Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.986
Filtrar
1.
Food Chem ; 368: 130836, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411862

RESUMO

The postharvest ripening stage is necessary for Torreya grandis (T. grandis) nuts to complete aromatic synthesis, which requires appropriate temperature and relative humidity (RH). Currently, scarce information is available regarding the changes in aroma profiles in T. grandis nuts and the relationship with their response to different environmental conditions. Therefore, the interaction of temperature (20 °C or 30 °C) and relative humidity (70% RH or 90% RH) was investigated on aromatic substances after harvest. The results showed that 56 aromatic components were detected by a gas chromatography-mass spectrometer (GC-MS) and mainly divided into five categories, among which terpenes were the most abundant (56.2-86.7%). Principal component analysis (PCA) showed that both temperature and humidity can affect the aroma composition, and terpenes were mainly influenced by humidity. Specifically, d-limonene occupied the largest proportion of terpenes (63.0-90.8%) and was significantly upregulated by high humidity.


Assuntos
Nozes , Taxaceae , Umidade , Odorantes , Temperatura
2.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640877

RESUMO

Flexible and biodegradable sensors are advantageous for their versatility in a range of areas from smart packaging to agriculture. In this work, we characterize and compare the performance of interdigitated electrode (IDE) humidity sensors printed on different biodegradable substrates. In these IDE capacitive devices, the substrate acts as the sensing layer. The dielectric constant of the substrate increases as the material absorbs water from the atmosphere. Consequently, the capacitance across the electrodes is a function of environmental relative humidity. Here, the performance of polylactide (PLA), glossy paper, and potato starch as a sensing layer is compared to that of nonbiodegradable polyethylene terephthalate (PET). The capacitance across inkjet-printed silver electrodes is measured in environmental conditions ranging from 15 to 90% relative humidity. The sensitivity, response time, hysteresis, and temperature dependency are compared for the sensors. The relationship between humidity and capacitance across the sensors can be modeled by exponential growth with an R2 value of 0.99, with paper and starch sensors having the highest overall sensitivity. The PET and PLA sensors have response and recovery times under 5 min and limited hysteresis. However, the paper and starch sensors have response and recovery times closer to 20 min, with significant hysteresis around 100%. The PET and starch sensors are temperature independent, while the PLA and paper sensors display thermal drift that increases with temperature.


Assuntos
Prata , Capacitância Elétrica , Eletrodos , Umidade , Temperatura
3.
Sensors (Basel) ; 21(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34640953

RESUMO

Flexible capacitive humidity sensors are promising for low-cost, wearable, and radio frequency identification sensors, but their nonlinear response is an important issue for practical applications. Herein, the linearity of humidity response was controlled by surface water wettability and operating frequency of sensor, and the mechanism was explained in detail by surface water condensation. For a sensor with a Ag interdigitated electrode (IDE) on a poly(ethylene terephthalate) substrate, the capacitance showed a small linear increase with humidity up to 70% RH but a large nonlinear increase in the higher range. The response linearity was increased by a hydrophobic surface treatment of self-assembled monolayer coating while it was decreased by an ultraviolet/ozone irradiation for hydrophilicity. It was also increased by increasing the frequency in the range of 1-100 kHz, more prominently on a more hydrophilic surface. Based on experiment and simulation, the increase in sensor capacitance was greatly dependent on the geometric pattern (e.g., size, number, and contact angle) and electrical permittivity of surface water droplets. A larger and more nonlinear humidity response resulted from a larger increase in the number of droplets with a smaller contact angle on a sensor surface with higher water wettability and also from a higher permittivity of water at a lower frequency.


