stress and acquired water-saving traits that enable efficient grain production with less water use. In this study, we used TaPYLox to identify ABA-dependent and -independent metabolites in response to drought stress. We compared the variation of metabolites in wheat under well-watered, ABA treatment, and drought stress conditions using the ABA-sensitive TaPYLox line and control lines. The results showed that tagatose and L-serine were ABA-dependently regulated metabolites, because their stress-induced accumulation was increased by ABA treatment in TaPYLox. In contrast, L-valine, L-leucine, and DL-isoleucine, which are classified as branched chain amino acids, were not increased by ABA treatment in TaPYLox, suggesting that they are metabolites regulated in an ABA-independent manner. Interestingly, the accumulation of L-valine, L-leucine, and DL-isoleucine was suppressed in drought-tolerant TaPYLox under drought stress, suggesting that drought-tolerant wheat might be low in these amino acids. 3-dehydroshikimic acid and α-ketoglutaric acid were decreased by drought stress in an ABA-independent manner. In this study, we have succeeded in identifying metabolites that are regulated by drought stress in an ABA-dependent and -independent manner. The findings of this study should be useful for future breeding of drought-tolerant wheat.


Assuntos
Ácido Abscísico , Secas , Triticum , Triticum/metabolismo , Triticum/genética , Triticum/efeitos dos fármacos , Ácido Abscísico/metabolismo , Estresse Fisiológico , Metaboloma/efeitos dos fármacos , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas
5.
Methods Mol Biol ; 2824: 105-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039409

RESUMO

The Rift Valley fever virus is one of the bunyaviruses on the WHO's priority list of pathogens that may cause future pandemics. A better understanding of disease progression and viral pathogenesis is urgently needed to develop treatments. The non-structural proteins NSs and NSm of human pathogenic bunyaviruses represent promising therapeutic targets, as they are often key virulence factors. However, their function is still poorly understood, and their structure is yet unknown, mainly because no successful production of these highly complex proteins has been reported. Here we propose a powerful combination of wheat germ cell-free protein synthesis and NMR to study the structure of these proteins and in particular detail cell-free synthesis and lipid reconstitution methods that can be applied to complex membrane proteins.


Assuntos
Sistema Livre de Células , Humanos , Espectroscopia de Ressonância Magnética/métodos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Triticum/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Biossíntese de Proteínas , Vírus da Febre do Vale do Rift , Proteínas Virais/metabolismo , Proteínas Virais/química
6.
Bull Environ Contam Toxicol ; 113(1): 9, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981934

RESUMO

Cadmium (Cd) contamination of farmland soils leads to Cd accumulation in crops and reduced micronutrient uptake, posing grave risks to food safety. Herein, we investigated the enrichment and transportation patterns of Cd and trace elements in different parts of six wheat genotypes grown in weakly alkaline Cd-contaminated soils via pot experiments. The results revealed that the wheat grain variety with high Cd accumulation (Ningmai13) demonstrated a 1.94-fold increase compared to the variety with low accumulation (Yanong0428). The transfer factor of Cd from wheat straw to grain ranged from 0.319 to 0.761, while the transfer factor of Cd from root to straw ranged from 0.167 to 0.461. Furthermore, the concentrations of other metals in wheat grains followed the order of Zn > Mn > Fe > Cu. There was a significant positive correlation between Cd and Mn in grains, indicating a potential synergistic effect. Overall, this study provides valuable insights into the regulation of micronutrient intake to modulate Cd uptake in wheat.


