Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.969
Filtrar
1.
Waste Manag ; 125: 204-214, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33711734

RESUMO

Steam co-gasification of banana peel with other biomass, i.e., Japanese cedar wood, rice husk and their mixture, was carried out for the hydrogen-rich gas production in a fixed-bed reactor. For the co-gasification process, the banana peels were physically mixed with rice husk, Japanese cedarwood and their mixture respectively by different mixing weight ratios. The effects of reaction temperature and the addition amount of banana peel on the gas production yield were investigated by comparing the experimental data with the calculated ones based on the individual biomass gasification at the same condition. It was found that the banana peel with a high content of alkali and alkaline earth metal (AAEM) species exhibited not only high gasification reactivity but also a significant enhancing catalytic effect on the co-gasification process at the low temperature, especially with the biomass containing no silica species. The high content of silica species in the rice husk had a negative effect on the gasification reactivity of banana peel during the co-gasification since it could hinder the release of AAEM from the biomass and/or lead to the possible formation of inactive alkaline silicates. However, the combination of these three samples with the suitable weight ratio could improve the gasification performance at the low temperature due to the synergetic effect provided by high contents of potassium and calcium from banana peel and cedarwood respectively. Moreover, the addition of calcined seashells as the CaO source could further improve the gas production yield, especially the hydrogen gas yield at a relatively low gasification temperature of 750 ℃.


Assuntos
Musa , Vapor , Biomassa , Hidrogênio , Madeira
2.
Bioresour Technol ; 330: 125011, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773268

RESUMO

Biomass chemical looping gasification (CLG) technology is an important utilization form of renewable energy. In order to obtain high-quality syngas, CaO/Fe2O3 was used as a composite oxygen carrier for biomass CLG in this study. The CLG experiment of corn straw and the study of oxygen carrier recycling were carried out, simultaneously, the reaction mechanism was further discussed. Results shown adding CaO to oxygen carrier could significantly improve the quality of syngas through increasing the H2 and reduce Greenhouse gas (CO2 and CH4, about 14% reduction). Besides, the ratio of Fe2O3 to CaO, steam to biomass, and oxygen carrier to biomass all affected the syngas composition (the H2/CO variation from 1.82 to 2.19), while the temperature had obvious influence on the gas yield of CLG. The most possible reaction mechanism shown that the variation of Ca might be the main factor of gas composition fluctuation.


Assuntos
Oxigênio , Zea mays , Biomassa , Compostos de Cálcio , Compostos Férricos , Gases , Óxidos , Vapor
3.
Food Chem ; 352: 129319, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691215

RESUMO

Emulsions based on licorice essential oil (LEO) were prepared under different homogenization conditions (ultra-homogenization (U1) or U1 together with sonication (U2)). The obtained emulsions were incorporated into the carboxymethyl cellulose (CMC) film. The results showed that U2 caused significant changes in the size and the surface charge of the emulsions. Remarkable differences in the microstructure were observed between the U1 and the U2 emulsion-based films as revealed by SEM and AFM. Both emulsions reduced the rigidity and increased the flexibility of the films. The film made from the CMC alone had a water vapor permeability (WVP) of 2.66 × 10-9 g m-1 s-1 Pa-1, while the CMC film made from U2 emulsion had a WVP of 1.87 × 10-9 g m-1 s-1 Pa-1. Also, the film containing 0.0125% U1-LEO exhibited antibacterial activity on gram-positive bacteria only while the film containing 0.0125% U2-LEO demonstrated antibacterial activity on both gram-positive and gram-negative bacteria.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Glycyrrhiza/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Sonicação , Carboximetilcelulose Sódica/química , Emulsões , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Permeabilidade , Vapor
4.
Food Chem ; 350: 129138, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33592364

RESUMO

The effects of four household cooking methods including germination (Ger), baking, normal pressure steaming (NPS) and high pressure steaming (HPS) treatments, on tissue structure, tocopherol, antioxidant capacity and active component (ferulic acid and tocopherol) bioaccessibility of different colored quinoa were investigated. The results showed that Ger increased the phenolic contents and antioxidant capacity, but decreased the contents of tocopherol. The steaming processes destroyed the tissue structure of quinoa to a large extent, causing a significant loss of phenolic/flavonoid components and the resultant decreased antioxidant capacity. The baking process had minimum impact on tissue structure and active components due to the protection of hypocotyl-radicle axis. Besides, through in vitro simulated digestion, Ger improved the bioaccessibility of ferulic acid, and steaming processes increased that of tocopherol. Conclusively, to develop the expected nutritional value of quinoa, several alternative cooking methods are provided according to the respective effects.


Assuntos
Antioxidantes/análise , Chenopodium quinoa/química , Culinária/métodos , Fenóis/análise , Vapor , Flavonoides/análise , Valor Nutritivo , Tocoferóis/análise
5.
Food Chem ; 350: 129199, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610843

RESUMO

The present study aimed to develop a new bio-nanocomposite film based on gum arabic (GA) reinforced with cellulose nanocrystals (CNC). CNC was successfully fabricated and its microstructure was characterized. Subsequently, the effects of CNC on the rheological, physicochemical and functional properties of GA-based films were systematically evaluated. Results showed that the tensile strength (2.21 MPa) and elongation at break (62.79%) of film incorporated with 4% (w/w) CNC were effectively increased compared with the GA film (1.08 MPa and 42.50%). Additionally, 4% CNC reduced the water vapor and oxygen permeability by 10.61% and 25.30% respectively, while improved the ultraviolet light barrier and thermal stability of film. The well dispersion and filling effect of nanofiller contributed to form a compact and homogeneous film structure. Furthermore, the film containing 4% CNC decreased the weight loss of strawberries by 23.80% compared with the control group, thus delaying the deterioration of strawberry quality during storage.


Assuntos
Celulose/química , Conservação de Alimentos/métodos , Fragaria/química , Goma Arábica/química , Nanocompostos/química , Nanopartículas/química , Permeabilidade , Reologia , Vapor/análise , Resistência à Tração
6.
Food Chem ; 349: 129178, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607545

RESUMO

Chinese steamed breads (CSB) and noodles are staple foods for many people. The production of frozen steamed products and boiled noodles has kept increasing. This is due to the increasing demand of ready-to-eat frozen food products from the market. Frozen storage significantly increases the self-life of the products and reduces the production costs. On the other hand, the freezing and frozen storage lead to quality loss of the frozen products. This review summarizes effects of freezing and frozen storage on diverse quality attributes (e.g., structural and textural properties) of frozen northern-type steamed breads and boiled noodles. Food safety of the frozen products related to the COVID-19 pandemic is discussed. To counteract the quality loss of the frozen products, suitable processing methods, selection of basic ingredients and uses of various food additives can be done. Research gaps to improve the textural, cooking and nutritional quality of frozen CSB and noodles are suggested.


Assuntos
Pão/análise , Farinha/análise , Armazenamento de Alimentos , Culinária , Congelamento , Humanos , Valor Nutritivo , Vapor
7.
Food Chem ; 348: 129088, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33515948

RESUMO

Roasting is a food processingtechnique that employs the principle of heating to cook the product evenly and enhance the digestibility, palatability and sensory aspects of foods with desirable structural modifications of the food matrix. With the burgeoning demand for fortified roasted products along with the concern for food hygiene and the effects of harmful compounds, novel roasting techniques, and equipment to overcome the limitations of conventional operations are indispensable. Roasting techniques employing microwave, infrared hot-air, superheated steam, Revtech roaster, and Forced Convection Continuous Tumble (FCCT) roasting have been figuratively emerging to prominence for effectively roasting different foods without compromising the nutritional quality. The present review critically appraises various conventional and emerging roasting techniques, their advantages and limitations, and their effect on different food matrix components, functional properties, structural attributes, and sensory aspects for a wide range of products. It was seen that thermal processing at high temperatures for increased durations affected both the physicochemical and structural properties of food. Nevertheless, novel techniques caused minimum destructive impacts as compared to the traditional processes. However, further studies applying novel roasting techniques with a wide range of operating conditions on different types of products are crucial to establish the potential of these techniques in obtaining safe, quality foods.


Assuntos
Culinária/métodos , Temperatura Alta , Qualidade dos Alimentos , Micro-Ondas , Valor Nutritivo , Vapor
8.
J Sci Food Agric ; 101(1): 253-261, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460192

RESUMO

BACKGROUND: The use of damaged beans for starch isolation comprises an end-use alternative for a product that is not accepted by the consumer. For that reason, isolation and modification of Carioca bean starch should be explored and evaluated as a suitable source for biodegradable material. The present study aimed to evaluate the synergism of physical and chemical modifications on Carioca bean starch with respect to improving the properties of biodegradable films. A heat-moisture treatment (HMT) followed by oxidation by sodium hypochlorite was performed and vice versa. RESULTS: Synergism was noted in the starch properties compared to the single modification. When the oxidation was applied first, a higher amylose and carbonyl content was noted. HMT, isolated and as a second modification, caused a more pronounced effect on viscosity profile than the oxidized starch, with an increase in paste temperature and a decrease in viscosity, breakdown and final viscosity. CONCLUSION: The results obtained in the present study reflect a decrease in water vapor permeability, although a higher tensile strength was noted when oxidation was applied, as a single and as a first modification. © 2020 Society of Chemical Industry.


Assuntos
Fabaceae/química , Extratos Vegetais/química , Amido/química , Oxirredução , Permeabilidade , Extratos Vegetais/isolamento & purificação , Amido/isolamento & purificação , Vapor/análise , Resistência à Tração , Viscosidade
9.
Bioresour Technol ; 323: 124625, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33418350

RESUMO

Pretreatment strategies are fundamental to effectively deconstruct lignocellulosic biomass and economically produce biofuels, biomaterials and bio-based chemicals. This study evaluated individual and combinatorial steam explosion (SE) and ionic liquid (IL) pretreatments for production of high-value oligosaccharides from a novel seed-based Miscanthus hybrid (Mx2779). The two ILs used for pretreatment were triethylammonium hydrogen sulphate [TEA][HSO4] and 1-ethyl-3-methylimidazolium acetate [C2mim][OAc]. The results showed that each pretreatment leads to distinct effects on the fragmentation (cellulose and xylan dissolution, delignification, deacetylation) and physicochemical modification (cellulose and lignin properties) of lignocellulose. This, in turn, dictated enzymatic hydrolysis efficiencies of the cellulose pulp to glucose or gluco-oligosaccharides for downstream applications. Our findings suggest that the stand-alone SE or [C2mim][OAc] pretreatments may offer cost advantages over [TEA][HSO4] through the production of oligosaccharides such as xylo- and gluco-oligosaccharides. This study also highlights technical and economic pretreatment process challenges related to the production of oligosaccharides from Miscanthus Mx2779 biomass.


Assuntos
Biocombustíveis , Líquidos Iônicos , Biomassa , Hidrólise , Lignina , Oligossacarídeos , Vapor
10.
Food Chem Toxicol ; 148: 111966, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33412235

RESUMO

BACKGROUND: COVID-19, the presently prevailing global public health emergency has culminated in international instability in economy. This unprecedented pandemic outbreak pressingly necessitated the trans-disciplinary approach in developing novel/new anti-COVID-19 drugs especially, small molecule inhibitors targeting the seminal proteins of viral etiological agent, SARS-CoV-2. METHODS: Based on the traditional medicinal knowledge, we made an attempt through molecular docking analysis to explore the phytochemical constituents of three most commonly used Indian herbs in 'steam inhalation therapy' against well recognized viral receptor proteins. RESULTS: A total of 57 phytochemicals were scrutinized virtually against four structural protein targets of SARS-CoV-2 viz. 3CLpro, ACE-2, spike glycoprotein and RdRp. Providentially, two bioactives from each of the three plants i.e. apigenin-o-7-glucuronide and ellagic acid from Eucalyptus globulus; eudesmol and viridiflorene from Vitex negundo and; vasicolinone and anisotine from Justicia adhatoda were identified to be the best hit lead molecules based on interaction energies, conventional hydrogen bonding numbers and other non-covalent interactions. On comparison with the known SARS-CoV-2 protease inhibitor -lopinavir and RdRp inhibitor -remdesivir, apigenin-o-7-glucuronide was found to be a phenomenal inhibitor of both protease and polymerase, as it strongly interacts with their active sites and exhibited remarkably high binding affinity. Furthermore, in silico drug-likeness and ADMET prediction analyses clearly evidenced the usability of the identified bioactives to develop as drug against COVID-19. CONCLUSION: Overall, the data of the present study exemplifies that the phytochemicals from selected traditional herbs having significance in steam inhalation therapy would be promising in combating COVID-19.


Assuntos
/terapia , Compostos Fitoquímicos/administração & dosagem , Administração por Inalação , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Vapor
11.
J Food Sci ; 86(2): 394-403, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33462859

RESUMO

A novel deodorization method of edible oil by using ethanol steam at low-temperature was developed. We compared the chemical changes in predeodorized rapeseed oil after anhydrous ethanol steam distillation at low temperature (140 to 220 °C) (L-ESD) and conventional high-temperature (250 °C) water-steam distillation (H-WSD) in terms of odor characteristics, physicochemical properties, micronutrient contents, antioxidant performance, and fatty acid composition. Compared with H-WSD (250 °C for 60 min), L-ESD at 180 °C for 80 to 100 min resulted in lower response values of electronic nose, free fatty acid (0.03% to 0.07%), and peroxide value (0.00 to 0.67 meq/kg), but higher retention of tocopherols (554.93 to 551.59 mg/kg), total phenols (43.36 to 45.42 mgGAE/kg), total carotenoids (65.78 to 67.85 mg/kg), phytosterols (585.80 to 596.53 mg/100 g), polyunsaturated fatty acids (27.95 to 28.01%), and better antioxidant properties. In conclusion, L-ESD can mitigate the damage of oil and thus significantly improve the safety of vegetable oils with a high retention of nutrients compared with conventional H-WSD. PRACTICAL APPLICATION: The present study aimed to compare the chemical changes in predeodorized rapeseed oil after anhydrous ethanol steam distillation at low temperature (140 to 220 °C) (L-ESD) and conventional high-temperature (250 °C) water-steam distillation (H-WSD) in terms of odor characteristics, physicochemical properties, micronutrient contents, antioxidant performance, and fatty acid composition. Results indicated that this finding supplies a theoretical basis for developing a method with retaining more micronutrients and producing less harmful substances for the deodorization of rapeseed oil.


Assuntos
Etanol , Manipulação de Alimentos/métodos , Odorantes/prevenção & controle , Óleo de Brassica napus/química , Vapor , Antioxidantes/análise , Carotenoides/análise , Fenômenos Químicos , Destilação/métodos , Ácidos Graxos/análise , Micronutrientes/análise , Fitosteróis/análise , Óleo de Brassica napus/análise , Temperatura , Tocoferóis/análise
12.
Carbohydr Polym ; 255: 117479, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436241

RESUMO

The research in eco-friendly and sustainable materials for packaging applications with enhanced barrier, thermo-mechanical, rheological and anti-bacterial properties has accelerated in the last decade. Last decade has witnessed immense interest in employing nanocellulose (NC) as a sustainable and biodegradable alternative to the current synthetic packaging barrier films. This review article gathers the research information on NC as a choice for food packaging material. It reviews on the employment of NC and its various forms including its chemico-physical treatments into bio/polymers and its impact on the performance of nanocomposites for food packaging application. The review reveals the fact that the research trends towards NC based materials are quite promising for Active Packaging (AP) applications, including the Controlled Release Packaging (CRP) and Responsive Packaging (RP). Finally, it summarizes with the challenges of sustainable packaging, gray areas that need an improvement/focus in order to commercially exploit this wonderful material for packaging application.


Assuntos
Antibacterianos/química , Celulose/química , Preparações de Ação Retardada/química , Embalagem de Alimentos/métodos , Nanocompostos/química , Resinas Acrílicas/química , Antibacterianos/farmacologia , Biodegradação Ambiental , Celulose/ultraestrutura , Quitosana/química , Preparações de Ação Retardada/farmacologia , Dopamina/química , Humanos , Membranas Artificiais , Poliésteres/química , Vapor/análise , Taninos/química
13.
Food Chem ; 347: 129022, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482482

RESUMO

Edible films were prepared using various pectin and pullulan mixing ratios and evaluated for their properties in food packaging applications. FTIR characterization showed that an intermolecular H-bond was formed between the hydroxyl group of pullulan and the carboxyl group of pectin. As observed by FE-SEM, as the pullulan content increased, the film's surface became smoother and formed a film with a denser structure, leading to an increased water vapor barrier. The blend film with a 50:50 ratio of pullulan and pectin exhibited the highest thermal stability and surface hydrophobicity. Blending also increased strength while maintaining flexibility and stiffness compared to the individual films. Besides, the films with ratios above 50:50 displayed the least water and oil absorption values.


Assuntos
Filmes Comestíveis , Glucanos , Pectinas , Interações Hidrofóbicas e Hidrofílicas , Vapor
14.
Food Chem ; 347: 129011, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482489

RESUMO

In this study, a steam explosion pretreatment method was established to prepare tuna bone powder. The conditions were optimized such that steam pressure of 0.6 MPa, reaction time of 5 min, and sample weight of 100 g. The result showed that steam explosion pretreatment would not change the chemical structure of bone powder, however, the median particle size (D50) of the steam explosion pretreated tuna bone powder (SE-TBP) (13.186 µm) was significantly smaller than that of normal biological calcium tuna bone powder (N-TBP) (169.762 µm). The calcium absorption rate (79.75 ± 2.33%) and utilization rate (78.75% ± 2.85%) of the mice fed with SE-TBP were both higher than those of fed with CaCO3 or N-TBP with the same calcium equivalent in the feed. The steam explosion pretreatment method could obtain ideal tuna bone powder in a shorter time, provide a method for deep processing and utilization of tuna bone by-product.


Assuntos
Osso e Ossos/química , Cálcio na Dieta/farmacocinética , Produtos Pesqueiros/análise , Manipulação de Alimentos/métodos , Vapor , Atum , Animais , Disponibilidade Biológica , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula
15.
Carbohydr Polym ; 252: 117156, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183607

RESUMO

A new natural formulation composed of CMC and various contents of CNC immobilized AgNPs (CNC@AgNPs) was developed for paper coating. The mechanical strength, water vapor and air barrier properties, and antibacterial activities of CMC/CNC@AgNPs coated paper improved with the increasing content of CNC@AgNPs. CMC/CNC@AgNPs7 % coated paper exhibited 1.26 times increase in tensile strength, 45.4 % decrease in WVP, 93.3 % reduction in air permeability as well as the best antibacterial activities against E.coli and S.aureus compared with uncoated paper. Moreover, the cumulative release rate of AgNPs from coated paper significantly reduced due to the immobilization effect of CNC on AgNPs. Furthermore, CMC/CNC@AgNPs coated paper was used to package strawberries under ambient conditions. The results showed that coated paper could maintain better strawberries quality compared with unpackaged strawberries and extend the shelf-life of strawberries to 7 days. Therefore, the prepared CMC/CNC@AgNPs coated paper will have a great application prospect in the food packaging.


Assuntos
Antibacterianos/farmacologia , Carboximetilcelulose Sódica/química , Embalagem de Alimentos , Nanopartículas Metálicas/química , Nanocompostos/química , Prata/farmacologia , Escherichia coli/efeitos dos fármacos , Permeabilidade , Staphylococcus aureus/efeitos dos fármacos , Vapor , Resistência à Tração
16.
Food Chem ; 334: 127589, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707366

RESUMO

Postharvest, pea vine field residue (haulm) was steam-sterilised and then juiced; a chloroplast-rich fraction (CRF) was recovered from the juice by centrifugation. The stability of selected nutrients (ß-carotene, lutein, and α-tocopherol) in the freeze-dried CRF material was measured over 84 days; the impact of temperature (-20 °C, 4 °C, 25 °C and 40 °C), light and air on nutrient stability was established. All three nutrients were stable at -20 °C and 4 °C in the presence or absence of air; this stability was lost at higher temperatures in the presence of air. The extent and rate of nutrient breakdown significantly increased when the CRF samples were exposed to light. ß-Carotene appeared to be more susceptible to degradation than lutein and α-tocopherol at 40 °C in the presence of air, but when CRF was exposed to light all three nutrients measured were significantly broken down during storage at 25 °C or 40 °C, whether exposed to air or not.


Assuntos
Cloroplastos/química , Nutrientes/química , Ervilhas/química , Caules de Planta/química , Esterilização/métodos , Ar , Armazenamento de Alimentos , Liofilização , Luteína/análise , Luteína/química , Nutrientes/análise , Vapor , Temperatura , alfa-Tocoferol/análise , alfa-Tocoferol/química , beta Caroteno/análise , beta Caroteno/química
17.
Food Chem ; 338: 127799, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798816

RESUMO

An emerging blanching technology, namely vacuum-steam pulsed blanching (VSPB) was employed to blanch the carrots and its effects on blanching efficiency, microstructure and ultrastructure, drying kinetics, colour, texture, phytochemicals (phenolics and ß-carotene) and antioxidant capacity of carrot slices were explored and compared with the traditional hot water blanching. Results showed that both blanching treatments enhanced the drying velocity and shortened the drying time by 25.9% compared with untreated samples. VSPB yielded higher blanching efficiency, better colour (more red and yellow), greater antioxidant capacity and higher preservation of phytochemicals compared with hot water blanched samples. Especially, compared to hot water blanched carrots, the p-hydroxybenzoic acid, ferulic acid, and caffeic acid content of VSPB samples increased of 106.6%, 42.0%, and 19.0%, respectively. Interestingly, the chlorogenic acid content in the blanched carrot increased more than 220 times compared to fresh samples. Ultrastructure and microstructure observation clarify the mechanism of quality enhancement of VSPB.


Assuntos
Antioxidantes/química , Daucus carota/química , Daucus carota/ultraestrutura , Dessecação/métodos , Indústria de Processamento de Alimentos/métodos , Compostos Fitoquímicos/análise , Antioxidantes/análise , Cor , Ácidos Cumáricos/análise , Qualidade dos Alimentos , Dureza , Cinética , Microscopia Eletrônica de Transmissão , Fenóis/análise , Compostos Fitoquímicos/química , Vapor , Temperatura , Vácuo , Água/química , beta Caroteno/análise
18.
Food Chem ; 337: 128007, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919278

RESUMO

The purpose of this study is to evaluate the bioaccessibility of nutrients and antioxidant activity of O. radicata after subjecting to four types of domestic cooking and followed by in vitro digestion. The result demonstrated that the group with the lowest amino acid release and the degree of protein hydrolysis (5.6%) was frying, but both reducing sugar content and antioxidant activity were the highest. The composition of fatty acids was different than undigested samples, especially the relative content of linolenic acid was significantly decreased (e.g., 34.49 to 8.23%, boiled). The difference of the minerals bioaccessibility was slightly affected by the cooking method, but mainly related to their natural properties, such as the highest phosphorus (62.73%) and the lowest iron (21.53%) in the steaming. The above data provides a starting point for the design of processes at an industrial and gastronomic level.


Assuntos
Agaricales/química , Antioxidantes/análise , Culinária/métodos , Nutrientes/farmacocinética , Disponibilidade Biológica , Carboidratos/farmacocinética , Digestão , Minerais/farmacocinética , Vapor
19.
J Food Sci ; 86(1): 61-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33336405

RESUMO

The aim of this study was to evaluate the protective effect of biodegradable packages made with chickpea flour on the oxidation of sunflower oil. Chickpea flour films were prepared using the casting technique. To study the influence of storage time on films properties, the chickpea flour films were stored during 60 days at 25 °C and 52% relative humidity. In addition, sunflower oil samples were packaged in chickpea flour packages (CPs) and stored for 60 days at 25 °C. Lipid oxidation indicators were evaluated. The results showed that puncture force and redness values (a*) of chickpea films did not change significantly during storage. Tensile strength, Young's modulus (YM), and yellowness (b*) increased and moisture content (MC), elongation (%E), solubility (%S), water vapor permeability (WVP), and luminosity (L*) decreased. Microscopic images showed the presence of a few cracks in the film network at storage day 60. Conjugated dienes and peroxide value increased less for sunflower oil stored in high-barrier plastic pouches and CPs during storage than the control treatment. CPs helped to preserve the chemical quality of sunflower oil samples, proving to be a promising alternative to develop biodegradable packaging to be used in oily food preservation. PRACTICAL APPLICATION: Discarded chickpea grains are those split and different color grains that are separated from marketable grains, and represent an industrial byproduct. These grains are currently used for feed, constituting a nutritive biomass of low commercial value. Chickpea flour is a potential material for making biodegradable films. This strategy allows adding value to the chickpea industry, transforming a byproduct into a raw material with the potential to develop economical food packaging material. The use of chickpea packages to preserve sunflower oil may be an alternative to pack vegetable oil or high lipid content food, allowing the use reduction of nonbiodegradable pouches.


Assuntos
Cicer , Embalagem de Alimentos/instrumentação , Conservação de Alimentos/métodos , Óleo de Girassol , Módulo de Elasticidade , Embalagem de Alimentos/métodos , Fenômenos Mecânicos , Oxirredução , Permeabilidade , Solubilidade , Vapor , Resistência à Tração , Fatores de Tempo
20.
Environ Pollut ; 269: 116197, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316496

RESUMO

In order to meet the growing demand for adsorbents to treat wastewater effectively, there has been increased interest in using sustainable biomass feedstocks. In this present study, the dermal tissue of oil palm frond was pyrolyzed with superheated steam at 500 °C to produce nanoporous biochar as bioadsorbent. The effect of operating conditions was investigated to understand the adsorption mechanism and to enhance the adsorption of phenol and tannic acid. The biochar had a microporous structure with a Brunauer-Emmett-Teller surface area of 422 m2/g containing low polar groups. The adsorption capacity of 62.89 mg/g for phenol and 67.41 mg/g for tannic acid were obtained using 3 g/L biochar dosage after 8 h of treatment at solution pH of 6.5 and temperature of 45 °C. The Freundlich model had the best fit to the isotherm data of phenol (R2 of 0.9863), while the Langmuir model best elucidated the isotherm data of tannic acid (R2 of 0.9632). These indicated that the biochar-phenol interface was associated with a heterogeneous multilayer sorption mechanism, while the biochar-tannic acid interface had a nonspecific monolayer sorption mechanism. The residual concentration of 26.3 mg/L phenol and 23.1 mg/L tannic acid was achieved when treated from 260 mg/L three times consecutively with 1 g/L biochar dosage, compared to a reduction to 72.3 mg/L phenol and 69.9 mg/L tannic acid using 3 g/L biochar dosage in a single treatment. The biochar exhibited effective adsorption of phenol and tannic acid, making it possible to treat effluents that contain varieties of phenolic compounds.


Assuntos
Pirólise , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Fenol/análise , Fenóis/análise , Vapor , Taninos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...