Assuntos
Água , Eletrodos , Umidade , Interações Hidrofóbicas e Hidrofílicas , Molhabilidade
4.
Sensors (Basel) ; 21(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34640984

RESUMO

An ammonia gas (NH3) generator was developed to maintain a set concentration of ammonia gas in a controlled environment chamber to study poultry physiological responses to sustained elevated levels of ammonia gas. The goal was to maintain 50 parts per million (ppm) of ammonia gas in a 3.7 m × 4.3 m × 2.4 m (12 ft × 14 ft × 8 ft) controlled environment chamber. The chamber had a 1.5 m3/s (3000 cfm) recirculation system that regulated indoor temperature and humidity levels and a 0.06 m3/s (130 cfm) exhaust fan that exchanged indoor air for fresh outdoor air. The ammonia generator was fabricated by coupling ultrasonic humidifiers with an Arduino-based microcontroller and a metallic oxide MQ-137 ammonia gas sensor. Preliminary evaluation under steady conditions showed the average MQ-137 gas sensor accuracy was within 1.4% of the 65.4 ppm concentration measured using a highly accurate infrared gas analyzer. Further evaluation was performed for a setpoint concentration of 50 ppm where ammonia generator reservoirs were filled with 2% or 10% ammonia liquid. For the system tested, it was found that two generators operating at the same time filled with 3.8 L (1.0 gallon) of 2% ammonia cleaning liquid each (7.6 L or 2.0 gallons total) could maintain a gas level of 49.45 ± 0.79 ppm in the chamber air for a duration of 30 h before refilling was required. One generator filled with 3.8 L of 10% ammonia cleaning liquid could maintain 51.24 ± 1.53 ppm for 195 h. Two ammonia generators were deployed for a six-week animal health experiment in two separate controlled environment chambers. The two ammonia generators maintained an average ammonia concentration of 46.42 ± 3.81 ppm and 45.63 ± 4.95 ppm for the duration of the experiment.


Assuntos
Amônia , Aves Domésticas , Animais , Umidade , Temperatura
5.
Microbiome ; 9(1): 209, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666813

RESUMO

BACKGROUND: Microbes can grow in indoor environments if moisture is available, and we need an improved understanding of how this growth contributes to emissions of microbial volatile organic compounds (mVOCs). The goal of this study was to measure how moisture levels, building material type, collection site, and microbial species composition impact microbial growth and emissions of mVOCs. We subjected two common building materials, drywall, and carpet, to treatments with varying moisture availability and measured microbial communities and mVOC emissions. RESULTS: Fungal growth occurred in samples at >75% equilibrium relative humidity (ERH) for carpet with dust and >85% ERH for inoculated painted drywall. In addition to incubated relative humidity level, dust sample collection site (adonis p=0.001) and material type (drywall, carpet, adonis p=0.001) drove fungal and bacterial species composition. Increased relative humidity was associated with decreased microbial species diversity in samples of carpet with dust (adonis p= 0.005). Abundant volatile organic compounds (VOCs) that accounted for >1% emissions were likely released from building materials and the dust itself. However, certain mVOCs were associated with microbial growth from carpet with dust such as C10H16H+ (monoterpenes) and C2H6SH+ (dimethyl sulfide and ethanethiol). CO2 production from samples of carpet with dust at 95% ERH averaged 5.92 mg hr-1 kg-1, while the average for carpet without dust at 95% ERH was 2.55 mg hr-1 kg-1. CONCLUSION: Microbial growth and mVOC emissions occur at lower relative humidity in carpet and floor dust compared to drywall, which has important implications for human exposure. Even under elevated relative humidity conditions, the VOC emissions profile is dominated by non-microbial VOCs, although potential mVOCs may dominate odor production. Video Abstract.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Pisos e Cobertura de Pisos , Fungos , Humanos , Umidade , Compostos Orgânicos Voláteis/análise
6.
Trop Anim Health Prod ; 53(5): 488, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34591189

RESUMO

The objective of the present study was to determine heat stress zones (HSZ) in a year for daily milk yield (DMY) of Murrah buffaloes. Data for the study included 2,67,599 daily milk yield records of 445 Murrah buffaloes sired by 171 bulls as well as climatic parameters, viz. dry bulb temperature (Tdb) and wet bulb (Twb) temperatures spanning over 16 years (2001-2016). The regression analysis of DMY on carryover heat effect indicated that the decline in DMY was significant above the carryover heat effect (CHE) 70. April-November were critical for daily milk yield, and maximum decline in daily milk yield was observed during the month of August in Murrah buffaloes. Therefore, two zones in a year were classified as non-heat stress zone (NHSZ) with CHE < 70 for months December-March and heat stress zone (HSZ) with CHE > 70 during April-November.


Assuntos
Búfalos , Leite , Animais , Feminino , Resposta ao Choque Térmico , Umidade , Lactação
7.
Sci Rep ; 11(1): 18316, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526550

RESUMO

Shortages of personal protective equipment for use during the SARS-CoV-2 pandemic continue to be an issue among health-care workers globally. Extended and repeated use of N95 filtering facepiece respirators without adequate decontamination is of particular concern. Although several methods to decontaminate and re-use these masks have been proposed, logistic or practical issues limit adoption of these techniques. In this study, we propose and validate the use of the application of moist heat (70 °C with humidity augmented by an open pan of water) applied by commonly available hospital (blanket) warming cabinets to decontaminate N95 masks. This report shows that a variety of N95 masks can be repeatedly decontaminated of SARS-CoV-2 over 6 h moist heat exposure without compromise of their filtering function as assessed by standard fit and sodium chloride aerosol filtration efficiency testing. This approached can easily adapted to provide point-of-care N95 mask decontamination allowing for increased practical utility of mask recycling in the health care setting.


Assuntos
Descontaminação/métodos , Respiradores N95/virologia , SARS-CoV-2/fisiologia , Reutilização de Equipamento , Hospitais , Humanos , Umidade , Sistemas Automatizados de Assistência Junto ao Leito , Fatores de Tempo , Inativação de Vírus
8.
Front Cell Infect Microbiol ; 11: 657807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568080

RESUMO

It is known that the microbiome affects human physiology, emotion, disease, growth, and development. Most humans exhibit reduced appetites under high temperature and high humidity (HTHH) conditions, and HTHH environments favor fungal growth. Therefore, we hypothesized that the colonic mycobiota may affect the host's appetite under HTHH conditions. Changes in humidity are also associated with autoimmune diseases. In the current study mice were fed in an HTHH environment (32°C ± 2°C, relative humidity 95%) maintained via an artificial climate box for 8 hours per day for 21 days. Food intake, the colonic fungal microbiome, the feces metabolome, and appetite regulators were monitored. Components of the interleukin 17 pathway were also examined. In the experimental groups food intake and body weight were reduced, and the colonic mycobiota and fecal metabolome were substantially altered compared to control groups maintained at 25°C ± 2°C and relative humidity 65%. The appetite-related proteins LEPT and POMC were upregulated in the hypothalamus (p < 0.05), and NYP gene expression was downregulated (p < 0.05). The expression levels of PYY and O-linked ß-N-acetylglucosamine were altered in colonic tissues (p < 0.05), and interleukin 17 expression was upregulated in the colon. There was a strong correlation between colonic fungus and sugar metabolism. In fimo some metabolites of cholesterol, tromethamine, and cadaverine were significantly increased. There was significant elevation of the characteristic fungi Solicoccozyma aeria, and associated appetite suppression and interleukin 17 receptor signaling activation in some susceptible hosts, and disturbance of gut bacteria and fungi. The results indicate that the gut mycobiota plays an important role in the hypothalamus endocrine system with respect to appetite regulation via the gut-brain axis, and also plays an indispensable role in the stability of the gut microbiome and immunity. The mechanisms involved in these associations require extensive further studies.


Assuntos
Disbiose , Receptores de Interleucina-17 , Animais , Apetite , Regulação do Apetite , Basidiomycota , Colo , Umidade , Camundongos , Temperatura
9.
PLoS One ; 16(9): e0255148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492026

RESUMO

The widespread use of facemasks throughout the population is recommended by the WHO to reduce transmission of the SARS-CoV-2 virus. As some regions of the world are facing mask shortages, reuse may be necessary. However, used masks are considered as a potential hazard that may spread and transmit disease if they are not decontaminated correctly and systematically before reuse. As a result, the inappropriate decontamination practices that are commonly witnessed in the general public are challenging management of the epidemic at a large scale. To achieve public acceptance and implementation, decontamination procedures need to be low-cost and simple. We propose the use of hot hygroscopic materials to decontaminate non-medical facemasks in household settings. We report on the inactivation of a viral load on a facial mask exposed to hot hygroscopic materials for 15 minutes. As opposed to recent academic studies whereby decontamination is achieved by maintaining heat and humidity above a given value, a more flexible procedure is proposed here using a slow decaying pattern, which is both effective and easier to implement, suggesting straightforward public deployment and hence reliable implementation by the population.


Assuntos
Descontaminação/métodos , Reutilização de Equipamento/normas , Máscaras/virologia , COVID-19/prevenção & controle , Temperatura Alta , Humanos , Umidade , SARS-CoV-2
10.
J Hazard Mater ; 416: 126196, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492960

RESUMO

A Schottky junction based on Ti3C2Tx MXene sheet integrated with marigold flower-like V2O5/CuWO4 heterojunction was designed and fabricated for robust ammonia sensing by monitoring the electrical resistance changes in air and ammonia. The electron transport behavior of the sensor was investigated by electrochemical analysis, ultraviolet photoelectron spectroscopy and reflection electron energy loss spectroscopy. Besides, negative zeta potential obtained for sensor components was in consistent with surface functional groups (e.g. OH and F) observed by XPS analysis helping better understanding of the ammonia sensing mechanism. The results desirably confirmed high sensitivity, selectivity, linear range (1-160 ppm), the limit of quantification, repeatability, long-term stability, very short response time (few seconds) and low working temperature (25 °C) of the sensor. The measurements on the resistance changes of the MXene/V2O5/CuWO4-based sensor under the exposure to various types of analytes (Ammonia, Acetone, Benzene, Chloroform, DMF, Ethanol, humidity (80%), Methanol and Toluene as well as NO, NO2, H2S, SO2, CO and CH4) at different concentrations revealed that the fabricated sensor is excellently selective to ammonia with ultra-high sensitivity. Intra-day stability (7 runs a day) and long-term stability (every 10 days over 70 days) as important sensor characteristics were investigated at 51 ppm and ambient temperature, which showed very good repeatability and recoverability in both short and long periods for sensing the ammonia. Overall, MXene/V2O5/CuWO4 was shown to be cost-effective, easy to handle and suitably applicable for simple, ultrafast and extremely efficient trace ammonia detection, which could be of high interest for future exhaled breath analysis and the development of a novel noninvasive diagnostic strategy to monitor chronic kidney disease to stop a large measure of unnecessary invasive testing.


Assuntos
Amônia , Testes Respiratórios , Técnicas Eletroquímicas , Umidade , Temperatura
11.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500638

RESUMO

The effect of humidity on sheep wool during irradiation by an accelerated electron beam was examined. Each of the samples with 10%, 53%, and 97% relative humidity (RH) absorbed a dose of 0, 109, and 257 kGy, respectively. After being freely kept in common laboratory conditions, the samples were subjected to batch Co(II) sorption experiments monitored with VIS spectrometry for different lapses from electron beam exposure. Along with the sorption, FTIR spectral analysis of the wool samples was conducted for cysteic acid and cystine monoxide, and later, the examination was completed, with pH measuring 0.05 molar KCl extract from the wool samples. Besides a relationship to the absorbed dose and lapse, the sorptivity results showed considerable dependence on wool humidity under exposure. When humidity was deficient (10% RH), the sorptivity was lower due to limited transformation of cystine monoxide to cysteic acid. The wool pre-conditioned at 53% RH, which is the humidity close to common environmental conditions, demonstrated the best Co(II) sorptivity in any case. This finding enables the elimination of pre-exposure wool conditioning in practice. Under excessive humidity of 97% RH and enough high dose of 257 kGy, radiolysis of water occurred, deteriorating the sorptivity. Each wool humidity, dose, and lapse showed a particular scenario. The time and humidity variations in the sorptivity for the non-irradiated sample were a little surprising; despite the absence of electron irradiation, relevant results indicated a strong sensitivity to pre-condition humidity and lapse from the start of the monitoring.


Assuntos
Cobalto/química , Íons/química , Ovinos/metabolismo , Lã/química , Adsorção/fisiologia , Animais , Cistina/química , Elétrons , Umidade , Água/química
12.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500617

RESUMO

The epidemic spread of many viral infections is mediated by the environmental conditions and influenced by the ambient humidity. Single virus particles have been mainly visualized by atomic force microscopy (AFM) in liquid conditions, where the effect of the relative humidity on virus topography and surface cannot be systematically assessed. In this work, we employed multi-frequency AFM, simultaneously with standard topography imaging, to study the nanoscale wetting of individual Tobacco Mosaic virions (TMV) from ambient relative humidity to water condensation (RH > 100%). We recorded amplitude and phase vs. distance curves (APD curves) on top of single virions at various RH and converted them into force vs. distance curves. The high sensitivity of multifrequency AFM to visualize condensed water and sub-micrometer droplets, filling gaps between individual TMV particles at RH > 100%, is demonstrated. Dynamic force spectroscopy allows detecting a thin water layer of thickness ~1 nm, adsorbed on the outer surface of single TMV particles at RH < 60%.


Assuntos
Microscopia de Força Atômica/métodos , Vírus do Mosaico do Tabaco/química , Vírion/química , Umidade , Água/química , Molhabilidade
13.
Sensors (Basel) ; 21(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502689

RESUMO

During military operations in high-temperature and relative humidity (RH) conditions, the physiological state and combat capability of pilots are affected severely. In a fighter cockpit, experiments were conducted on thirteen voluntary subjects wearing pilot suits at 21 °C/30%, 30 °C/45%, and 38 °C/60% RH, respectively, in order to examine the physiological changes of pilots in combat thoroughly. The target strike performance, core and skin temperatures, pulse rate, and other parameters were measured and investigated. Significant inter-condition differences were noted in the pulse rate, core temperature, mean skin temperatures, and sweat amount, which increased markedly with elevating temperature and RH. Contrastively, blood oxygen saturation (SpO2) dropped with such elevations. Concerning the skin temperature, the chest and back skin temperatures remained stable, while the temperatures at the hands, feet, and lower arms underwent larger changes with the increasing temperature and humidity. At 38 °C/60% RH, the sweat amount was 3.7 times that at 21 °C/30% RH. The subjects' operational error rates increased as the core temperatures rose, showing high correlations (r2 = 0.81). The results could serve as a theoretical basis for the design of pilot protective equipment and the control of aircraft cockpit temperature.


Assuntos
Pilotos , Temperatura Alta , Humanos , Umidade , Temperatura Cutânea , Temperatura
14.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502737

RESUMO

This paper presents a calibration system for low-cost suspended particulate matter (PM) sensors, consisting of reference instruments, enclosed space in a metal pipe (volume 0.145 m3), a duct fan, a controller and automated control software. The described system is capable of generating stable and repeatable concentrations of suspended PM in the air duct. In this paper, as the final result, we presented the process and effects of calibration of two low-cost air pollution stations-university measuring stations (UMS)-developed and used in the scientific project known as Storm&DustNet, implemented at the Jagiellonian University in Kraków (Poland), for the concentration range of PM from a few up to 240 µg·m-3. Finally, we postulate that a device of this type should be available for every system composed of a large number of low-cost PM sensors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Calibragem , Monitoramento Ambiental , Humanos , Umidade , Material Particulado/análise , Temperatura
15.
Sensors (Basel) ; 21(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577376

RESUMO

We present a calibration procedure for a humidity sensor made of a fiber Bragg grating covered by a polyimide layer. FBGs being intrinsically sensitive to temperature and strain, the calibration should tackle three variables, and, therefore, consists of a three-variable, two-level factorial design tailored to assess the three main sensitivities, as well as the five cross-sensitivities. FBG sensing information is encoded in the reflection spectrum from which the Bragg wavelength should be extracted. We tested six classical peak tracking methods on the results of the factorial design of the experiment applied to a homemade FBG humidity sensor. We used Python programming to compute, from the raw spectral data with six typical peak search algorithms, the temperature, strain and humidity sensitivities, as well as the cross-sensitivities, and showed that results are consistent for all algorithms, provided that the points selected to make the computation are correctly chosen. The best results for this particular sensor are obtained with a 3 dB threshold, whatever the peak search method used, and allow to compute the effective humidity sensitivity taking into account the combined effect of temperature and strain. The calibration procedure presented here is nevertheless generic and can thus be adapted to other sensors.


Assuntos
Fibras Ópticas , Calibragem , Umidade , Temperatura
16.
Sensors (Basel) ; 21(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577381

RESUMO

Atmospheric oxygen anions play an important role in medical health, clinical medicine, environmental health, and the ecological environment. Therefore, the concentration of atmospheric anions is an important index for measuring air quality. This paper proposes a monitoring system for atmospheric oxygen anions based on Beidou positioning and unmanned vehicles. This approach combines Beidou positioning technology, 4G pass-through, the unmanned capacitance suction method, electromagnetic field theory, and atmospheric detection technology. The proposed instrument can monitor the overall negative oxygen ion concentration, temperature, and humidity in a certain region over time and provide data visualization for the concentration of negative oxygen ions.


Assuntos
Poluição do Ar , Ânions/análise , Umidade , Íons , Temperatura
17.
Sensors (Basel) ; 21(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577383

RESUMO

Ammonia gas sensors were fabricated via layer-by-layer (LbL) deposition of diazo resin (DAR) and a binary mixture of tetrakis(4-sulfophenyl)porphine (TSPP) and poly(styrene sulfonate) (PSS) onto the core of a multimode U-bent optical fiber. The penetration of light transferred into the evanescent field was enhanced by stripping the polymer cladding and coating the fiber core. The electrostatic interaction between the diazonium ion in DAR and the sulfonate residues in TSPP and PSS was converted into covalent bonds using UV irradiation. The photoreaction between the layers was confirmed by UV-vis and Fourier transform infrared spectroscopy. The sensitivity of the optical fiber sensors to ammonia was linear when exposed to ammonia gases generated from aqueous ammonia solutions at a concentration of approximately 17 parts per million (ppm). This linearity extended up to 50 ppm when the exposure time (30 s) was shortened. The response and recovery times were reduced to 30 s with a 5-cycle DAR/TSPP+PSS (as a mixture of 1 mM TSPP and 0.025 wt% PSS in water) film sensor. The limit of detection (LOD) of the optimized sensor was estimated to be 0.31 ppm for ammonia in solution, corresponding to approximately 0.03 ppm of ammonia gas. It is hypothesized that the presence of the hydrophobic moiety of PSS in the matrix suppressed the effects of humidity on the sensor response. The sensor response was stable and reproducible over seven days. The PSS-containing U-bent fiber sensor also showed superior sensitivity to ammonia when examined alongside amine and non-amine analytes.


Assuntos
Amônia , Porfirinas , Umidade , Fibras Ópticas , Poliestirenos
18.
Water Res ; 204: 117659, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537629

RESUMO

Struvite formed from digested poultry slurries can serve as an alternative to chemical fertilizers; however, the biological safety of such products is questionable. Therefore, quantification and inactivation of foodborne pathogens existing in struvite are important. Herein, the dynamics of foodborne pathogens' (Streptococcus faecalis, S. typhimurium, Clostridium perfringens, and Escherichia coli) living status, whether culturable and viable but non-culturable (VBNC) in struvite, were quantified for the first time. Meanwhile, inactivation technologies, namely high-humidity hot air impingement blanching (HHAIB), cold plasma, and hot air treatment, were evaluated and compared for their potential to inactivate/kill foodborne pathogens in struvite. An increase in precipitation pH from 9.0 to 11.0 decreased the culturable count of pathogens in the struvite from 75 to 86% to 7-20%, while the VBNC pathogen counts increased from 16 to 24% to 35-55%. Among the tested inactivation technologies, the HHAIB treatment at 130 °C for 120 s killed approximately 68-79% of foodborne pathogens in struvite precipitated at pH 9.0. VBNC pathogens increased from 16 to 24% to 57-68% after HHAIB treatment at 130 °C for 120 s. Struvite treatment with different inactivation technologies did not change its crystalline structure; however, it reduced functional group abundance. Therefore, further research on inactivation technologies is required to achieve better pathogen reduction efficiency in struvite to make it a biologically safe fertilizer for crop production.


Assuntos
Temperatura Alta , Aves Domésticas , Animais , Umidade , Estruvita , Tecnologia
19.
Water Res ; 204: 117649, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543972

RESUMO

Thermal-hydraulic considerations in urban drainage networks are essential to utilise available heat capacities from waste- and stormwater. However, available models are either too detailed or too coarse; fully coupled thermal-hydrodynamic modelling tools are lacking. To predict efficiently water-energy dynamics across an entire urban drainage network, we suggest the SWMM-HEAT model, which extends the EPA-StormWater Management Model with a heat-balance component. This enables conducting more advanced thermal-hydrodynamic simulation at full network scale than currently possible. We demonstrate the usefulness of the approach by predicting temperature dynamics in two independent real-world cases under dry weather conditions. We furthermore screen the sensitivity of the model parameters to guide the choice of suitable parameters in future studies. Comparison with measurements suggest that the model predicts temperature dynamics adequately, with RSR values ranging between 0.71 and 1.1. The results of our study show that modelled in-sewer wastewater temperatures are particularly sensitive to soil and headspace temperature, and headspace humidity. Simulation runs are generally fast; a five-day period simulation at high temporal resolution of a network with 415 nodes during dry weather was completed in a few minutes. Future work should assess the performance of the model for different applications and perform a more comprehensive sensitivity analysis under more scenarios. To facilitate the efficient estimation of available heat budgets in sewer networks and the integration into urban planning, the SWMM-HEAT code is made publicly available.


Assuntos
Temperatura Alta , Tempo (Meteorologia) , Umidade , Hidrodinâmica , Temperatura
20.
Nat Commun ; 12(1): 5042, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413297

RESUMO

Food production must increase significantly to sustain a growing global population. Reducing plant water loss may help achieve this goal and is especially relevant in a time of climate change. The plant cuticle defends leaves against drought, and so understanding water movement through the cuticle could help future proof our crops and better understand native ecology. Here, via mathematical modelling, we identify mechanistic properties of water movement in cuticles. We model water sorption in astomatous isolated cuticles, utilising three separate pathways of cellulose, aqueous pores and lipophilic. The model compares well to data both over time and humidity gradients. Sensitivity analysis shows that the grouping of parameters influencing plant species variations has the largest effect on sorption, those influencing cellulose are very influential, and aqueous pores less so but still relevant. Cellulose plays a significant role in diffusion and adsorption in the cuticle and the cuticle surfaces.


Assuntos
Celulose/metabolismo , Plantas/metabolismo , Água/metabolismo , Adsorção , Transporte Biológico , Difusão , Secas , Umidade , Modelos Biológicos , Permeabilidade , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...