Assuntos
Cádmio , Genótipo , Poluentes do Solo , Oligoelementos , Triticum , Triticum/metabolismo , Cádmio/metabolismo , Cádmio/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Oligoelementos/metabolismo , Oligoelementos/análise , Solo/química
7.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999986

RESUMO

Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants. In this study, the effects of basidiomycete metabolites on the morphophysiological and biochemical variables of wheat plants have been explored. Wheat (Triticum aestivum L. cv. Saratovskaya 29) seedlings were treated with extracellular polysaccharides (EPSs) isolated from the submerged cultures of twenty basidiomycete strains assigned to 13 species and 8 genera. The EPS solutions at final concentrations of 15, 40, and 80 mg/L were applied to wheat seedlings followed by their growth for 10 days. In the plant samples, the biomass, length of coleoptile, shoot and root, root number, rate of lipid peroxidation by malondialdehyde concentration, content of hydrogen peroxide, and total phenols were measured. The peroxidase and superoxide dismutase activity were defined. Most of the EPS preparations improved biomass yields, as well as the morphological parameters examined. EPS application enhanced the activities of antioxidant enzymes and decreased oxidative damage to lipids. Judging by its overall effect on the growth indices and redox system of wheat plants, an EPS concentration of 40 mg/L has been shown to be the most beneficial compared to other concentrations. This study proves that novel bioformulations based on mushroom EPSs can be developed and are effective for wheat growth and antioxidative response. Phytostimulating properties found for EPSs give grounds to consider extracellular metabolites produced in the xylotrophic basidiomycete cultures as an active component capable of inducing plant responses to stress.


Assuntos
Antioxidantes , Basidiomycota , Polissacarídeos Fúngicos , Triticum , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Basidiomycota/metabolismo , Antioxidantes/metabolismo , Polissacarídeos Fúngicos/metabolismo , Polissacarídeos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos , Biomassa , Malondialdeído/metabolismo , Estresse Oxidativo
8.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000115

RESUMO

Selenium (Se) is an essential trace element for humans. Low concentrations of Se can promote plant growth and development. Enhancing grain yield and crop Se content is significant, as major food crops generally have low Se content. Studies have shown that Se biofortification can significantly increase Se content in plant tissues. In this study, the genetic transformation of wheat was conducted to evaluate the agronomic traits of non-transgenic control and transgenic wheat before and after Se application. Se content, speciation, and transfer coefficients in wheat grains were detected. Molecular docking simulations and transcriptome data were utilized to explore the effects of selenium-binding protein-A TaSBP-A on wheat growth and grain Se accumulation and transport. The results showed that TaSBP-A gene overexpression significantly increased plant height (by 18.50%), number of spikelets (by 11.74%), and number of grains in a spike (by 35.66%) in wheat. Under normal growth conditions, Se content in transgenic wheat grains did not change significantly, but after applying sodium selenite, Se content in transgenic wheat grains significantly increased. Analysis of Se speciation revealed that organic forms of selenomethionine (SeMet) and selenocysteine (SeCys) predominated in both W48 and transgenic wheat grains. Moreover, TaSBP-A significantly increased the transfer coefficients of Se from solution to roots and from flag leaves to grains. Additionally, it was found that with the increase in TaSBP-A gene overexpression levels in transgenic wheat, the transfer coefficient of Se from flag leaves to grains also increased.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Proteínas de Ligação a Selênio , Selênio , Selenito de Sódio , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Proteínas de Ligação a Selênio/metabolismo , Proteínas de Ligação a Selênio/genética , Selênio/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selenito de Sódio/metabolismo , Grão Comestível/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/genética , Sementes/efeitos dos fármacos
9.
Sci Rep ; 14(1): 15985, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987560

RESUMO

Drought stress is a major abiotic stress affecting the performance of wheat (Triticum aestivum L.). The current study evaluated the effects of drought on wheat phenology, physiology, and biochemistry; and assessed the effectiveness of foliar-applied sulfhydryl thiourea to mitigate drought-induced oxidative stress. The treatments were: wheat varieties; V1 = Punjab-2011, V2 = Galaxy-2013, V3 = Ujala-2016, and V4 = Anaaj-2017, drought stress; D1 = control (80% field capacity [FC]) and D2 = drought stress (40% FC), at  the reproductive stage, and sulfhydryl thiourea (S) applications; S0 = control-no thiourea and S1 = foliar thiourea application @ 500 mg L-1. Results of this study indicated that growth parameters, including height, dry weight, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) were decreased under drought stress-40% FC, as compared to control-80% FC. Drought stress reduced the photosynthetic efficiency, water potential, transpiration rates, stomatal conductances, and relative water contents by 18, 17, 26, 29, and 55% in wheat varieties as compared to control. In addition, foliar chlorophyll a, and b contents were also lowered under drought stress in all wheat varieties due to an increase in malondialdehyde and electrolyte leakage. Interestingly, thiourea applications restored wheat growth and yield attributes by improving the production and activities of proline, antioxidants, and osmolytes under normal and drought stress as compared to control. Thiourea applications improved the osmolyte defense in wheat varieties as peroxidase, superoxide dismutase, catalase, proline, glycine betaine, and total phenolic were increased by 13, 20, 12, 17, 23, and 52%; while reducing the electrolyte leakage and malondialdehyde content by 49 and 32% as compared to control. Among the wheat varieties, Anaaj-2017 showed better resilience towards drought stress and also gave better response towards thiourea application based on morpho-physiological, biochemical, and yield attributes as compared to Punjab-2011, Galaxy-2013, and Ujala-2016. Eta-square values showed that thiourea applications, drought stress, and wheat varieties were key contributors to most of the parameters measured. In conclusion, the sulfhydryl thiourea applications improved the morpho-physiology, biochemical, and yield attributes of wheat varieties, thereby mitigating the adverse effects of drought.  Moving forward, detailed studies pertaining to the molecular and genetic mechanisms under sulfhydryl thiourea-induced drought stress tolerance are warranted.


Assuntos
Secas , Estresse Oxidativo , Folhas de Planta , Tioureia , Triticum , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/fisiologia , Tioureia/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Água/metabolismo , Estresse Fisiológico/efeitos dos fármacos
10.
Huan Jing Ke Xue ; 45(7): 4321-4331, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022977

RESUMO

Phosphorus-solubilizing microorganisms convert insoluble phosphorus in the soil into phosphorus that can be absorbed by plants. Soluble phosphate combines with heavy metals to form precipitation, reducing the content of available heavy metals, thereby reducing the absorption of heavy metals by crops, which plays an important role in the remediation of heavy metal-contaminated soil. The effects of the immobilization of Cd and Pb and the release of PO43- by the phosphorus-solubilizing bacterium Klebsiella sp. M2 were studied through solution culture experiments. In addition, the effects of strain M2 on wheat uptake of Cd and Pb and its microbiological mechanism were also explored through pot experiments. The results showed that strain M2 reduced the concentrations of Cd and Pb and increased the concentration of PO43- in the solution through cell wall adsorption and induced phosphate precipitation. Pot experiments showed that compared to those in the CK group and inactivated strain M2 group, inoculation with live strain M2 significantly increased (123%-293%) the contents of Ca2-P and Ca8-P in rhizosphere soil, decreased the content of DTPA-Cd (34.48%) and DTPA-Pb (36.72%) in wheat rhizosphere soil, and thus hindered the accumulation of Cd and Pb in wheat grains. Moreover, high-throughput sequencing results showed that strain M2 significantly increased the diversity of wheat rhizosphere bacterial communities; increased the relative abundance of Proteobacteria, Gemmatimonadetes, and Bacteroidota in wheat rhizosphere soil; and increased the proportion of heavy metal-immobilizing and phosphorus-promoting bacteria in wheat rhizosphere soil (mainly Sphingomonas, Nocardioides, Bacillus, Gemmatimonas, and Enterobacter). These bacterial genera played an important role in immobilizing heavy metals and preventing wheat from absorbing heavy metals. These results provide bacterial resources and theoretical basis for the bioremediation of heavy metal-contaminated farmland.


Assuntos
Biodegradação Ambiental , Cádmio , Klebsiella , Chumbo , Metais Pesados , Fósforo , Microbiologia do Solo , Poluentes do Solo , Triticum , Triticum/metabolismo , Triticum/microbiologia , Poluentes do Solo/metabolismo , Fósforo/metabolismo , Metais Pesados/metabolismo , Cádmio/metabolismo , Chumbo/metabolismo , Klebsiella/metabolismo , Rizosfera , Bactérias/metabolismo , Bactérias/classificação
11.
BMC Plant Biol ; 24(1): 668, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004715

RESUMO

BACKGROUND: Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT: Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS: By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.


Assuntos
Biofortificação , Desnutrição , Micronutrientes , Triticum , Triticum/metabolismo , Triticum/genética , Micronutrientes/metabolismo , Desnutrição/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Zinco/metabolismo , Valor Nutritivo
12.
Nat Plants ; 10(7): 1081-1090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965400

RESUMO

Increasing global food demand will require more food production1 without further exceeding the planetary boundaries2 while simultaneously adapting to climate change3. We used an ensemble of wheat simulation models with improved sink and source traits from the highest-yielding wheat genotypes4 to quantify potential yield gains and associated nitrogen requirements. This was explored for current and climate change scenarios across representative sites of major world wheat producing regions. The improved sink and source traits increased yield by 16% with current nitrogen fertilizer applications under both current climate and mid-century climate change scenarios. To achieve the full yield potential-a 52% increase in global average yield under a mid-century high warming climate scenario (RCP8.5), fertilizer use would need to increase fourfold over current use, which would unavoidably lead to higher environmental impacts from wheat production. Our results show the need to improve soil nitrogen availability and nitrogen use efficiency, along with yield potential.


Assuntos
Mudança Climática , Fertilizantes , Nitrogênio , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Fertilizantes/análise , Nitrogênio/metabolismo , Solo/química
13.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1283-1292, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886427

RESUMO

To investigate the effects of different irrigation and nitrogen application modes on nitrogen gaseous loss in winter wheat farmland, we conducted a field experiment at Changqing Irrigation Experiment Station in Shandong Province, with two irrigation levels (80%-90% θf(I1) and 70%-80% θf(I2)) and three nitrogen application levels (conventional nitrogen application of 240 kg·hm-2(N1), nitrogen reduction of 12.5% (N2), and nitrogen reduction of 25% (N3)). The results showed that ammonia volatilization and nitrous oxide emission rate peak appeared within 2-4 days after fertilization or irrigation. The ammonia volatilization rate during the chasing fertilizer period was significantly higher than that during the basal fertilizer period. Compared with other treatments, the ave-rage ammonia volatilization rate of I2N2 treatment during the chasing fertilizer period was reduced by 10.1%-51.6%, and the average nitrous oxide emission rate over the whole growth period was reduced by 15.4%-52.2%. The ammonia volatilization rate was significantly positively associated with surface soil pH value and ammonium nitrogen content, while the nitrous oxide emission rate was significantly positively associated with nitrate content in topsoil. The accumulation amount of soil ammonia volatilization and nitrous oxide emission ranged from 0.83-1.42 and 0.11-0.33 kg·hm-2, respectively. Moderate reduction of irrigation water and nitrogen input could effectively reduce cumulative amounts of ammonia volatilization and nitrous oxide emission from winter wheat farmland. The cumulative amounts of ammonia volatilization and nitrous oxide emission under I1N3 and I2N2 treatments were signi-ficantly lower than those under other treatments. The highest winter wheat yield (5615.6 kg·hm-2) appeared in I2N2 treatment. The irrigation water utilization efficiency of I2 was significantly higher than that of I1, with the maximum increase rate of 45.2%. Compared with N1 and N3 treatments, the maximum increase rate of nitrogen fertilizer productivity and agricultural utilization efficiency in N2 reached 15.2% and 31.8%, respectively. In conclusion, the treatment with 70%-80% θf irrigation level and 210 kg·hm-2 nitrogen input could effectively improve the utilization efficiency of irrigation water and nitrogen fertilization and reduce gaseous loss from winter wheat farmland.


Assuntos
Amônia , Fertilizantes , Nitrogênio , Óxido Nitroso , Triticum , Água , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Amônia/análise , Amônia/metabolismo , China , Água/análise , Água/metabolismo , Irrigação Agrícola/métodos , Estações do Ano , Biomassa , Solo/química
14.
Nat Commun ; 15(1): 5081, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876991

RESUMO

Stomatal movement is vital for plants to exchange gases and adaption to terrestrial habitats, which is regulated by environmental and phytohormonal signals. Here, we demonstrate that hydrogen peroxide (H2O2) is required for light-induced stomatal opening. H2O2 accumulates specifically in guard cells even when plants are under unstressed conditions. Reducing H2O2 content through chemical treatments or genetic manipulations results in impaired stomatal opening in response to light. This phenomenon is observed across different plant species, including lycopodium, fern, and monocotyledonous wheat. Additionally, we show that H2O2 induces the nuclear localization of KIN10 protein, the catalytic subunit of plant energy sensor SnRK1. The nuclear-localized KIN10 interacts with and phosphorylates the bZIP transcription factor bZIP30, leading to the formation of a heterodimer between bZIP30 and BRASSINAZOLE-RESISTANT1 (BZR1), the master regulator of brassinosteroid signaling. This heterodimer complex activates the expression of amylase, which enables guard cell starch degradation and promotes stomatal opening. Overall, these findings suggest that H2O2 plays a critical role in light-induced stomatal opening across different plant species.


Assuntos
Peróxido de Hidrogênio , Luz , Estômatos de Plantas , Estômatos de Plantas/efeitos da radiação , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Peróxido de Hidrogênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Triticum/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transdução de Sinais , Fosforilação , Gleiquênias/metabolismo , Gleiquênias/efeitos da radiação , Gleiquênias/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética
15.
BMC Plant Biol ; 24(1): 558, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877396

RESUMO

BACKGROUND: Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS: In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION: The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.


Assuntos
Morte Celular , Resistência à Doença , Doenças das Plantas , Reguladores de Crescimento de Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Regulação da Expressão Gênica de Plantas
16.
BMC Plant Biol ; 24(1): 568, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886651

RESUMO

BACKGROUND: Wheat grain development in the first few days after pollination determines the number of endosperm cells that influence grain yield potential and is susceptible to various environmental conditions, including high night temperatures (HNTs). Flag leaves and seed-associated bracts (glumes, awn, palea, and lemma) provide nutrients to the developing seed. However, the specific metabolic roles of these tissues are uncertain, especially their dynamics at different developmental stages and the time in a day. Tissue- and time-dependent metabolite profiling may hint at the metabolic roles of tissues and the mechanisms of how HNTs affect daytime metabolic status in early grain development. RESULTS: The metabolite profiles of flag leaf, bract, seed (embryo and endosperm), and entire spike were analyzed at 12:00 (day) and 23:00 (night) on 2, 4, and 6 days after fertilization under control and HNT conditions. The metabolite levels in flag leaves and bracts showed day/night oscillations, while their behaviors were distinct between the tissues. Some metabolites, such as sucrose, cellobiose, and succinic acid, showed contrasting oscillations in the two photosynthetic tissues. In contrast, seed metabolite levels differed due to the days after fertilization rather than the time in a day. The seed metabolite profile altered earlier in the HNT than in the control condition, likely associated with accelerated grain development caused by HNT. HNT also disrupted the day/night oscillation of sugar accumulation in flag leaves and bracts. CONCLUSIONS: These results highlight distinct metabolic roles of flag leaves and bracts during wheat early seed development. The seed metabolite levels are related to the developmental stages. The early metabolic events in the seeds and the disruption of the day/night metabolic cycle in photosynthetic tissues may partly explain the adverse effects of HNT on grain yield.


Assuntos
Folhas de Planta , Sementes , Triticum , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Metaboloma , Temperatura , Fotossíntese , Fatores de Tempo
17.
Plant Physiol Biochem ; 213: 108837, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878389

RESUMO

One of the most significant problems of the 21st century is the anthropogenic strain on the environment. The development of nanotechnology makes it possible to produce a variety of nanomaterials widely used in people's daily lives. However, nanomaterials can accumulate in ecosystems and spread through food chains. The environmental risks of nanoparticle proliferation are unclear. At the same time, certain nanoparticles act as adaptogens, improving plant tolerance to unfavorable stress factors. It is quite realistic to choose such experimental conditions, under which the effect on plant stress tolerance will be obvious and the accumulation of nanoparticles in tissues will be minimal. In this case, the main relevant factors are the type of nanoparticles, their concentration and their way of penetration into plants. We chose to study gold nanoparticles (Au-NPs), widely used in biomedical research. The concentration of Au-NPs was 20 µg/mL, which is considered safe for living organisms. The influence of Au-NPs on some physiological, biochemical and molecular characteristics of wheat plants during low temperature hardening was examined. The study of the photosynthetic apparatus and antioxidant system was the primary focus. The stimulating effect of Au-NPs on cold tolerance of wheat plants was shown. The results expand our knowledge of the processes by which nanoparticles impact plants and the potential applications of nanoparticles as adaptogens in science and agriculture.


Assuntos
Temperatura Baixa , Ouro , Nanopartículas Metálicas , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Ouro/química , Nanopartículas Metálicas/química , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
18.
Plant Physiol Biochem ; 213: 108853, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901231

RESUMO

To reduce heavy metal toxicity, like that induced by thallium (TI) in plants, growth-promoting bacteria (GPB) are a widely used to enhance plant tolerance to heavy metals toxicity. In our study, we characterized seven GPB and identified Actinoplanes spp., as the most active strain. This bioactive strain was then applied to alleviate TI phytotoxicity. TI contamination (20 mg/kg soil) induced TI bioaccumulation, reducing wheat growth (biomass accumulation) and photosynthesis rate, by about 55% and 90%, respectively. TI stress also induced oxidative damages as indicated by increased oxidative markers (H2O2 and lipid peroxidation (MDA)). Interestingly, Actinoplanes spp. significantly reduced growth inhibition and oxidative stress by 20% and 70%, respectively. As a defense mechanism to mitigate the TI toxicity, wheat plants showed improved antioxidant and detoxification defense including increased phenolic and tocopherols levels as well as peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) enzymes activities. These defense mechanisms were further induced by Actinoplanes spp. Additionally, Actinoplanes spp. increased the production of heavy metal-binding ligands such as metallothionein, phytochelatins, total glutathione, and glutathione S-transferase activity by 100%, 90%, 120%, and 100%, respectively. This study, therefore, elucidated the physiological and biochemical bases underlying TI-stress mitigation impact of Actinoplanes spp. Overall, Actinoplanes spp. holds promise as a valuable approach for ameliorating TI toxicity in plants. KEYBOARD: Actinobacteria, Bioaccumulation, Detoxification, Membrane damage, Redox regulation.


Assuntos
Estresse Oxidativo , Tálio , Triticum , Triticum/efeitos dos fármacos , Triticum/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tálio/metabolismo , Tálio/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , Catalase/metabolismo
19.
Sci Total Environ ; 945: 174030, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885698

RESUMO

Remediation strategies for metal(loid)-polluted soils vary among the wide range of approaches, including physical, chemical, and biological remediation, or combinations of these. In this study, we assessed the effectiveness of a set of soil remediation treatments based on the combined application of inorganic (marble sludge) and organic amendments (vermicompost, and dry olive residue [DOR] biotransformed by the saprobic fungi Coriolopsis rigida and Coprinellus radians) and inoculation with arbuscular mycorrhizal fungi (AMFs) (Rhizophagus irregularis and Rhizoglomus custos). The treatments were applied under greenhouse conditions to soil residually polluted by potentially toxic elements (PTEs) (Pb, As, Zn, Cu, Cd, and Sb), and wheat was grown in the amended soils to test the effectiveness of the treatments in reducing soil toxicity and improving soil conditions and plant performance. Therefore, we evaluated the influence of the treatments on the main soil properties and microbial activities, as well as on PTE availability and bioaccumulation in wheat plants. Overall, the results showed a positive influence of all treatments on the main soil properties. Treatments consisting of a combination of marble and organic amendments, especially biotransformed DOR amendments, showed the greatest effectiveness in improving the soil biological status, promoting plant growth and survival, and reducing PTE availability and plant uptake. Furthermore, AMF inoculation further enhanced the efficacy of DOR amendments by promoting the immobilization of PTEs in soil and stimulating the phytostabilization mechanisms induced by AMFs, thus playing an important bioprotective role in plants. Therefore, our results highlight that biotransformed DOR may represent an efficient product for use as a soil organic amendment when remediating metal(loid)-polluted soils, and that its application in combination with AMFs may represent a promising sustainable bioremediation strategy for recovering soil functions and reducing toxicity in polluted areas.


Assuntos
Biodegradação Ambiental , Micorrizas , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Micorrizas/fisiologia , Micorrizas/metabolismo , Solo/química , Metais Pesados/metabolismo , Triticum/metabolismo , Simbiose
20.
Sci Total Environ ; 945: 174032, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885714

RESUMO

Microbial inoculation is an important strategy to reduce the supply of heavy metals (HMs) in soil-crop systems. However, the mechanisms of microbial inoculation for the availability of HMs in soil and their accumulation/transfer in crops remain unclear. Here, the inhibitory effect of inoculation with Bacillus thuringiensis on the migration and accumulation of Pb/Cd in the soil-wheat system during the whole growth period was investigated by pot experiments. The results showed that inoculation with Bacillus thuringiensis increased soil pH and available nutrients (including carbon, nitrogen, and phosphorus), and enhanced the activities of nutrient-acquiring enzymes. Dominance analysis showed that dissolved organic matter (DOM) is the key factor affecting the availability of HMs. The content of colored spectral clusters and humification characteristics of DOM were significantly improved by inoculation, which is conducive to reducing the availability of Pb/Cd, especially during the flowering stage, the decrease was 12.8 %. Inoculation decreased Pb/Cd accumulation in the shoot and the transfer from root to shoot, with the greatest decreases at the jointing and seedling stages (27.0-34.1 % and 6.9-11.8 %), respectively. At the maturity stage, inoculation reduced the Pb/Cd accumulation in grain (12.9-14.7 %) and human health risk (4.1-13.2 %). The results of Pearson correlation analysis showed that the availability of Pb/Cd was positively correlated with the humification of DOM. Least square path model analysis showed that Bacillus thuringiensis could significantly reduce Pb/Cd accumulation in the grain and human health risks by regulating DOM spectral characteristics, the availability of HMs in soil and metals accumulation/transport in wheat at different growth stages. This study revealed the inhibition mechanism of Bacillus thuringiensis on migration of Pb/Cd in a soil-wheat system from a viewpoint of a full life cycle, which offers a valuable reference for the in-situ remediation of HM-contaminated soil and the safe production of food crops in field.


Assuntos
Bacillus thuringiensis , Cádmio , Chumbo , Poluentes do Solo , Solo , Triticum , Bacillus thuringiensis/fisiologia , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Cádmio/metabolismo , Chumbo/metabolismo , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA