Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
Food Chem ; 368: 130745, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34404004

RESUMO

The subject of the present research is the evaluation of health-promoting properties caused by the presence of some vitamins as well as the antioxidative potential of the honeybee drone brood homogenate (DBH). The study used 139 homogenate samples obtained from various apiaries and collected over 3 years, three times during each beekeeping season. Samples differed in terms of varroa infestation, stage of brood development, location of the apiary, and the degree of environmental contamination. The content of ascorbic acid, α-tocopherol, all-trans-retinol, and coenzyme Q10 in the tested samples was determined through the application of HPLC/DAD/UV and LC/QQQ/MS methods. The antioxidant potential of samples was assessed using the Folin-Ciocalteu and DPPH methods.


Assuntos
Antioxidantes , Varroidae , Animais , Criação de Abelhas , Abelhas , Fenóis , Vitaminas
2.
BMC Genomics ; 22(1): 720, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34610790

RESUMO

BACKGROUND: Varroa destructor mites, and the numerous viruses they vector to their honey bee hosts, are among the most serious threats to honey bee populations, causing mortality and morbidity to both the individual honey bee and colony, the negative effects of which convey to the pollination services provided by honey bees worldwide. Here we use a combination of targeted assays and deep RNA sequencing to determine host and microbial changes in resistant and susceptible honey bee lineages. We focus on three study sets. The first involves field sampling of sympatric western bees, some derived from resistant stock and some from stock susceptible to mites. The second experiment contrasts three colonies more deeply, two from susceptible stock from the southeastern U.S. and one from mite-resistant bee stock from Eastern Texas. Finally, to decouple the effects of mites from those of the viruses they vector, we experimentally expose honey bees to DWV in the laboratory, measuring viral growth and host responses. RESULTS: We find strong differences between resistant and susceptible bees in terms of both viral loads and bee gene expression. Interestingly, lineages of bees with naturally low levels of the mite-vectored Deformed wing virus, also carried lower levels of viruses not vectored by mites. By mapping gene expression results against current ontologies and other studies, we describe the impacts of mite parasitism, as well as viruses on bee health against two genetic backgrounds. We identify numerous genes and processes seen in other studies of stress and disease in honey bee colonies, alongside novel genes and new patterns of expression. CONCLUSIONS: We provide evidence that honey bees surviving in the face of parasitic mites do so through their abilities to resist the presence of devastating viruses vectored by these mites. In all cases, the most divergence between stocks was seen when bees were exposed to live mites or viruses, suggesting that gene activation, rather than constitutive expression, is key for these interactions. By revealing responses to viral infection and mite parasitism in different lineages, our data identify candidate proteins for the evolution of mite tolerance and virus resistance.


Assuntos
Vírus de RNA , Varroidae , Viroses , Animais , Abelhas , Vírus de RNA/genética , Carga Viral
3.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536080

RESUMO

Varroa destructor is among the greatest biological threats to western honey bee (Apis mellifera L.) health worldwide. Beekeepers routinely use chemical treatments to control this parasite, though overuse and mismanagement of these treatments have led to widespread resistance in Varroa populations. Integrated Pest Management (IPM) is an ecologically based, sustainable approach to pest management that relies on a combination of control tactics that minimize environmental impacts. Herein, we provide an in-depth review of the components of IPM in a Varroa control context. These include determining economic thresholds for the mite, identification of and monitoring for Varroa, prevention strategies, and risk conscious treatments. Furthermore, we provide a detailed review of cultural, mechanical, biological, and chemical control strategies, both longstanding and emerging, used against Varroa globally. For each control type, we describe all available treatments, their efficacies against Varroa as described in the primary scientific literature, and the obstacles to their adoption. Unfortunately, reliable IPM protocols do not exist for Varroa due to the complex biology of the mite and strong reliance on chemical control by beekeepers. To encourage beekeeper adoption, a successful IPM approach to Varroa control in managed colonies must be an improvement over conventional control methods and include cost-effective treatments that can be employed readily by beekeepers. It is our intention to provide the most thorough review of Varroa control options available, ultimately framing our discussion within the context of IPM. We hope this article is a call-to-arms against the most damaging pest managed honey bee colonies face worldwide.


Assuntos
Criação de Abelhas/métodos , Abelhas/parasitologia , Controle de Pragas/métodos , Varroidae , Acaricidas/farmacologia , Animais , Interações Hospedeiro-Parasita , Infestações por Ácaros/tratamento farmacológico , Infestações por Ácaros/prevenção & controle , Infestações por Ácaros/veterinária , Varroidae/efeitos dos fármacos , Varroidae/parasitologia , Varroidae/patogenicidade
4.
Sci Total Environ ; 799: 149381, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358747

RESUMO

Explaining the reasons for the high honey bee (Apis mellifera) colony loss rate in recent years has become a top global research priority in apicultural and agricultural sciences. Although there are indications of the role played by beekeeping management practices on honey bee health, very little information is currently available. Our study aimed to characterize the beekeeping management practices carried out in Belgium, and to determine the relationship between beekeeping management practices and colony losses. Variables obtained from face-to-face questioning of a representative randomized and stratified sample of Belgian beekeepers (n = 186) were integrated into a logistic regression model (univariate and multivariate) and correlated to the declared colony loss rates to identify risk and protective indicators. We used a classification tree analysis to validate the results. We present evidence of a relationship between poor beekeeping management practices and colony losses. The main factors protecting honey bee colonies are the aptitude of the beekeeper to change his management practices, the hive type, the equipment origin and hygiene, wintering in proper conditions (the use of divider boards, i.e. board blocks or space fillers off part of the hive body), the colony strength estimation before wintering, winter monitoring, and last but not least, appropriate integrated pest management. Proper estimation of the Varroa infestation level should be performed prior to treatment. The consequences of poor beekeeping practices on honey bee health can be addressed by proper training of beekeepers. An online tool was developed and published for beekeepers allowing them to evaluate the effect of their management practices on colony health.


Assuntos
Criação de Abelhas , Varroidae , Animais , Abelhas , Bélgica , Controle de Pragas , Estações do Ano
5.
Proc Biol Sci ; 288(1956): 20211375, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34344183

RESUMO

The near-globally distributed ecto-parasitic mite of the Apis mellifera honeybee, Varroa destructor, has formed a lethal association with Deformed wing virus, a once rare and benign RNA virus. In concert, the two have killed millions of wild and managed colonies, particularly across the Northern Hemisphere, forcing the need for regular acaricide application to ensure colony survival. However, despite the short association (in evolutionary terms), a small but increasing number of A. mellifera populations across the globe have been surviving many years without any mite control methods. This long-term survival, or Varroa resistance, is consistently associated with the same suite of traits (recapping, brood removal and reduced mite reproduction) irrespective of location. Here we conduct an analysis of data extracted from 60 papers to illustrate how these traits connect together to explain decades of mite resistance data. We have potentially a unified understanding of natural Varroa resistance that will help the global industry achieve widespread miticide-free beekeeping and indicate how different honeybee populations across four continents have resolved a recent threat using the same suite of behaviours.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas/genética , Reprodução
6.
Arch Virol ; 166(10): 2693-2702, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34275024

RESUMO

Deformed wing virus (DWV) has been linked to the global decline of honey bees. DWV exists as three master variants (DWV-A, DWV-B, and DWV-C), each with differing outcomes for the honey bee host. Research in the USA showed a shift from DWV-A to DWV-B between 2010 to 2016 in honey bee colonies. Likewise, in the UK, a small study in 2007 found only DWV-A, whereas in 2016, DWV-B was the most prevalent variant. This suggests a shift from DWV-A to DWV-B might have occurred in the UK between 2007 and 2016. To investigate this further, data from samples collected in 2009/10 (n = 46) were compared to existing data from 2016 (n = 42). These samples also allowed a comparison of DWV variants between Varroa-untreated (feral) and Varroa-treated (managed) colonies. The results revealed that, in the UK, DWV-A was far more prevalent in 2009/10 (87%) than in 2016 (43%). In contrast, DWV-B was less prevalent in 2009/10 (76%) than in 2016 (93%). Regardless if colonies had been treated for Varroa (managed) or not (feral), the same trend from DWV-A to DWV-B occurred. Overall, the results reveal a decrease in DWV-A and an increase in DWV-B in UK colonies.


Assuntos
Abelhas/virologia , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Abelhas/parasitologia , Variação Genética , Prevalência , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Reino Unido/epidemiologia , Varroidae , Carga Viral
7.
PLoS One ; 16(5): e0244906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014937

RESUMO

The global spread of the ectoparasitic mite Varroa destructor has promoted the spread and virulence of highly infectious honey bee viruses. This phenomenon is considered the leading cause for the increased number of colony losses experienced by the mite-susceptible European honey bee populations in the Northern hemisphere. Most of the honey bee populations in Central and South America are Africanized honey bees (AHBs), which are considered more resistant to Varroa compared to European honey bees. However, the relationship between Varroa levels and the spread of honey bee viruses in AHBs remains unknown. In this study, we determined Varroa prevalence and infestation levels as well as the prevalence of seven major honey bee viruses in AHBs from three regions of Colombia. We found that although Varroa exhibited high prevalence (92%), its infestation levels were low (4.5%) considering that these populations never received acaricide treatments. We also detected four viruses in the three regions analyzed, but all colonies were asymptomatic, and virus prevalence was considerably lower than those found in other countries with higher rates of mite-associated colony loss (DWV 19.88%, BQCV 17.39%, SBV 23.4%, ABPV 10.56%). Our findings indicate that AHBs possess a natural resistance to Varroa that does not prevent the spread of this parasite among their population, but restrains mite population growth and suppresses the prevalence and pathogenicity of mite-associated viruses.


Assuntos
Abelhas/microbiologia , Vírus de Insetos/patogenicidade , Varroidae/patogenicidade , Animais , Abelhas/virologia , Colômbia
8.
Exp Appl Acarol ; 84(2): 433-444, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33983538

RESUMO

Varroa destructor is the most common ectoparasite of the Western honey bee (Apis mellifera L.) worldwide and poses a serious threat to bee health. Synthetic acaricides, particularly pyrethroids, are frequently used to control Varroa mites. However, long-term and repeated use of synthetic pyrethroids has led to the development of resistance. In this study, we report on the presence of resistance mutations in the voltage-gated sodium channel in V. destructor populations from Turkish beekeeping areas. Two resistance mutations, L925V and L925I, that were previously associated with pyrethroid resistance, were found in more than 75% of the populations. A general correlation between the presence of mutations and the history of acaricide usage was observed for the sampled hives. In addition, we show there is only a low genetic distance among the sampled V. destructor populations, based on the analysis of three mitochondrial genes: cytochrome b (cytb), ATP synthase subunit 6 (atp6), and cytochrome c oxidase subunit III (cox3). Revealing the presence and geographical distribution of pyrethroid resistance mutations in V. destructor populations from Turkish apiaries will contribute to create more effective mite management programmes.


Assuntos
Piretrinas , Varroidae , Animais , Criação de Abelhas , Abelhas , Mutação , Turquia
9.
Chemosphere ; 280: 130783, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33964758

RESUMO

The active substances coumaphos, tau-fluvalinate and amitraz are among the most commonly employed synthetic miticides to control varroa infestations in apiculture. These compounds can persist inside the beehive matrices and can be detected long time after their application. The present study describes the application of a new passive sampling methodology to assess the dissipation of these miticides as well as the cross-contamination in neighboring beehives. The APIStrips are a recently developed sampling device based on the sorbent Tenax, which shows a remarkable versatility for the sorption of molecules onto its surface. This avoids the need of actively sampling apicultural matrices such as living bees, wax or reserves (honey and pollen), therefore allowing to obtain representative information of the contamination in the beehive environment in one single matrix. The results show that the amitraz-based treatments have the fastest dissipation rate (half-life of 11-14 days), whereas tau-fluvalinate and coumaphos remain inside the beehive environment for longer time periods, with a half-life up to 39 days. In the present study, tau-fluvalinate originated an intense cross-contamination, as opposed to coumaphos and amitraz. This study also demonstrates the contribution of drifting forager bees in the pesticide cross-contamination phenomena. Moreover, the sampling of adult living bees has been compared to the APIStrip-based sampling, and the experimental results show that the latter is more effective and consistent than traditional active sampling strategies. The active substances included in this study do not migrate to the honey from the treated colonies in significant amounts.


Assuntos
Acaricidas , Praguicidas , Varroidae , Animais , Criação de Abelhas , Abelhas , Cumafos
10.
BMC Vet Res ; 17(1): 179, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931072

RESUMO

BACKGROUND: The varroa mite is one of the main causes of honey bee mortality. An important mechanism by which honey bees increase their resistance against this mite is the expression of suppressed mite reproduction. This trait describes the physiological inability of mites to produce viable offspring and was found associated with eight genomic variants in previous research. RESULTS: This paper presents the development and validation of high-throughput qPCR assays with dual-labeled probes for discriminating these eight single-nucleotide variants. Amplicon sequences used for assay validation revealed additional variants in the primer/probe binding sites in four out of the eight assays. As for two of these the additional variants interfered with the genotyping outcome supplementary primers and/or probes were developed. Inclusion of these primers and probes in the assay mixes allowed for the correct genotyping of all eight variants of interest within our bee population. CONCLUSION: These outcomes underline the importance of checking for interfering variants in designing qPCR assays. Ultimately, the availability of this assay allows genotyping for the suppressed mite reproduction trait and paves the way for marker assisted selection in breeding programs.


Assuntos
Abelhas/genética , Abelhas/parasitologia , Interações Hospedeiro-Parasita/genética , Animais , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/fisiologia , Varroidae
11.
Sci Rep ; 11(1): 9133, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911144

RESUMO

Cell recapping is a behavioural trait of honeybees (Apis mellifera) where cells with developing pupae are uncapped, inspected, and then recapped, without removing the pupae. The ectoparasitic mite Varroa destructor, unarguably the most destructive pest in apiculture world-wide, invades the cells of developing pupae to feed and reproduce. Honeybees that target mite infested cells with this behaviour may disrupt the reproductive cycle of the mite. Hence, cell recapping has been associated with colony-level declines in mite reproduction. In this study we compared the colony-level efficacy of cell recapping (how often infested cells are recapped) to the average mite fecundity in A. mellifera. Our study populations, known to be adapted to V. destructor, were from Avignon, France, Gotland, Sweden, and Oslo, Norway, and were compared to geographically similar, treated control colonies. The results show that colonies with a higher recapping efficacy also have a lower average mite reproductive success. This pattern was likely driven by the adapted populations as they had the largest proportion of highly-targeted cell recapping. The consistent presence of this trait in mite-resistant and mite-susceptible colonies with varying degrees of expression may make it a good proxy trait for selective breeding on a large scale.


Assuntos
Abelhas/parasitologia , Varroidae/crescimento & desenvolvimento , Animais , Abelhas/crescimento & desenvolvimento , Feminino , Interações Hospedeiro-Parasita , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Reprodução , Varroidae/fisiologia
12.
Viruses ; 13(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920919

RESUMO

The ectoparasitic mite, Varroa destructor, feeds directly on honey bees and serves as a vector for transmitting viruses among them. The Varroa mite causes relatively little damage to its natural host, the Eastern honey bee (Apis cerana) but it is the most devastating pest for the Western honey bee (Apis mellifera). Using Illumina HiSeq sequencing technology, we conducted a metatranscriptome analysis of the microbial community associated with Varroa mites. This study led to the identification of a new Chinese strain of Varroa destructor virus-2 (VDV-2), which is a member of the Iflaviridae family and was previously reported to be specific to Varroa mites. A subsequent epidemiological investigation of Chinese strain of VDV-2 (VDV-2-China) showed that the virus was highly prevalent among Varroa populations and was not identified in any of the adult workers from both A. mellifera and A.cerana colonies distributed in six provinces in China, clearly indicating that VDV-2-China is predominantly a Varroa-adapted virus. While A. mellifera worker pupae exposed to less than two Varroa mites tested negative for VDV-2-China, VDV-2-China was detected in 12.5% of the A. mellifera worker pupae that were parasitized by more than 10 Varroa mites, bringing into play the possibility of a new scenario where VDV-2 could be transmitted to the honey bees during heavy Varroa infestations. Bioassay for the VDV-2-China infectivity showed that A. cerana was not a permissive host for VDV-2-China, yet A. mellifera could be a biological host that supports VDV-2-China's replication. The different replication dynamics of the virus between the two host species reflect their variation in terms of susceptibility to the virus infection, posing a potential threat to the health of the Western honey bee. The information gained from this study contributes to the knowledge concerning genetic variabilities and evolutionary dynamics of Varroa-borne viruses, thereby enhancing our understanding of underlying molecular mechanisms governing honey bee Varroosis.


Assuntos
Infecções por Vírus de RNA/virologia , Vírus de RNA , Varroidae/virologia , Animais , Abelhas/parasitologia , China , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação
13.
Pest Manag Sci ; 77(9): 4026-4033, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33896103

RESUMO

BACKGROUND: A national survey on pesticides in recycled beeswax originating from beekeeping has been conducted in Switzerland for almost three decades. It allowed obtaining a good overview of the lipophilic products used for beekeeping within the last 30 years. RESULTS: The use of the veterinary drugs containing bromopropylate or tau-fluvalinate two decades ago led to substantial residues in commercial beeswax. These contaminants are still detectable although in Switzerland the corresponding products have been out of use for many years. The level of coumaphos substantially increased in 2015 up to an annual value of 3.25 mg·kg-1 , suggesting that at least a few beekeepers used coumaphos-containing products. Consequently, an information campaign was launched, and the annual value decreased again. Maximal levels of thymol up to an annual value of 87.5 mg·kg-1 were measured in 2009. Since that time, a steady decrease of thymol residues suggests that beekeepers less frequently use thymol-containing products. Twenty-five years ago, 1,4-dichlorobenzene (PDCB) was widely used for the control of the wax moth, resulting in residues in beeswax up to an annual value of 10.9 mg·kg-1 whereas nowadays, PDCB residues are rarely detected in Swiss beeswax. CONCLUSIONS: Our survey illustrates that several beekeeping-associated pesticides persist in recycled beeswax for many years. Most recent analyses show lower residue levels in Swiss beeswax as compared to previous years. Nowadays Swiss beekeepers mostly use hydrophilic substances for treatment against the Varroa destructor that do not accumulate in beeswax, thus reducing exposure of the honey bees to lipophilic contaminants.


Assuntos
Acaricidas , Resíduos de Praguicidas , Varroidae , Acaricidas/análise , Animais , Criação de Abelhas , Abelhas , Resíduos de Praguicidas/análise , Suíça , Ceras
14.
PLoS One ; 16(4): e0250594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901245

RESUMO

Varroa destructor Anderson and Trueman, is an ectoparasitic mite of honey bees, Apis mellifera L., that has been considered a major cause of colony losses. Synthetic miticides have been developed and registered to manage this ectoparasite, however, resistance to registered pyrethroid and organophosphate Varroacides have already been reported in Canada. To test toxicity of miticides, current contact-based bioassay methods are designed to evaluate mites and bees separately, however, these methods are unlikely to give an accurate depiction of how miticides interact at the colony level. Therefore, the objective of this study was to develop a bioassay cage for testing the toxicity of miticides on honey bees and Varroa mites simultaneously using amitraz as a reference chemical. A 800 mL polypropylene plastic cage holding 100-150 bees was designed and officially named "Apiarium". A comparison of the effects of three subsequent dilutions of amitraz was conducted on: Varroa mites placed in glass vials, honey bees in glass Mason jars, and Varroa-infested bees in Apiariums. Our results indicated cumulative Varroa mortality was dose-dependent in the Apiarium after 4 h and 24 h assessments. Apiarium and glass vial treatments at 24 h also had high mite mortality and a positive polynomial regression between Varroa mortality and amitraz dose rates. Moreover, chemical application in the Apiarium was less toxic for bees compared to the Mason jar method. Considering these results, the Apiarium bioassay provides a simple, cheap and reliable method for simultaneous chemical screening on V. destructor and A. mellifera. Furthermore, as mites and bees are tested together, the Apiarium simulates a colony-like environment that provides a necessary bridge between laboratory bioassay testing and full field experimentation. The versatility of the Apiarium allows researchers to test a multitude of different honey bee bioassay experiments including miticide screening, delivery methods for chemical products, or development of new mite resistance-testing methodology.


Assuntos
Abelhas/parasitologia , Bioensaio/métodos , Varroidae/fisiologia , Animais , Abelhas/efeitos dos fármacos , Análise de Sobrevida , Toluidinas/farmacologia , Varroidae/efeitos dos fármacos
15.
J Econ Entomol ; 114(3): 1310-1320, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33822096

RESUMO

The honey bee is a significant crop pollinator and key model insect for understanding social behavior, disease transmission, and development. The ectoparasitic Varroa destructor mite put threats on the honey bee industry. A Varroa toxic protein (VTP) from the saliva of Varroa mites contributes to the toxicity toward Apis cerana and the deformed wing virus elevation in Apis mellifera. However, the immune response and hemolymph microbiota of honey bee species after the injection of recombinant VTP has not yet been reported. In this study, both A. cerana and A. mellifera worker larvae were injected with the recombinant VTP. Then the expressions of the honey bee immune genes abaecin, defensin, and domeless at three time points were determined by qRT-PCR, and hemolymph microbial community were analyzed by culture-dependent method, after recombinant VTP injection. The mortality rates of A. cerana larvae were much higher than those of A. mellifera larvae after VTP challenge. VTP injection induced the upregulation of defensin gene expression in A. mellifera larvae, and higher levels of abaecin and domeless mRNAs response in A. cerana larvae, compared with the control (without any injection). Phosphate buffer saline (PBS) injection also upregulated the expression levels of abaecin, defensin, and domeless in A. mellifera and A. cerana larvae. Three bacterial species (Enterococcus faecalis, Staphylococcus cohnii, and Bacillus cereus) were isolated from the hemolymph of A. cerana larvae after VTP injection and at 48 h after PBS injections. Two bacterial species (Stenotrophomonas maltophilia and Staphylococcus aureus) were isolated from A. mellifera larvae after VTP challenge. No bacterial colonies were detected from the larval hemolymph of both honey bee species treated by injection only and the control. The result indicates that abaecin, defensin, and domeless genes and hemolymph microbiota respond to the VTP challenge. VTP injection might induce the dramatic growth of different bacterial species in the hemolymph of the injected larvae of A. mellifera and A. cerana, which provide cues for further studying the interactions among the honey bee, VTP, and hemolymph bacteria.


Assuntos
Microbiota , Varroidae , Animais , Abelhas , Hemolinfa , Imunidade , Vírus de RNA , Staphylococcus
16.
Viruses ; 13(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915836

RESUMO

State-of-the-art virus detection technology has advanced a lot, yet technology to evaluate the impacts of viruses on bee physiology and health is basically lacking. However, such technology is sorely needed to understand how multi-host viruses can impact the composition of the bee community. Here, we evaluated the potential of hemolymph metabolites as biomarkers to identify the viral infection status in bees. A metabolomics strategy based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was implemented. First, we constructed a predictive model for standardized bumble bees, in which non-infected bees were metabolically differentiated from an overt Israeli acute paralysis virus (IAPV) infection (R2Y = 0.993; Q2 = 0.906), as well as a covert slow bee paralysis virus (SBPV) infection (R2Y = 0.999; Q2 = 0.875). Second, two sets of potential biomarkers were identified, being descriptors for the metabolomic changes in the bee's hemolymph following viral infection. Third, the biomarker sets were evaluated in a new dataset only containing wild bees and successfully discriminated virus infection versus non-virus infection with an AUC of 0.985. We concluded that screening hemolymph metabolite markers can underpin physiological changes linked to virus infection dynamics, opening promising avenues to identify, monitor, and predict the effects of virus infection in a bee community within a specific environment.


Assuntos
Hemolinfa/metabolismo , Metaboloma , Varroidae/virologia , Viroses/veterinária , Vírus/metabolismo , Animais , Biomarcadores/análise , Hemolinfa/química , Metabolômica/métodos , Fenômenos Fisiológicos Virais
17.
Sensors (Basel) ; 21(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919886

RESUMO

The Varroa destructor mite is one of the most dangerous Honey Bee (Apis mellifera) parasites worldwide and the bee colonies have to be regularly monitored in order to control its spread. In this paper we present an object detector based method for health state monitoring of bee colonies. This method has the potential for online measurement and processing. In our experiment, we compare the YOLO and SSD object detectors along with the Deep SVDD anomaly detector. Based on the custom dataset with 600 ground-truth images of healthy and infected bees in various scenes, the detectors reached the highest F1 score up to 0.874 in the infected bee detection and up to 0.714 in the detection of the Varroa destructor mite itself. The results demonstrate the potential of this approach, which will be later used in the real-time computer vision based honey bee inspection system. To the best of our knowledge, this study is the first one using object detectors for the Varroa destructor mite detection on a honey bee. We expect that performance of those object detectors will enable us to inspect the health status of the honey bee colonies in real time.


Assuntos
Parasitos , Varroidae , Animais , Abelhas
18.
Pest Manag Sci ; 77(7): 3241-3249, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33728766

RESUMO

BACKGROUND: Managed honey bees are key pollinators of many crops and play an essential role in the United States food production. For more than ten years, beekeepers in the United States have been reporting high rates of colony losses. One of the drivers of these losses is the parasitic mite Varroa destructor. Maintaining healthy honey bee colonies in the United States is dependent on a successful control of this mite. The pyrethroid tau-fluvalinate (Apistan®) was among the first synthetic varroacides registered in the United States. With over 20 years of use, mites resistant to Apistan® have emerged, and so it is unsurprising that treatment failures have been reported. Resistance to tau-fluvalinate in US mite populations is associated with point mutations at position 925 of the voltage-gated sodium channel. RESULTS: Here, we have generated a distribution map of pyrethroid resistance alleles in Varroa samples collected from US apiaries in 2016 and 2017, using a high throughput allelic discrimination assay based on TaqMan®. Our results evidence that knockdown resistance (kdr)-type mutations are widely distributed in Varroa populations across the country showing high variability among apiaries. We used these data to predict the phenotype of the mites in the case of treatments with pyrethroids. CONCLUSION: We highlight the relevance of monitoring the resistance in mite populations to achieve an efficient control of this pest. We also put forward the benefits of implementing this methodology to provide data for designing pest management programs aiming to control Varroa. © 2021 Society of Chemical Industry.


Assuntos
Parasitos , Piretrinas , Varroidae , Canais de Sódio Disparados por Voltagem , Animais , Abelhas , Mutação , Piretrinas/farmacologia , Estados Unidos
19.
Sci Total Environ ; 769: 145213, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736246

RESUMO

The aim of this study was to investigate reported cases of honeybee mortality incidents and the potential association to pesticide exposure and to their metabolites. The same honeybee samples were also assessed for Varroa mites, and Nosema microsporidia provoked infections to provide an integrated picture of all observable stressors that may impact bees' survival. Thus, honeybee samples from different areas of Greece (2014-2018) were analyzed for the presence of pesticide residues and metabolites. In this context, an existing LC-ESI-QqQ-MS multiresidue method of analytes of different chemical classes such as neonicotinoids, organophosphates, triazoles, carbamates, was enriched with additional active substances, developed and validated. A complementary GC-EI-QqQ-MS method was also exploited for the same scope covering pyrethroid compounds. Both methods monitored more than 150 active substances and metabolites and presented acceptable linearity over the ranges assayed. The calculated recoveries ranged from 65 to 120% for the three concentration levels, while the precision (RSD%) values ranged between 4 and 15%. Therefore, this approach proved sufficient to act as a monitoring tool for the determination of pesticide residues in cases of suspected honeybee poisoning incidents. From the analysis of 320 samples, the presence of 70 active substances and metabolites was confirmed with concentrations varying from 1.4 ng/g to 166 µg/g. Predominant detections were the acaricide coumaphos, several neonicotinoids exemplified by clothianidin, organophosporous compounds dimethoate and chlorpyrifos, and some pyrethroids. Metabolites of imidacloprid, chlorpyrifos, coumaphos, acetamiprid, fenthion and amitraz were also identified. Concerning Nosema and Varroa they were identified in 27 and 22% of samples examined, respectively, verifying their prevalence and coexistence with pesticides and their metabolites in honeybees.


Assuntos
Nosema , Resíduos de Praguicidas , Praguicidas , Varroidae , Animais , Abelhas , Grécia , Resíduos de Praguicidas/análise , Praguicidas/análise
20.
Exp Appl Acarol ; 83(4): 527-544, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33687585

RESUMO

The ectoparasite Varroa (Acari: Varroidae) is considered to be the main pest of honey bees (Apis mellifera L.) in Nicaragua. The aim of this study was to determine morphotypes and mitochondrial haplotypes of the Varroa mites, related to infestation levels in A. mellifera hives in Nicaragua in a cross-sectional study (2013-2016). Samples were taken from 34 sentinel apiaries in five geographical zones; from 713 Varroa females collected during the study, 153 were selected for measurement of various morphometric characters for further classification into morphotypes. The mitochondrial haplotype was assigned to one of the two (Korean or Japanese), using the restriction by SacI of the PCR product of a fragment of the gene CO-I. Morphometric measurement and sequencing revealed the affiliation to the species Varroa destructor with a mean (± SD) body width of 1699.1 ± 60.2 µm and a body length of 1161.1 ± 34.9 µm. Body characters were significantly different among the 34 apiaries. Varroa destructor samples were classified into four morphotypes, with no significant differences in the geographical zones. As GAGCTC SacI enzyme cleavage sequences were not observed, all PCR products were identified as V. destructor Korean haplotype. The CO-I gene nucleotide sequences from two samples V. destructor showed both 100% similarity with the Korean haplotype and 99.8% similarity to the Japanese haplotype. Although the V. destructor mite was identified as a Korean haplotype, host-parasite association in 2 decades has led into a balance without entering into severe losses in the Nicaraguan apiculture.


Assuntos
Varroidae , Animais , Criação de Abelhas , Abelhas , Estudos Transversais , Feminino , Haplótipos , Nicarágua
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...