Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.498
Filtrar
1.
PLoS One ; 15(8): e0237536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790719

RESUMO

Melatonin is effective in enhancing various abiotic stress resistances of plants. However, its underlying mechanisms in drought-resistance in winter wheat (Triticum aestivum L.) is not clear. The goal of this work was to investigate the effect of melatonin on seed germination and to evaluate leaf antioxidant physiology for two wheat varieties. Experiments included 20% PEG, melatonin plus 20% PEG and a control using two contrasting wheat varieties (JM22- drought sensitive and HG35- drought resistant). Melatonin levels were 0, 1, 10, 100 and 300 µmol L-1. Results revealed that 300 µmol L-1 of melatonin alleviated the negative effect of water stress on germination and increased radicle length, radicle number, and plumule length of the germinated seeds. Principal component analysis showed a significant change in amino acid content during germination and this change was dependent on melatonin concentration and the variety. Lysine (Lys) content in wheat seeds under the PEG plus 300 µmol L-1 melatonin treatment increased compared with that of the seeds under PEG alone. There was a significant and positive correlation between Lys content and morphological index of germination. During seedling growth, soluble protein was involved in osmotic adjustment and superoxide dismutase (SOD) activity was increased to mitigate the damage in the cytomembrane of JM 22 leaf under 300 µmol L-1 melatonin plus PEG treatment. The effect of melatonin was dependent on SOD activity increasing significantly for HG35-a drought resistant variety. The results of this work lays a foundation for further studies to determine if melatonin can be economically used to mitigate the impact of dry planting conditions on wheat productivity in North China Plain.


Assuntos
Antioxidantes/farmacologia , Germinação/efeitos dos fármacos , Melatonina/farmacologia , Polietilenoglicóis/toxicidade , Sementes/efeitos dos fármacos , Estresse Fisiológico , Triticum/efeitos dos fármacos , Secas , Osmose , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
2.
Ecotoxicol Environ Saf ; 204: 111030, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32750587

RESUMO

This study examined the effect of Red-S3B textile dye on soil microbial activities, uptake of the dye by wheat plants and growth on the dye-contaminated soil. Moreover, pressmud (PM) application was investigated for its alleviative effect on wheat yield and dye uptake by plants. Preliminarily, soil was spiked with a wide concentration range (0, 100, 250, 500, 750 and 1000 mg kg-1 soil) of Red-S3B dye and wheat was grown for 42-days. The dye did not suppress the activities of soil enzymes and growth of wheat seedlings at 100 mg kg-1; however, beyond this level the dye had a linear negative effect on these attributes. With 1000 mg dye kg-1 soil, wheat seedling biomass, viable microbial count, soil respiration, dehydrogenase, phosphatase, and urease activities decreased by 84%, 33%, 45%, 69%, 24%, and 11%, respectively as compared to uncontaminated soil. Moreover, phosphorus and potassium content in wheat shoot decreased, while the nitrogen content increased in Red-S3B contaminated soil. In the subsequent pot experiment, PM application (12.5 g kg-1 soil) was assessed to alleviate the adverse effect of moderately toxic level of Red-S3B dye (500 mg kg-1 soil) on wheat growth and yield. Root and straw biomass, and grain yield of wheat decreased by 13, 19 and 12%, respectively in Red-S3B contaminated soil as compared to uncontaminated soil. However, PM application to dye-contaminated soil retrieved the dye-induced reduction in root and straw biomass and grain yield to become statistically (p ≤ 0.05) at par with control plants. The color of Red-S3B was clearly visible in spikes depicting that plants absorbed Red-S3B but probably could not metabolize it. Amending the dye-contaminated soil with PM decreased Red-S3B content in awns from 78 to 37 mg kg-1. Hence, it is concluded that Red-S3B textile dye is highly toxic to soil microbes and wheat plants at levels exceeding 100 mg kg-1 soil. Soil application of PM alleviates the adverse effect of Red-S3B dye on wheat growth through reducing its uptake by plants.


Assuntos
Compostos Azo/efeitos adversos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Corantes/efeitos adversos , Microbiologia do Solo , Poluentes do Solo/efeitos adversos , Triticum/efeitos dos fármacos , Compostagem , Nutrientes/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
3.
Ecotoxicol Environ Saf ; 205: 111131, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827964

RESUMO

Arsenic (As) is one of the most toxic contaminants to food crops, and as such, decreasing crops uptake and accumulation of As cannot be overemphasized. Here, we characterized a functional wheat NIP2;1 homolog of the As transporter, TaNIP2;1. TaNIP2;1 expression was suppressed by arsenite (As(III)) in wheat. Ectopic expression of TaNIP2;1 in the Δfps1 yeast mutant enhanced yeast sensitivity towards As(III). Conversely, the elevated expression of TaNIP2;1 in Δacr3 mutants decreased yeast sensitivity to arsenate (As(V)), demonstrating that TaNIP2;1 showed both influx and efflux transport activities for As(III) in yeasts. This is further supported by increased As concentration in the yeast cells that overproduce TaNIP2;1 in Δfps1, while As concentration decreased in Δacr3. Furthermore, ectopic expression of TaNIP2;1 in Arabidopsis confirmed that TaNIP2;1 can transport As into plants, as supported by increased sensitivity to and uptake of As(III). No change in plant sensitivity was found to Cu(II), Cd(II), Zn(II) or Ni(II), indicating that transport activity of TaNIP2;1 is specific for As(III). Taken together, our data show that TaNIP2;1 may be involved in As(III) transportation in plants. This finding reveals a functional gene that can be manipulated to reduce As content in wheat.


Assuntos
Aquagliceroporinas/genética , Arabidopsis/efeitos dos fármacos , Arsenitos/toxicidade , Expressão Ectópica do Gene/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Aquagliceroporinas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arsenitos/metabolismo , Bioacumulação , Transporte Biológico , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Poluentes do Solo/metabolismo , Triticum/genética , Triticum/metabolismo
4.
PLoS One ; 15(7): e0236634, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706842

RESUMO

Potassium (K) input is essential for the improvement of soil fertility in agricultural systems. However, organic amendment may differ from mineral K fertilization with respect to modifying the soil K transformation among different fractions, affecting soil K availability. We conducted a 60-day lab incubation experiment to evaluate the response of soil K dynamics and availability in various fractions with a view to simulating crop residue return and chemical K fertilization in an Anthrosol of northwest China. The tested soil was divided into two main groups, no K fertilization (K0) and K fertilization (K1), each of which was subjected to four straw addition regimes: no straw addition (Control), wheat straw addition (WS), maize straw addition (MS), and both wheat straw and maize straw addition (WS+MS). Soil K levels in the available (AK) and non-exchangeable (NEK) fractions were both significantly increased after K addition, following the order of K>WS>MS. Fertilizer K was the most efficient K source, demonstrating a 72.9% efficiency in increasing soil AK, while wheat and maize straw exhibited efficiencies of 47.1% and 39.3%, respectively. Furthermore, K fertilization and wheat and maize straw addition increased the soil AK in a cumulative manner when used in combination. The mobility factor (MF) and reduced partition index (IR) of soil K were used to quantitate the comprehensive soil K mobility and stability, respectively. Positive relationships were observed between the MF and all relatively available fractions of soil K, whereas the IR value of soil K correlated negatively with both MF and all available fractions of soil K. In conclusion, straw amendment could be inferior to mineral K fertilization in improving soil K availability when they were almost equal in the net K input. Crop straw return coupled with K fertilization can be a promising strategy for improving both soil K availability and cycling in soil-plant systems.


Assuntos
Agricultura , Potássio/química , Solo/química , Triticum/metabolismo , Zea mays/metabolismo , China , Fertilizantes/análise , Potássio/metabolismo , Análise de Componente Principal , Triticum/química , Zea mays/química
5.
Plant Mol Biol ; 104(1-2): 113-136, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32627097

RESUMO

KEY MESSAGE: Present study revealed a complex relationship among histone H3 methylation (examined using H3K4/K27me3 marks), cytosine DNA methylation and differential gene expression during Lr28 mediated leaf rust resistance in wheat. During the present study, genome-wide histone modifications were examined in a pair of near isogenic lines (NILs) (with and without Lr28 in the background of cv. HD2329). The two histone marks used included H3K4me3 (an activation mark) and H3K27me3 (a repression mark). The results were compared with levels of expression (using RNA-seq) and DNA methylation (MeDIP) data obtained using the same pair of NILs. Some of the salient features of the present study include the following: (i) large scale differential binding sites (DBS) were available for only H3K4me3 in the susceptible cultivar, but for both H3K4me3 and H3K27me3 in its resistant NIL; (ii) DBSs for H3K27me3 mark were more abundant (> 80%) in intergenic regions, whereas DBSs for H3K4me3 were distributed in all genomic regions including exons, introns, intergenic, TTS (transcription termination sites) and promoters; (iii) fourteen (14) genes associated with DBSs showed co-localization for both the marks; (iv) only a small fraction (7% for H3K4me3 and 12% for H3K27me3) of genes associated with DBSs matched with the levels of gene expression inferred from RNA-seq data; (v) validation studies using qRT-PCR were conducted on 26 selected representative genes; results for only 11 genes could be validated. The proteins encoded by important genes involved in promoting infection included domains generally carried by R gene proteins such as Mlo like protein, protein kinases and purple acid phosphatase. Similarly, proteins encoded by genes involved in resistance included those carrying domains for lectin kinase, R gene, aspartyl protease, etc. Overall, the results suggest a very complex network of downstream genes that are expressed during compatible and incompatible interactions; some of the genes identified during the present study may be used in future validation studies involving RNAi/overexpression approaches.


Assuntos
Basidiomycota/metabolismo , Resistência à Doença/genética , Genes de Plantas/genética , Genoma de Planta/genética , Histonas/genética , Doenças das Plantas/genética , Triticum/genética , Triticum/metabolismo , Imunoprecipitação da Cromatina , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Ligação Genética , Histonas/metabolismo , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Alinhamento de Sequência , Análise de Sequência , Análise de Sequência de RNA , Transcrição Genética , Triticum/microbiologia
6.
Food Chem ; 332: 127288, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619935

RESUMO

This study examined the effect of green tea extract at 10 (GWG1%) and 50 (GWG5%) g/L as the steeping solution on the chemical, nutritional, and microbial quality of wheat grain during 14 days of germination. Fat, dry matter, and ash contents in the control was higher than GWG treatments due to the faster growth of control germs. Moisture, phenolic compounds, thiamin, niacin, and tocopherols decreased, whereas, fat, dry matter, carbohydrate, protein, crude fiber, ash, folic acid, Ca, Mg, Fe, Mn, and Zn increased significantly in all samples during germination. GWG5% showed the highest values in total phenols, vitamins, minerals, and carbohydrate, followed by GWG1% and then the control. No significant differences in protein and crude fiber content were detected among treatments. GWG decreased the growth of total bacterial, yeast, and mold in germinated seeds. Overall, GWG improved the microbial and nutritional quality of wheat germ during 14 days of germination.


Assuntos
Germinação/efeitos dos fármacos , Valor Nutritivo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá/química , Triticum/metabolismo , Triticum/microbiologia , Triticum/efeitos dos fármacos
7.
Food Chem ; 332: 127422, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32623129

RESUMO

During wheat cultivation, glyphosate-based herbicides are recommended to be applied a week prior to harvest during the ripe stage of physiological maturity. However, some grains may not be at this physiological stage due to non-uniform maturation within the field. The goal of this study was to determine the effect of glyphosate-based herbicide timing on the chemistry of wheat gluten proteins and shikimic acid accumulation. The results of the study indicate that pre-harvest glyphosate application does not impact the amino acid composition, protein secondary structure or gluten protein composition. However, pre-harvest glyphosate application decreased the molecular weight of SDS extractable and unextractable proteins, and significantly increased the amount of shikimic acid accumulation, especially when applied early. Thus, this study indicates that pre-harvest use of glyphosate-based herbicides can cause significant differences in wheat protein chemistry and shikimic acid levels, especially when applied earlier than recommended, emphasizing the importance of timely application.


Assuntos
Glicina/análogos & derivados , Herbicidas/farmacologia , Proteínas de Plantas/metabolismo , Ácido Chiquímico/metabolismo , Triticum/efeitos dos fármacos , Aminoácidos/análise , Aminoácidos/metabolismo , Glutens/análise , Glutens/metabolismo , Glicina/farmacologia , Proteínas de Plantas/análise , Ácido Chiquímico/análise , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
8.
Int J Food Microbiol ; 331: 108712, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32563775

RESUMO

The bread-making quality of wheat depends on the viscoelastic properties of the dough in which gluten proteins play an important role. The quality of gluten proteins is influenced by the genetics of the different wheat varieties and environmental factors. Occasionally, a near complete loss of gluten strength, measured as the maximum resistance towards stretching (Rmax), is observed in grain lots of Norwegian wheat. It is hypothesized that the loss of gluten quality is caused by degradation of gluten proteins by fungal proteases. To identify fungi associated with loss of gluten strength, samples from a selection of wheat grain lots with weak gluten (n = 10, Rmax < 0.3 N) and strong gluten (n = 10, Rmax ≥ 0.6 N) was analyzed for the abundance of fungal operational taxonomic units (OTUs) using DNA metabarcoding of the nuclear ribosomal Internal Transcribed Spacer (ITS) region ITS1. The DNA quantities for a selection of fungal pathogens of wheat, and the total amount of fungal DNA, were analyzed by quantitative PCR (qPCR). The mean level of total fungal DNA was higher in grain samples with weak gluten compared to grain samples with strong gluten. Heightened quantities of DNA from fungi within the Fusarium Head Blight (FHB) complex, i.e. Fusarium avenaceum, Fusarium graminearum, Microdochium majus, and Microdochium nivale, were observed in grain samples with weak gluten compared to those with strong gluten. Microdochium majus was the dominant fungus in the samples with weak gluten. Stepwise regression modeling based on different wheat quality parameters, qPCR data, and the 35 most common OTUs revealed a significant negative association between gluten strength and three OTUs, of which the OTU identified as M. majus was the most abundant. The same analysis also revealed a significant negative relationship between gluten strength and F. avenaceum detected by qPCR, although the DNA levels of this fungus were low compared to those of M. majus. In vitro growth rate studies of a selection of FHB species showed that all the tested isolates were able to grow with gluten as a sole nitrogen source. In addition, proteins secreted by these fungi in liquid cultures were able to hydrolyze gluten substrate proteins in zymograms, confirming their capacity to secrete gluten-degrading proteases. The identification of fungi with potential to influence gluten quality can enable the development of strategies to minimize future problems with gluten strength in food-grade wheat.


Assuntos
Microbiologia de Alimentos , Fungos/classificação , Glutens/química , Triticum/química , Triticum/microbiologia , DNA Fúngico/genética , Grão Comestível/microbiologia , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Glutens/metabolismo , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Triticum/metabolismo
9.
Food Chem ; 330: 127328, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32569940

RESUMO

Granular protein is an important structural feature in determining starch digestibility. High-amylose wheat starch (HAWS) with >80% amylose content contains more granular protein than wild-type starch. As analyzed by mass spectrometry-based proteomics, granular-bound starch synthase (GBSS) is the major granular protein in isolated starch materials. GBSS content increases with amylose content (Spearman's correlation, p < 0.05), whereas the abundance relative to other proteins is similar among starches. Multiple amylase inhibitors were also identified. From Michaelis-Menten analysis, HAWS has a similar Km (Michaelis constant) as wild type, suggesting initial enzymatic binding is similar. After the pre-digestion of proteins, wild type had a greater change in starch digestibility than HAWS, probably due to the latter having 'thicker' granular-protein layers and higher enzymatic resistance of substrate per se. Overall, the study suggests that the greater granular protein content in HAWS is a factor that contributes to slower amylolysis compared to wild type.


Assuntos
Amilose/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , Amido/química , Triticum/química , Amilose/análise , Amilose/química , Digestão , Hidrólise , Cinética , Proteínas de Plantas/análise , Amido/metabolismo , Sintase do Amido/análise , Espectrometria de Massas em Tandem , Triticum/metabolismo , alfa-Amilases/química , alfa-Amilases/metabolismo
10.
J Genet ; 992020.
Artigo em Inglês | MEDLINE | ID: mdl-32529987

RESUMO

Powdery mildew (Blumeria graminis f. sp. Tritici, (Bgt)) is an important worldwide fungal foliar disease of wheat (Triticum aestivum) responsible for severe yield losses. The development of resistance genes and dissection of the resistance mechanism will therefore be beneficial in wheat breeding. The Bgt resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 from Triticum dicoccoides, and it is still one of the most effective resistance genes. Here, by RNA sequencing, we identified three co-expressed gene modules using pairwise comparisons and weighted gene co-expression network analysis during wheat-Bgt interactions compared with mock-infected plants. Hub genes of stress-specific modules were significantly enriched in spliceosomes, phagosomes, the mRNA surveillance pathway, protein processing in the endoplasmic reticulum, and endocytosis. Induced module genes located on chromosome 5BL were selected to construct a protein-protein interaction network. Several proteins were predicted as the key hub node, including Hsp70, DEAD/DEAH box RNA helicase PRH75, elongation factor EF-2, cell division cycle 5, ARF guanine-nucleotide exchange factor GNOM-like, and protein phosphatase 2C 70 protein, which interacted with several disease resistance proteins such as RLP37, RPP13 and RPS2 analogues. Gene ontology enrichment results showed that wheat could activate binding functional genes via an mRNA transcription mechanism in response to Bgt stress. Of these node genes, GNOM-like, PP2C isoform X1 and transmembrane 9 superfamily member 9 were mapped onto the genetic fragment of PmAS846 with a distance of 4.8 Mb. This work provides the foundations for understanding the resistance mechanism and cloning the resistance gene PmAS846.


Assuntos
Ascomicetos/metabolismo , Resistência à Doença/genética , Estresse Fisiológico , Triticum/genética , Triticum/metabolismo , Análise de Sequência de RNA
11.
Ecotoxicol Environ Saf ; 201: 110830, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32559689

RESUMO

Iron (Fe) oxides are intimately coupled with phosphorus and closely associated with the bioavailability of potential toxic elements (PTEs) in soil. Thus, Fe oxides may influence the stabilization of PTEs in contaminated soils amended by phosphorus. To evaluate the effects of hematite (HMT) on the stabilization of PTEs, 1-5% (by weight) of HMT was added into a contaminated red soil amended with hydroxyapatite (HAP) to simulate naturally occurring Fe oxides. The stabilization efficiencies of soil copper (Cu) and cadmium (Cd) amended with HAP in soils with low, moderate, and high content of HMT were assessed after a 60-day incubation. HAP treated the soil with high rate HMT decreased the CaCl2-extractable and acid-soluble fractions of Cu and Cd than that of HAP alone. In particular, CaCl2-extactable Cu and Cd in the soil with 5% HMT amended by HAP were 91-95% and 41-68% lower than those amended with only HAP. High content of HMT in soil could decrease the concentration of labile phosphorus in the presence of HAP, but it did not increase the concentration of NaOH-extractable inorganic phosphorus (the fraction bound to Fe oxides). The concentrations of free and crystalline Fe oxides were significantly increased by adding high dosages of HMT with or without HAP. High content of HMT in soil amended by HAP reduced metal phytotoxicity and uptake by wheat shoots than the soil containing HAP without HMT. The results indicate that HMT can promote Cu and Cd stabilization while decrease labile phosphorus in red soil amended with HAP, suggesting that phosphorus-based amendments combined with Fe oxides can be used to stabilize PTEs in contaminated red soils.


Assuntos
Cádmio/análise , Cobre/análise , Durapatita/química , Compostos Férricos/química , Fósforo/análise , Poluentes do Solo/análise , Disponibilidade Biológica , Cádmio/metabolismo , China , Cobre/metabolismo , Fósforo/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo
12.
PLoS Pathog ; 16(6): e1008652, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32574207

RESUMO

Plants trigger immune responses upon recognition of fungal cell wall chitin, followed by the release of various antimicrobials, including chitinase enzymes that hydrolyze chitin. In turn, many fungal pathogens secrete LysM effectors that prevent chitin recognition by the host through scavenging of chitin oligomers. We previously showed that intrachain LysM dimerization of the Cladosporium fulvum effector Ecp6 confers an ultrahigh-affinity binding groove that competitively sequesters chitin oligomers from host immune receptors. Additionally, particular LysM effectors are found to protect fungal hyphae against chitinase hydrolysis during host colonization. However, the molecular basis for the protection of fungal cell walls against hydrolysis remained unclear. Here, we determined a crystal structure of the single LysM domain-containing effector Mg1LysM of the wheat pathogen Zymoseptoria tritici and reveal that Mg1LysM is involved in the formation of two kinds of dimers; a chitin-dependent dimer as well as a chitin-independent homodimer. In this manner, Mg1LysM gains the capacity to form a supramolecular structure by chitin-induced oligomerization of chitin-independent Mg1LysM homodimers, a property that confers protection to fungal cell walls against host chitinases.


Assuntos
Ascomicetos/química , Quitina/química , Proteínas Fúngicas/química , Hifas/química , Multimerização Proteica , Ascomicetos/genética , Ascomicetos/metabolismo , Quitina/genética , Quitina/metabolismo , Cladosporium/química , Cladosporium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/genética , Hifas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Estrutura Quaternária de Proteína , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
13.
Ecotoxicol Environ Saf ; 201: 110822, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534334

RESUMO

Boron (B) toxicity is an important abiotic constraint that limits crop productivity mainly in arid and semi-arid areas of the world. High levels of B in soil disturbs several physiological and biochemical processes in plant. The aim of this study was to investigate the function of melatonin (Mel) in the regulation of carbohydrate and proline (Pro) metabolism, photosynthesis process and antioxidant system of wheat seedlings under B toxicity conditions. High levels of B inhibited net photosynthetic rate (PN), stomatal conductance (gs), content of chlorophyll (Chl) a, b, δ-aminolevulinic acid (δ-ALA), nitrogen (N) and phosphorus (P), and increased accumulation of B, Chl degradation and activity of chlorophyllase (Chlase; a Chl degrading enzyme), and downregulated the activity of enzymes (δ-ALAD; δ-aminolevulinic acid dehydratase) involved in the biosynthesis of photosynthesis pigments, photosynthesis (carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbohydrate metabolism (cell wall invertase, CWI) in wheat seedlings. Also, high levels of B caused oxidative damage by increasing the content of malondialdehyde, superoxide anion and H2O2, and activity of glycolate oxidase (an H2O2-producing enzyme) in leaves of seedlings. However, foliar application of Mel significantly improved photosynthetic pigments concentration by increasing δ-ALA, δ-ALAD and decreasing Chl degradation and Chlase activity and led to an increase of plant growth attributes under both B toxicity and non-toxicity conditions. Under normal and B toxicity conditions, exogenous Mel also improved content of N, P, total soluble carbohydrates (TSCs) and Pro, and upregulated activity of CWI and Δ1-pyrroline-5-carboxylate synthetase. Mel significantly suppressed the adverse effects of excess B by alleviating cellular oxidative damage through enhanced reactive oxygen species scavenging by superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and lipoxygenase, and content of total phenolic compounds (TPC), ascorbate and reduced glutathione. These results postulate that Mel induced plant defense mechanisms by enhancing Pro, TSCs, TPC, nutrients (N and P) uptake and enzymatic and non-enzymatic antioxidants.


Assuntos
Antioxidantes/metabolismo , Boro/toxicidade , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
14.
Food Chem ; 330: 127214, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32521398

RESUMO

A high glycaemic index diet causes a rapid increase in blood sugar level and may lead to chronic metabolic disorders such as obesity and type 2 diabetes. Shiitake is rich in bioactive compounds. Wheat flour noodles were enriched with shiitake (Lentinus edodes) powder (cap, stem, whole) at different levels to investigate the effects of shiitake addition on the nutritional composition, physical and textural properties. In vitro digestion was conducted to determine the glycaemic glucose equivalents and bioaccessibility of antioxidants in digesta. The addition of 15% shiitake stem powder in the noodles resulted in a significant (p < 0.05) decrease in reducing sugars released after in vitro digestion. Digesta also exhibited cellular antioxidant ability on IEC-6 cells after H2O2-induced oxidative stress. These results show the potential beneficial use of shiitake, especially the stem, as a high-value ingredient to improve the nutritional profile and reduce the glycaemic index of foods.


Assuntos
Antioxidantes/metabolismo , Cogumelos Shiitake/metabolismo , Triticum/metabolismo , Linhagem Celular , Digestão , Farinha , Mucosa Gástrica , Índice Glicêmico , Humanos , Estômago
15.
Chemosphere ; 259: 127445, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593005

RESUMO

Iron oxide nanoparticles (nFe2O3)-filled materials have been widely employed in various products and their effects on plants have attracted considerable attention because of their potential release into the environment. Currently, numerous studies reporting the influences of iron-bearing nanoparticles on plants are focused on root or seed exposure. However, plants exposed to atmospheric iron-bearing nanoparticles through the leaves and their impacts on plants are still not well understood. This study focused on the uptake, translocation, and effects of foliar exposure of nFe2O3 on wheat seedlings. Wheat seedlings were foliar applied to various concentrations of nFe2O3 (0, 60 and 180 µg per plant) for 1, 7, 14 or 21 d. Our results demonstrated that after exposure for 21 d, the concentrations of Fe in leaves, stems, and roots were 1100, 280 and 160 µg kg-1, respectively. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), as well as the backscattered electron (BSE) images, revealed the stomatal opening was likely the pathway for nFe2O3 uptake. Analysis of the transfer rate, translocation of Fe from leaves to stems and roots, suggested the involvement of plant Fe regulation processes. Particularly, the antioxidant enzymatic activities and malondialdehyde levels in leaves were modified, which was ascribed to the excessive hydroxyl radical (OH) generated via the Fenton-like reaction mediated by nFe2O3. Finally, the OH facilitated the degradation of chlorophyll, posting a negative impact on the photosynthesis, and thus inhibited the biomass production. These findings are meaningful to understand the fate and physiological effects of atmospheric nFe2O3 in crops.


Assuntos
Compostos Férricos/toxicidade , Nanopartículas/toxicidade , Fotossíntese/efeitos dos fármacos , Triticum/efeitos dos fármacos , Antioxidantes/metabolismo , Transporte Biológico , Biomassa , Clorofila/metabolismo , Compostos Férricos/metabolismo , Ferro/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Sementes/metabolismo , Triticum/metabolismo , Triticum/fisiologia
16.
Ecotoxicol Environ Saf ; 202: 110886, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585487

RESUMO

A field investigation was conducted to study the dynamic distribution and accumulation of polycyclic aromatic hydrocarbons (PAHs) in winter wheat in the surrounds of a coal-fired power plant. During March to June 2019, various tissues of winter wheat and the corresponding rhizosphere soil were collected for determination of PAHs. A clear spatial downward trend was found in concentration of Σ15PAHs in rhizosphere soil and wheat grain (194-237 µg kg-1 DM) with the increasing distance from the coal-fired power plant. Moreover, Σ15PAHs concentration in rhizosphere soil (1081 µg kg-1 DM), root (464 µg kg-1 DM) and stem (365 µg kg-1 DM) of winter wheat at regreening stage and leaf (323 µg kg-1 DM) at anthesis stage were significantly (p < 0.001) higher than that (895, 432, 287 and 265 µg kg-1 DM) at maturity stage, respectively. From regreening to maturity stage, root concentration factors (RCF) of 3- and 4-ring PAHs exhibited an increasing trend but the 5-ring PAHs showed an apparently downward trend. However, stem concentration factors (SCF) of 3- and 4-ring PAHs showed a decrease trend while the 5- and 6-ring showed first down and then stable trend. There were positive linear relationship between logKow and logSCF at anthesis (r = 0.681, p < 0.05) and maturity stage (r = 0.751, p < 0.05). Based on linear regression analysis, PAHs in grain mainly came from the transfer of vegetative tissues, and the contribution of PAHs from stem and leaf to grain was higher than that from root. In addition, the present study also found that the physicochemical properties of PAHs play a crucial role in transfer of PAHs from root to vegetative tissues and then to grain. The present research provided more comprehensive information on the fate of PAHs in winter wheat and the safety of the agricultural products.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Triticum/química , Agricultura , Grão Comestível/química , Desenvolvimento Vegetal , Folhas de Planta/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Estações do Ano , Solo/química , Poluentes do Solo/metabolismo , Triticum/metabolismo
17.
Food Chem ; 330: 127156, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531631

RESUMO

Rice bran (RB) and wheat bran (WB) fermented with L. plantarum 423 had enhanced odor intensity, especially for sulfides and aromatics. The hydroxyl radical-scavenging activity (73.28 ± 3.18%) and oxygen radical-scavenging activity (2.12 ± 0.08 mmol·TE/g) of RB fermentation broth were better than those of WB fermentation broth. Even at 2 µg/ml, the purified antioxidant fractions from the WB fermentation broth showed strong intracellular ROS-scavenging activity in human umbilical vein endothelial cells (HUVECs), and the purified antioxidant fractions (200 µg/ml) from the RB fermentation broth had a good antiaging effect. The dominant antioxidant components in the RB and WB fermentation broths were acids (70.21%) and ketones (10.64%), these components jointly give the RB and WB fermentation broths a variety of antioxidant properties. These results are beneficial for developing RB and WB deep-processing technology and laid the foundation for the preparation of antioxidant fractions with L. plantarum 423.


Assuntos
Antioxidantes/farmacologia , Fibras na Dieta/metabolismo , Fermentação , Aromatizantes/análise , Lactobacillus plantarum/metabolismo , Oryza/metabolismo , Triticum/metabolismo , Antioxidantes/isolamento & purificação , Células Cultivadas , Nariz Eletrônico , Células Endoteliais/efeitos dos fármacos , Aromatizantes/isolamento & purificação , Humanos , Oryza/química , Triticum/química
18.
Chemosphere ; 252: 126522, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32443262

RESUMO

There is limited research on the effects of gut microbiota on bioaccessibility of heavy metals in wheat grains. In this study, bioaccessibility of heavy metals (Cu, Cd, Pb, and Zn) in wheat was determined to elucidate transfer characteristics in the soil-grain-human systems near two large-scale mining areas in Shandong Province, North China using the physiologically-based extraction test (PBET) in combination with a simulator of human intestinal microbial ecosystems (SHIME). The results showed the bioconcentration factors (BCFs) of Cu, Cd, Pb, and Zn were 0.123-0.327, 0.188-0.478, 0.019-0.099, and 0.262-0.825, respectively. Significant and positive correlations were observed between heavy metals in soils and wheat grains. In the simulated colon phase, bioaccessibility of Cd and Zn significantly decreased to 7.81% and 8.81%, respectively, being 53% and 64% of that in the simulated small intestinal phase. However, bioaccessibility of Pb showed an obvious escalating trend, being 2.4 times higher than that of intestinal incubation. Based on the estimated daily intakes and contribution, the relative high contribution of Cu to the benchmark dose in both phases, Cu metabolism by human gut microbiota should be considered in human health risk assessment regarding wheat consumption.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Mineração , Triticum/química , China , Ecossistema , Grão Comestível/química , Humanos , Medição de Risco , Solo , Poluentes do Solo/análise , Triticum/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-32464490

RESUMO

Soil phosphorus (P) occurs in pools of lower availability due to soil P fixation and therefore, it is a key constrain to crop production. Long term molybdenum-induced effects in wheat and rhizosphere/non-rhizosphere soil P dynamics have not yet been investigated. Here, a long term field experiment was conducted to explore these effects in wheat consisting of two treatments i.e. with molybdenum (+Mo) and without molybdenum (-Mo). The results revealed that molybdenum (Mo) supply increased plant biomass, grain yield, P uptake, preserved the configuration of chloroplast, stomata, and mesophyll tissue cells, suggesting the complementary effects of Mo on wheat yield and P accumulation. During the periods of vegetative growth, soil organic carbon, organic matter, and microbial biomass P were higher and tended to decrease in rhizosphere soil at maturity stage. In +Mo treatment, the most available P fractions [H2O-Pi (16.2-22.9 mg/kg and 4.24-7.57 mg/kg) and NaHCO3-Pi (130-149 mg/kg and 77.2-88 mg/kg)] were significantly increased in rhizosphere and non-rhizosphere soils, respectively. In addition, the +Mo treatment significantly increased the acid phosphatase activity and the expression of phoN/phoC, aphA, olpA/lppC gene transcripts in rhizosphere soil compared to -Mo. Our research findings suggested that Mo application has increased P availability not only through biochemical and chemical changes in rhizosphere but also through P assimilation and induced effects in the leaf ultra-structures. So, it might be a strategy of long term Mo fertilizer supply to overcome the P scarcity in plants and rhizosphere soil.


Assuntos
Molibdênio/farmacologia , Fósforo/metabolismo , Folhas de Planta/ultraestrutura , Rizosfera , Triticum/efeitos dos fármacos , Carbono , Solo , Triticum/metabolismo
20.
Food Chem ; 324: 126858, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32353656

RESUMO

Wheat flour noodles are sometimes fortified with ß-glucan for nutritional value, but this can decrease eating quality. The contributions of ß-glucan and starch molecular fine structure to physicochemical properties of wholemeal oat flour and to the texture of oat-fortified white salted noodles were investigated here. Hardness of oat-fortified noodles was controlled by the longer amylopectin chains (DP ≥ 26) and amount of longer amylose chains (DP ≥ 1000). Higher levels of ß-glucan, in the range from 3.1 to 5.2%, result in increased noodle hardness. Pasting viscosities of wholemeal oat flour positively correlate with the hardness of oat-fortified noodles. The swelling power of oat flour is not correlated with either pasting viscosities of oat flour or noodle hardness. Longer amylopectin chains and the amount of longer amylose chains both control the pasting viscosities of oat flour, which in turn affect noodle texture. This provides new means, based on starch and ß-glucan molecular structure, to choose oats with optimal starch structure and ß-glucan content for targeted oat-fortified noodle quality.


Assuntos
Avena/metabolismo , Amido/química , Triticum/metabolismo , beta-Glucanas/química , Amilopectina/química , Amilose/química , Farinha/análise , Dureza , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA