Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.962
Filtrar
1.
N C Med J ; 83(1): 17-21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34980647

RESUMO

Gale-force demographic disruptors such as unequal population growth can potentially prevent our state from achieving the exemplary goals and targeted outcomes set forth in Healthy North Carolina 2030 These forces also present opportunities if carefuly addressed. Policy prescriptions and strategic investments required to ensure success are outlined here, following an overview of demographic drivers that create public health vulnerabilities.


Assuntos
Equidade em Saúde , Vento , Demografia , Humanos , North Carolina , Saúde Pública
2.
Chemosphere ; 286(Pt 1): 131634, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34325266

RESUMO

One contemporary issue is how environmental pollution and climate can affect the dissemination and severity of COVID-19 in humans. We documented the first case of association between particulate matter ≤2.5 µm (PM2.5) and COVID-19 mortality rates that involved rural and medium-sized municipalities in northwestern Mexico, where direct air quality monitoring is absent. Alternatively, anthropogenic PM2.5 emissions were used to estimate the PM2.5 exposure in each municipality using two scenarios: 1) considering the fraction derived from combustion of vehicle fuel; and 2) the one derived from modeled anthropogenic sources. This study provides insights to better understand and face future pandemics by examining the relation between PM2.5 pollution and COVID-19 mortality considering the population density and the wind speed. The main findings are: (i) municipalities with high PM2.5 emissions and high population density have a higher COVID-19 mortality rate; (ii) the exceptionally high COVID-19 mortality rates of the rural municipalities could be associated to dust events, which are common in these regions where soils without vegetation are dominant; and (iii) the influence of wind speed on COVID-19 mortality rate was evidenced only in municipalities with <100 inhabitants per km2. These results confirm the suggestion that high levels of air pollutants associated with high population density and an elevated frequency of dust events may promote an extended prevalence and severity of viral particles in the polluted air of urban, suburban, and rural communities. This supports an additional means of dissemination of the coronavirus SARS-CoV-2, in addition to the direct human-to-human transmission.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Densidade Demográfica , População Rural , SARS-CoV-2 , Vento
3.
Sci Total Environ ; 806(Pt 2): 150580, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592301

RESUMO

The mid- and long-term evolution of wind energy resources in North America is investigated by means of a multi-model ensemble selected from 18 global climate models. The most recent scenarios of greenhouse gases emissions and land use, the Shared Socioeconomic Pathways (SSPs), are considered - more specifically, the SSP5-8.5 (intensive emissions) and SSP2-4.5 (moderate emissions). In both scenarios, onshore wind power density in the US and Canada is predicted to drop. Under SSP5-8.5, the reduction is of the order of 15% overall, reaching as much as 40% in certain northern regions - Quebec and Nunavut in Canada and Alaska in the US. Conversely, significant increases in wind power density are predicted in Hudson Bay (up to 25%), Texas and northern Mexico (up to 15%), southern Mexico and Central America (up to 30%). As for the intra-annual variability, it is poised to rise drastically, with monthly average wind power densities increasing up to 120% in certain months and decreasing up to 60% in others. These changes in both the mean value and the intra-annual variability of wind power density are of consequence for the Levelised Cost of Energy from wind, the planning of future investments and, more generally, the contribution of wind to the energy mix.


Assuntos
Mudança Climática , Vento , Previsões , Texas
4.
Sci Total Environ ; 804: 150165, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509853

RESUMO

This paper is based on the fact that some climatic variables show a preferential directionality and grant a markedly anisotropic character to the weathering system acting on rocks. The aim of this work is to quantify the anisotropic degree of the weathering system and its effects on rock erosion. For this purpose, a new methodology based on the vector analysis of directional and time-dependent parameters is proposed to quantify the annual or seasonal anisotropy of the weathering system. Results show that, on the one hand, wind-driven rain and solar radiation are the most anisotropic variables, being north and east the most intense directions for wind-driven rain and southeast for solar radiation, in the case of the San José Tower, the reference monument of this study. On the other hand, the ranking from the most to the least eroded façades of the tower are: east (maximum recession depth of 26.77 mm) > south (15.53 mm) ≈ west (13.56 mm) > north (6.37 mm). Solar radiation and indirect processes arising therefrom are the most important weathering agents in the semiarid Mediterranean climate, whilst wind-driven rain is the main erosion factor especially due to its torrential character. According to our results, weathering and erosion agents are strongly anisotropic, which emphasizes the importance of integrating the anisotropic character of the weathering system in preventive strategies against surface deterioration of monuments. In this sense, this paper advances the United Nations' 2030 Agenda for Sustainable Development.


Assuntos
Chuva , Tempo (Meteorologia) , Anisotropia , Espanha , Vento
5.
Chemosphere ; 287(Pt 3): 132307, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34562703

RESUMO

The chemistry of rainwater is controlled by the interaction among water, airborne particles and gas sources, whether natural or human-made. This article analyzes the chemical composition dynamics of individual rainfall events collected over a three-year period in the densely populated city of Córdoba (Argentina). The main purpose is to identify the natural and/or anthropogenic sources, and the extent to which they determine the seasonal chemical signature exhibited by wet precipitation in the heart of the South Eastern South America. The results reveal that, despite geogenic components are only minor constituents of the airborne particles in downtown Córdoba, they appear to be the main source of solutes in rainwaters, also responsible for the alkaline water pH that predominates most of the year. This fraction mostly corresponds to wind-blown soil particles transported either from local or distant sources, with rare earth elements (REE) patterns similar to those of rainwaters produced during the dry season. Anthropogenic contributions are only evident during the wet season, when rainwater shows REE patterns similar to those of industrial emissions and exhibits moderate enrichment of heavy metals such as Cu and Zn, derived from soluble compounds used in agricultural activities (e.g, sowing, fertilizing). With the exception of these two metals, the remaining heavy metals are depleted in rainwater suggesting that the airborne conveying compounds (mostly anthropogenic) are barely soluble.


Assuntos
Monitoramento Ambiental , Metais Pesados , Cidades , Humanos , Metais Pesados/análise , Estações do Ano , Vento
6.
Environ Pollut ; 292(Pt A): 118216, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626916

RESUMO

Sea-based sources account for 32-50 % of total marine litter found at the European basins with the fisheries sector comprising almost 65 % of litter releases. In the south-east coastal waters of the Bay of Biscay this figure approaches the contribution of just the floating marine litter fraction. This study seeks to enhance knowledge on the distribution patterns of floating marine litter generated by the fisheries sector within the Bay of Biscay and in particular on target priority Marine Protected Areas (MPAs) to reinforce marine litter prevention and mitigation policies. This objective is reached by combining the data on geographical distribution and intensity of fishing activity, long-term historical met-ocean databases, Monte Carlo simulations and Lagrangian modelling with floating marine litter source and abundance estimates for the Bay of Biscay. Results represent trajectories for two groups of fishing-related items considering their exposure to wind; they also provide their concentration within 34 MPAs. Zero windage coefficient is applied for low buoyant items not subjected to wind effect. Highly buoyant items, strongly driven by winds, are forced by currents and winds, using a windage coefficient of 4 %. Results show a high temporal variability on the distribution for both groups consistent with the met-ocean conditions in the area. Fishing-related items driven by a high windage coefficient rapidly beach, mainly in summer, and are almost non-existent on the sea surface after 90 days from releasing. This underlines the importance of windage effect on the coastal accumulation for the Bay of Biscay. Only around 20 % of particles escaped through the boundaries for both groups which gives added strength to the notion that the Bay of Biscay acts as accumulation region for marine litter. MPAs located over the French continental shelf experienced the highest concentrations (>75 particles/km2) suggesting their vulnerability and need for additional protection measures.


Assuntos
Plásticos , Resíduos , Baías , Monitoramento Ambiental , Plásticos/análise , Resíduos/análise , Vento
7.
Sci Total Environ ; 806(Pt 3): 151354, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728205

RESUMO

With ever greater frequency, wetlands and shallow lakes that had been diverted for agriculture are being re-established to reduce nutrient loss and greenhouse gas emission, as well as to increase biodiversity. Here, we investigate drivers of water column light attenuation (Kd) at multiple time scales and locations in Lake Fil, Denmark, during the first five years after its re-establishment in 2012. We found that Kd was generally high (overall mean: 3.4 m-1), with resuspended sediment particles and colored dissolved organic matter being the main contributors. Using daily time series of light attenuation recorded at four stations, we used a generalized additive model to analyze the influence of wind speed and direction on Kd. This model explained a high proportion of the variation (R2 = 0.62, RMSE = 0.74 m-1, and MAE = 0.55 m-1) and showed that higher wind speed increased Kd on the same day and, with smaller influence, on the next day. Furthermore, we found a significant influence of wind direction and an interaction between wind speed and wind direction, a combination that suggests that short-term variations in light climate depends on the interplay between wind direction and sources of particles. Wind from non-prevailing directions thus influence Kd more, as it can activate previously deposited particles. The maximum colonization depths of submerged vegetation occurred at ~2-6% of sub-surface light from 2014 to 2016 and peaked at 1.2 m in 2016. The fast, day-to-day variation of Kd in Lake Fil reveals the importance of wind on light climate and in turn biological elements such as phytoplankton and submerged macrophyte development in shallow lakes. The implications are essential for the prior planning and management of future lake re-establishment.


Assuntos
Lagos , Vento , Clima , Fitoplâncton
8.
Sci Total Environ ; 806(Pt 4): 151374, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740658

RESUMO

In this study, we empirically developed a robust model (the Root Mean Square Error (RMSE), bias, NSE and RE were 26.63 mg/L, -4.86 mg/L, 0.47 and 16.47%, respectively) for estimating the total suspended solids (TSS) concentrations in lakes and reservoirs (Hereinafter referred to as lakes) across the Eastern Plain Lake (EPL) Zone. The model was based on 700 in-situ TSS samples collected during 2007-2020 and logarithmic transformed red band reflectance of Landsat data. Based on the Google Earth Engine (GEE), the TSS concentrations in 16,804 lakes were mapped from 1984 to 2019. The results demonstrated a decreasing tendency of TSS in 82.2% of the examined lakes (72.5% of the basins) indicating that the pollutants carried by TSS flowing into the lakes were decreasing. Statistically significant variation (p < 0.05) was found in half of these lakes (28.6% of the basins). High TSS level (>100 mg/L) was observed in 0.31% of lakes (1.1% of the basins). The changing rates of TSS in 47.8% of the lakes (52.7% of the basins) ranged between -50 mg/L/yr and 0. We found high and significantly increased relative spatial heterogeneity of TSS in 4.6% and 6.5% of lakes, respectively. Likewise, the environmental factors, i.e., fertilizer usage, domestic wastewater, industrial wastewater, precipitation, wind speed and Normalized Difference Vegetation Index (NDVI) exhibited a significant correlation with interannual TSS in 38, 21, 20, 11, 17 and 15 of the 91 basins, respectively. This analysis indicated that only precipitation and fertilizer usage were significantly (p < 0.05) related to the spatial distribution of TSS. The relative contributions of the six factors to the interannual TSS changes were varied in different basins. Overall, the NDVI (the representation of vegetation cover) had a high mean contribution to the interannual TSS changes with an average contribution of 7.2%, and contributions of fertilizer were varied greatly among the basins (0.01%-68%). Human activities (fertilizer usage, domestic wastewater, industrial wastewater) and natural factors (precipitation, wind speed and NDVI) played relatively important roles to TSS changes in 14 and 15 of the 91 basins, respectively. Beyond the six factors in this study, other unanalyzed factors (such as lake depth and soil texture) also had some impacts on the distribution of TSS in the study area.


Assuntos
Monitoramento Ambiental , Lagos , China , Humanos , Vento
9.
J Environ Manage ; 302(Pt A): 113994, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34741945

RESUMO

53,000 tonnes of blade waste from on-shore wind farms will potentially be generated in Ireland by 2040. The recycling of blades, which are made from composite material, is costly and thus far no high volume recycling solution exists. Repurposing blades into second life structures is an alternative which is gaining in popularity, but has many challenges. Green Public Procurement has the potential to help drive demand for blade products in Irish public works. The Re-Wind project has generated a Design Atlas with 47 blade product concepts and these are screened for their ability to overcome repurposing challenges. Three Irish scenarios are developed based on this ranking, maximal utilization of the blade, and on the end customer. Life Cycle Assessment is used to determine the marginal environmental impacts of the raw material substitution provided by the use of blade material. Focusing on greenhouse gas emissions, an estimated 342 kg CO2 e can be saved for every tonne of blade waste used in these scenarios. Blade substitution of steel products was found to provide the most impact, followed by substitution of concrete products. Although repurposing is unlikely to offer an end-of-life solution for all Irish blade waste, the use of 20% of this material annually would divert 315 tonnes of blade waste from landfill, as well as avoiding emissions of 71,820 kg CO2 e. Green procurement has the potential to create a demand for repurposed blade products, which in turn could create jobs in high unemployment areas. Utilization of repurposed, local material could contribute to creating resiliency in supply chains. Both job creation and supply chain resiliency are essential for a post-Covid recovery in Ireland.


Assuntos
COVID-19 , Fontes Geradoras de Energia , Animais , Humanos , Estágios do Ciclo de Vida , SARS-CoV-2 , Vento
10.
Sci Total Environ ; 806(Pt 4): 151462, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742803

RESUMO

Wildfires are becoming an increasing threat to many communities worldwide. There has been substantial progress towards understanding the proximal causes of increased fire activity in recent years at regional and national scales. However, subcontinental scale examinations of the commonalities and differences in the drivers of fire activity across different regions are rare in the Mediterranean zone of the European Union (EUMed). Here, we first develop a new classification of EUMed pyroregions, based on grouping different ecoregions with similar seasonal patterns of burned area. We then examine the thresholds associated with fire activity in response to different drivers related to fuel moisture, surface meteorology and atmospheric stability. We document an overarching role for variation in dead fuel moisture content (FMd), or its atmospheric proxy of vapor pressure deficit (VPD), as the major driver of fire activity. A proxy for live fuel moisture content (EVI), wind speed (WS) and the Continuous Haines Index (CH) played secondary, albeit important, roles. There were minor differences in the actual threshold values of FMd (10-12%), EVI (0.29-0.36) and CH (4.9-5.5) associated with the onset of fire activity across pyroregions with peak fire seasons in summer and fall, despite very marked differences in mean annual burned area and fire size range. The average size of fire events increased with the number of drivers exceeding critical thresholds and reaching increasingly extreme values of a driver led to disproportionate increases in the likelihood of a fire becoming a large fire. For instance, the percentage of fires >500 ha increased from 2% to 25% as FMd changed from the wettest to the driest quantile. Our study is among the first to jointly address the roles of fuel moisture, surface meteorology and atmospheric stability on fire activity in EUMed and provides novel insights on the interactions across fire activity triggers.


Assuntos
Tempo (Meteorologia) , Incêndios Florestais , Europa (Continente) , Estações do Ano , Vento
11.
Sci Total Environ ; 803: 149991, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482137

RESUMO

The green powering of electrochemically-assisted soil remediation processes had been strongly discouraged. Low remediation efficiencies have been reported as a consequence of the reversibility of the transport processes when no power is applied to the electrodes, due to the intermittent powering of renewable sources. However, it has been missed a deeper evaluation from the environmental point of view. This work goes further and seeks to quantify, using life cycle assessment tools, the environmental impacts related to the electro-kinetic treatments powered by different sources: grid (Spanish energy mix), photovoltaic and wind sources. The global warming potential and the ozone depletion showed higher environmental impacts in case of using green energies, associated with the manufacturing of the energy production devices. In contrast to that, results pointed out the lowest water consumption for the treatment powered with solar panels. The huge water requirements to produce energy, considering a Spanish energy mix, drop the sustainability of this powering strategy in terms of water footprint. Regarding toxicities, the pollutant toxicity was highly got rid of after 15 days of treatment, regardless the powering source used. Nevertheless, the manufacturing of energy and green energy production devices has a huge impact into the toxicity of the remediation treatments, increasing massively the total toxicity of the process, being this effect less prominent by the electro-kinetic treatment solar powered. In view of the overall environmental impact assessed, according to mid and endpoint impact categories, it can be claimed that, despite the high energy requirements and affectation to the global warming potential, the use of solar power is a more sustainable alternative to remediate polluted soils by electrochemical techniques.


Assuntos
Recuperação e Remediação Ambiental , Energia Solar , Fontes de Energia Elétrica , Meio Ambiente , Solo , Vento
12.
J Environ Manage ; 301: 113913, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731942

RESUMO

In-situ burning can be used to prevent oil spreading in oil spill response. In this study, a steady-state Gaussian plume model was applied to analyze the concentration distribution of fine particulate matter produced by in-situ burning, as well as to assess the health risks associated with different combustion methods and ambient conditions, in reference to three simulation scenarios. The spatial and temporal distribution of emission sources can affect the dispersion pattern. The distribution into an array of different burning locations ensures better dispersion of emissions, thereby preventing the formation of high concentration regions. The wind and atmosphere stability play an important role in pollution dispersion. Lower wind and temperature inversion can seriously hinder the diffusion of pollutants. The health risk to technical staff adjacent to the burning areas is a serious concern, and when the community is more than 20 km away from the burning zone, there is few risks. Through simulation, the influences of combustion methods and natural factors on the concentration and diffusion of pollutants are evaluated. The results can help provide an optimized burning strategy for oil spill response in the Arctic area.


Assuntos
Poluentes Atmosféricos , Poluição por Petróleo , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Vento
13.
Artigo em Inglês | MEDLINE | ID: mdl-34948637

RESUMO

Considering the influence of the downslope windstorm called "Vento Norte" (VNOR; Portuguese for "North Wind") in planetary boundary layer turbulent features, a new set of turbulent parameterizations, which are to be used in atmospheric dispersion models, has been derived. Taylor's statistical diffusion theory, velocity spectra obtained at four levels (3, 6, 14, and 30 m) in a micrometeorological tower, and the energy-containing eddy scales are used to calculate neutral planetary boundary layer turbulent parameters. Vertical profile formulations of the wind velocity variances and Lagrangian decorrelation time scales are proposed, and to validate this new parameterization, it is applied in a Lagrangian Stochastic Particle Dispersion Model to simulate the Prairie Grass concentration experiments. The simulated concentration results were shown to agree with those observed.


Assuntos
Modelos Teóricos , Vento , Difusão
14.
Sci Rep ; 11(1): 23378, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916540

RESUMO

Emissions of black carbon (BC) particles from anthropogenic and natural sources contribute to climate change and human health impacts. Therefore, they need to be accurately quantified to develop an effective mitigation strategy. Although the spread of the emission flux estimates for China have recently narrowed under the constraints of atmospheric observations, consensus has not been reached regarding the dominant emission sector. Here, we quantified the contribution of the residential sector, as 64% (44-82%) in 2019, using the response of the observed atmospheric concentration in the outflowing air during Feb-Mar 2020, with the prevalence of the COVID-19 pandemic and restricted human activities over China. In detail, the BC emission fluxes, estimated after removing effects from meteorological variability, dropped only slightly (- 18%) during Feb-Mar 2020 from the levels in the previous year for selected air masses of Chinese origin, suggesting the contributions from the transport and industry sectors (36%) were smaller than the rest from the residential sector (64%). Carbon monoxide (CO) behaved differently, with larger emission reductions (- 35%) in the period Feb-Mar 2020, suggesting dominance of non-residential (i.e., transport and industry) sectors, which contributed 70% (48-100%) emission during 2019. The estimated BC/CO emission ratio for these sectors will help to further constrain bottom-up emission inventories. We comprehensively provide a clear scientific evidence supporting mitigation policies targeting reduction in residential BC emissions from China by demonstrating the economic feasibility using marginal abatement cost curves.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , COVID-19/prevenção & controle , Material Particulado/análise , SARS-CoV-2/isolamento & purificação , Fuligem/análise , Algoritmos , Atmosfera/análise , COVID-19/epidemiologia , COVID-19/virologia , China , Mudança Climática , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Geografia , Atividades Humanas , Humanos , Modelos Teóricos , Pandemias , Características de Residência , SARS-CoV-2/fisiologia , Estações do Ano , Vento
15.
Zhen Ci Yan Jiu ; 46(12): 1036-42, 2021 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-34970881

RESUMO

OBJECTIVE: To explore the therapeutic effect of acupuncture combined with thunder-fire moxibustion on cervical spondylotic radiculopathy of wind-cold-damp type and its impacts on the conduction velocity of F wave of median nerve and ulnar nerve, as well as hypersensitive C-responsive protein (hs-CRP), interleukin 6 (IL-6), IL-1ß and tumor necrosis factor α (TNF-α) in serum. METHODS: A total of 94 patients with cervical spondylotic radiculopathy of wind-cold-damp type were randomly divided into a control group and a combined therapy group, 47 cases in each group. In the control group, acupuncture was applied to Fengchi (GV20), Tianzhu (BL10), Neck-Jiaji (EX-B5), Dazhui (GV14) and others, 30 min each time, once daily, 5 times a week, totally for 4 weeks. In the combined therapy group, on the base of the treatment as the control group, the thunder-fire moxibustion was adopted over GV20, EX-B5, GV14, Jianjing (ST21) and Tianzong (SI11), 20 min each time, once every other day, for 4 weeks in total. After the treatment, the curative effect was compared in the patients between two groups. The short-form McGill pain questionnaire (SF-MPQ), the neck specificity scale and the MOS 36-item short form health survey (SF-36) were scored. The conduction velocity of F wave in median nerve and ulnar nerve was detected by electromyography. The expression of hs-CRP was measured by immunoturbidimetry. IL-6, IL-1ß and TNF-α in serum were determined by enzyme linked immunosorbent assay. RESULTS: The total effective rate in the combined therapy group was 95.7% (45/47), which was higher than 80.9% (38/47) in the control group (P<0.05). Compared with their own pretreatment, the scores of SF-MPQ, neck specificity scale and SF-36 were all obviously improved after treatment in the patients of either group (P<0.05), while the conduction velocity of F wave in median nerve and ulnar nerve was accelerated and hs-CRP, IL-6, IL-1ß and TNF-α in serum were decreased (P<0.05). Compared with the control group, the improvements in the scores of SF-MPQ, neck specificity scale and SF-36 were more obvious (P<0.05), the increase of the conduction velocity of F wave in median nerve and ulnar nerve and the decrease of hs-CRP, IL-6, IL-1ß and TNF-α in serum were more remarkable (P<0.05) in the combined therapy group. CONCLUSION: Acupuncture combined with thunder-fire moxibustion relieves the clinical symptoms of cervical spondylotic radiculopathy of wind-cold-damp type.


Assuntos
Terapia por Acupuntura , Moxibustão , Radiculopatia , Pontos de Acupuntura , Humanos , Radiculopatia/terapia , Vento
16.
BMC Infect Dis ; 21(1): 1194, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837983

RESUMO

BACKGROUND: To examine whether outdoor transmission may contribute to the COVID-19 epidemic, we hypothesized that slower outdoor wind speed is associated with increased risk of transmission when individuals socialize outside. METHODS: Daily COVID-19 incidence reported in Suffolk County, NY, between March 16th and December 31st, 2020, was the outcome. Average wind speed and maximal daily temperature were collated by the National Oceanic and Atmospheric Administration. Negative binomial regression was used to model incidence rates while adjusting for susceptible population size. RESULTS: Cases were very high in the initial wave but diminished once lockdown procedures were enacted. Most days between May 1st, 2020, and October 24th, 2020, had temperatures 16-28 °C and wind speed diminished slowly over the year and began to increase again in December 2020. Unadjusted and multivariable-adjusted analyses revealed that days with temperatures ranging between 16 and 28 °C where wind speed was < 8.85 km per hour (KPH) had increased COVID-19 incidence (aIRR = 1.45, 95% C.I. = [1.28-1.64], P < 0.001) as compared to days with average wind speed ≥ 8.85 KPH. CONCLUSION: Throughout the U.S. epidemic, the role of outdoor shared spaces such as parks and beaches has been a topic of considerable interest. This study suggests that outdoor transmission of COVID-19 may occur by noting that the risk of transmission of COVID-19 in the summer was higher on days with low wind speed. Outdoor use of increased physical distance between individuals, improved air circulation, and use of masks may be helpful in some outdoor environments where airflow is limited.


Assuntos
COVID-19 , Vento , Controle de Doenças Transmissíveis , Humanos , SARS-CoV-2 , Temperatura
17.
Sci Rep ; 11(1): 22027, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764317

RESUMO

Rising temperature levels during spring and summer are often argued to enable lifting of strict containment measures even in the absence of herd immunity. Despite broad scholarly interest in the relationship between weather and coronavirus spread, previous studies come to very mixed results. To contribute to this puzzle, the paper examines the impact of weather on the COVID-19 pandemic using a unique granular dataset of over 1.2 million daily observations covering over 3700 counties in nine countries for all seasons of 2020. Our results show that temperature and wind speed have a robust negative effect on virus spread after controlling for a range of potential confounding factors. These effects, however, are substantially larger during mealtimes, as well as in periods of high mobility and low containment, suggesting an important role for social behaviour.


Assuntos
COVID-19/epidemiologia , Humanos , Umidade , Pandemias , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Estações do Ano , Comportamento Social , Temperatura , Tempo (Meteorologia) , Vento
18.
Artigo em Inglês | MEDLINE | ID: mdl-34770197

RESUMO

Urban ventilation is being hampered by rough surfaces in dense urban areas, and the microclimate and air quality of the urban built environment are not ideal. Identifying urban ventilation paths is helpful to save energy, reduce emissions, and improve the urban ecological environment. Wuhan is the capital city of Hubei, and it has a high urban built intensity and hot summers. Taking Wuhan city, with a size of 35 km ×50 km, as an example, the built environment was divided into grids of 100 m × 100 m and included the building density, floor area ratio, and average building height. The ventilation mechanism of the urban built intensity index has previously been explained. The decrease in building density is not the sole factor causing an increase in wind speed; the enclosure and width of the ventilation path and the height of the front building are also influential. Twelve urban built units were selected for CFD numerical simulation. The ventilation efficiency of each grid was evaluated by calculating the wind speed ratio, maximum wind speed, average wind speed, and area ratio of strong wind. The relationship between the urban built intensity index and ventilation efficiency index was established using the factor analysis method and the Pearson correlation coefficient; building density and average building height are the most critical indexes of ventilation potential. In addition, the layout of the building also has an important impact on ventilation. A suitable built environment is that in which the building density is less than 30%, the average building height is greater than 15 m, and the floor area ratio is greater than 1.5. The urban built intensity map was weighted to identify urban ventilation paths. The paper provides a quantitative reference for scientific planning and design of the urban spatial form to improve ventilation.


Assuntos
Poluição do Ar , Poluição do Ar/análise , Cidades , Microclima , Ventilação , Vento
19.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770296

RESUMO

Sulfur dioxide (SO2) degassing at Strombolian volcanoes is directly associated with magmatic activity, thus its monitoring can inform about the style and intensity of eruptions. The Stromboli volcano in southern Italy is used as a test case to demonstrate that the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor (Sentinel-5P) satellite has the suitable spatial resolution and sensitivity to carry out local-scale SO2 monitoring of relatively small-size, nearly point-wise volcanic sources, and distinguish periods of different activity intensity. The entire dataset consisting of TROPOMI Level 2 SO2 geophysical products from UV sensor data collected over Stromboli from 6 May 2018 to 31 May 2021 is processed with purposely adapted Python scripts. A methodological workflow is developed to encompass the extraction of total SO2 Vertical Column Density (VCD) at given coordinates (including conditional VCD for three different hypothetical peaks at 0-1, 7 and 15 km), as well as filtering by quality in compliance with the Sentinel-5P Validation Team's recommendations. The comparison of total SO2 VCD time series for the main crater and across different averaging windows (3 × 3, 5 × 5 and 4 × 2) proves the correctness of the adopted spatial sampling criterion, and practical recommendations are proposed for further implementation in similar volcanic environments. An approach for detecting SO2 VCD peaks at the volcano is trialed, and the detections are compared with the level of SO2 flux measured at ground-based instrumentation. SO2 time series analysis is complemented with information provided by contextual Sentinel-2 multispectral (in the visible, near and short-wave infrared) and Suomi NPP VIIRS observations. The aim is to correctly interpret SO2 total VCD peaks when they either (i) coincide with medium to very high SO2 emissions as measured in situ and known from volcanological observatory bulletins, or (ii) occur outside periods of significant emissions despite signs of activity visible in Sentinel-2 data. Finally, SO2 VCD peaks in the time series are further investigated through daily time lapses during the paroxysms in July-August 2019, major explosions in August 2020 and a more recent period of activity in May 2021. Hourly wind records from ECMWF Reanalysis v5 (ERA5) data are used to identify local wind direction and SO2 plume drift during the time lapses. The proposed analysis approach is successful in showing the SO2 degassing associated with these events, and warning whenever the SO2 VCD at Stromboli may be overestimated due to clustering with the plume of the Mount Etna volcano.


Assuntos
Dióxido de Enxofre , Vento , Itália , Dióxido de Enxofre/análise
20.
Exp Appl Acarol ; 85(2-4): 131-146, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609667

RESUMO

Dispersal shapes the dynamics of populations, their genetic structure and species distribution; therefore, knowledge of an organisms' dispersal abilities is crucial, especially in economically important and invasive species. In this study, we investigated dispersal strategies of two phytophagous eriophyoid mite species: Aceria tosichella (wheat curl mite, WCM) and Abacarus hystrix (cereal rust mite, CRM). Both species are obligatory plant parasites that infest cereals and are of economic significance. We investigated their dispersal success using different dispersal agents: wind and vectors. We hypothesised that in both mite species the main mode of dispersal is moving via wind, whereas phoretic dispersal is rather accidental, as the majority of eriophyoid mite species do not possess clear morphological or behavioural adaptations for phoresy. Results confirmed our predictions that both species dispersed mainly with wind currents. Additionally, WCM was found to have a higher dispersal success than CRM. Thus, this study contributes to our understanding of the high invasive potential of WCM.


Assuntos
Ácaros , Animais , Grão Comestível , Triticum , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...