Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.521
Filtrar
1.
Sci Total Environ ; 908: 168335, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939965

RESUMO

We investigated the presence of aluminium (Al) in human colon cancer samples and its potential association with biological processes involved in cancer progression, such as epithelial to mesenchymal transition (EMT) and cell death. 25 consecutive colon samples were collected from patients undergoing colonic resection. Both neoplastic and normal mucosa were collected from each patient and subjected to histological, ultrastructural and immunohistochemical analyses. Moreover, colon samples from two Al-positive patients underwent multi-omic analyses, including whole genome sequencing and RNA sequencing (RNAseq). Morin staining, used to identify in situ aluminium bioaccumulation, showed the presence of Al in tumor areas of 24 % of patients. Transmission electron microscopy and energy-dispersive X-ray microanalysis confirmed the presence of Al specifically in intracytoplasmic electrondense nanodeposits adjacent to mitochondria of colon cancer cells. Immunohistochemical analyses for vimentin and nuclear ß-catenin were performed to highlight the occurrence of the EMT phenomenon in association to Al bioaccumulation. Al-positive samples showed a significant increase in both the number of vimentin-positive and nuclear ß-catenin-positive cancer cells compared to Al-negative samples. Moreover, Al-positive samples exhibited a significant decrease in the number of apoptotic cells, as well as the expression of the anti-apoptotic molecule BCL-2. Multi-omic analyses revealed a higher tumor mutational burden (TMB) in Al-positive colon cancers (n = 2) compared to a control cohort (n = 100). Additionally, somatic mutations in genes associated with EMT (GATA3) and apoptosis (TP53) were observed in Al-positive colon cancers. In conclusion, this study provides the first evidence of Al bioaccumulation in colon cancer and its potential role in modulating molecular pathways involved in cancer progression, such as EMT and apoptosis. Understanding the molecular mechanisms underlying Al toxicity might contribute to improve strategies for prevention, early detection, and targeted therapies for the management of colon cancer patients.


Assuntos
Neoplasias do Colo , beta Catenina , Humanos , beta Catenina/metabolismo , Caderinas/genética , Caderinas/metabolismo , Vimentina/metabolismo , Alumínio , Transição Epitelial-Mesenquimal , Bioacumulação , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Apoptose , Linhagem Celular Tumoral
2.
Aging (Albany NY) ; 15(21): 12251-12263, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37934581

RESUMO

Drug resistance to chemotherapy agents presents a major obstacle to the effective treatment of hepatocellular carcinoma (HCC), a common type of liver cancer. Increasing evidence indicates a link between drug resistance and the recurrence of HCC. Polyphyllin I (PPI), a promising pharmaceutical candidate, has shown potential therapeutic advantages in the treatment of sorafenib-resistant hepatocellular carcinoma (SR-HCC cells). In this study, we sought to investigate the mechanism underlying the inhibitory effect of PPI on the invasion and metastasis of SR-HCC cells. Our in vitro studies included scratch wound-healing migration assays and transwell assays to examine PPI's effect on HCC cell migration and invasion. Flow cytometry was employed to analyze the accumulation or efflux of chemotherapy drugs. The results of these experiments demonstrated that PPI increased the susceptibility of HCC to sorafenib while inhibiting SR-HCC cell growth, migration, and invasion. Molecular docking analysis revealed that PPI exhibited a higher binding affinity with GRP78. Western blot analysis and immunofluorescence experiments showed that PPI reduced the expression of GRP78, E-cadherin, N-cadherin, Vimentin, and ABCG2 in SR-HCC cells. Interference with and overproduction of GRP78 in vitro impacted the proliferation, migration, invasion, and metastasis of HCC cells. Further examination revealed that PPI hindered the expression of GRP78 protein, resulting in a suppressive effect on SR-HCC cell migration and invasion. Histological examination of tumor tissue substantiated that administering PPI via gavage to HepG2/S xenograft nude mice inhibited tumor growth and significantly reduced tumor size, as evidenced by xenograft experiments involving nude mice. Hematoxylin and eosin (HE) staining of tumor tissue specimens, along with immunohistochemistry (IHC), were conducted to evaluate the expression levels of Ki67, GRP78, N-cadherin, Vimentin, and ABCG2. The results indicated that PPI administration decreased the levels of proteins associated with metastasis and markers of drug resistance in tumor tissues, impeding tumor growth and spread. Overall, our findings demonstrated that PPI effectively suppressed the viability, proliferation, invasion, and metastasis of SR-HCC cells both in vitro and in vivo by modulating GRP78 activity. These findings provide new insights into the mechanism of PPI inhibition of SR-HCC cell invasion and metastasis, highlighting PPI as a potential treatment option for sorafenib-resistant HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Chaperona BiP do Retículo Endoplasmático , Vimentina/metabolismo , Camundongos Nus , Preparações Farmacêuticas , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proliferação de Células , Caderinas/metabolismo , Movimento Celular
3.
Proc Natl Acad Sci U S A ; 120(48): e2307389120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983515

RESUMO

Granulocytes are indispensable for various immune responses. Unlike other cell types in the body, the nuclei of granulocytes, particularly neutrophils, are heavily segmented into multiple lobes. Although this distinct morphological feature has long been observed, the underlying mechanism remains incompletely characterized. In this study, we utilize cryo-electron tomography to examine the nuclei of mouse neutrophils, revealing the cytoplasmic enrichment of intermediate filaments on the concave regions of the nuclear envelope. Aided by expression profiling and immuno-electron microscopy, we then elucidate that the intermediate-filament protein vimentin is responsible for such perinuclear structures. Of importance, exogenously expressed vimentin in nonimmune cells is sufficient to form cytoplasmic filaments wrapping on the concave nuclear surface. Moreover, genetic deletion of the protein causes a significant reduction of the number of nuclear lobes in neutrophils and eosinophils, mimicking the hematological condition of the Pelger-Huët anomaly. These results have uncovered a new component establishing the nuclear segmentation of granulocytes.


Assuntos
Filamentos Intermediários , Neutrófilos , Animais , Camundongos , Neutrófilos/metabolismo , Vimentina/metabolismo , Núcleo Celular , Eosinófilos
4.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958598

RESUMO

The morphology of the oral cavity of fish is related to their feeding habits. In this context, taste buds are studied for their ability to catch chemical stimuli and their cell renewal capacity. Vimentin RV202 is a protein employed as a marker for mesenchymal cells that can differentiate along different lineages and to self-renew, while Calretinin N-18 is employed as a marker of sensory cells, and ubiquitin is a protein crucial for guiding the fate of stem cells throughout development. In this study, a surface morphology investigation and an immunohistochemical analysis have been conducted. The results of the present study reveal, for the first time, the presence of Vimentin RV202 in a taste bud cell population of zebrafish. Some taste bud cells are just Vimentin RV202-immunoreactive, while in other cells Vimentin RV202 and Calretinin N-18 colocalize. Some taste buds are just reactive to Calretinin N-18. Vimentin RV202-immunoreactive cells have been observed in the connective layer and in the basal portion of the taste buds. The immunoreactivity of ubiquitin was restricted to sensory cells. Further studies are needed to elucidate the role of Vimentin RV202 in the maturation of taste bud cells, its potential involvement in the regeneration of these chemosensory organs, and its eventual synergic work with ubiquitin.


Assuntos
Papilas Gustativas , Animais , Papilas Gustativas/metabolismo , Peixe-Zebra/metabolismo , Calbindina 2/metabolismo , Vimentina/metabolismo , Ubiquitinas/metabolismo
5.
Nutrients ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004099

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) plays an important role in the biological and biochemical processes of cells, and it is a critical process in the malignant transformation, and mobility of cancer. Additionally, EMT is one of the main mechanisms contributing to chemoresistance. Resistance to oxaliplatin (OXA) poses a momentous challenge in the chemotherapy of advanced colorectal cancer (CRC) patients, highlighting the need to reverse drug resistance and improve patient survival. In this study, we explored the response of cyanidin-3-O-glucoside (C3G), the most abundant anthocyanin in plants, on the mechanisms of drug resistance in cancer, with the purpose of overcoming acquired OXA resistance in CRC cell lines. METHODS: We generated an acquired OXA-resistant cell line, named HCT-116-ROx, by gradually exposing parental HCT-116 cells to increasing concentrations of OXA. To characterize the resistance, we performed cytotoxicity assays and shape factor analyses. The apoptotic rate of both resistant and parental cells was determined using Hoechst 33342/Propidium Iodide (PI) fluorescence staining. Migration capacity was evaluated using a wound-healing assay. The mesenchymal phenotype was assessed through qRT-PCR and immunofluorescence staining, employing E-cadherin, N-cadherin, and Vimentin markers. RESULTS: Resistance characterization announced decreased OXA sensitivity in resistant cells compared to parental cells. Moreover, the resistant cells exhibited a spindle cell morphology, indicative of the mesenchymal phenotype. Combined treatment of C3G and OXA resulted in an augmented apoptotic rate in the resistant cells. The migration capacity of resistant cells was higher than parental cells, while treatment with C3G decreased the migration rate of HCT-116-ROx cells. Analysis of EMT markers showed that HCT-116-ROx cells exhibited loss of the epithelial phenotype (E-cadherin) and gain of the mesenchymal phenotype (N-cadherin and Vimentin) compared to HCT-116 cells. However, treatment of resistant cells with C3G reversed the mesenchymal phenotype. CONCLUSION: The morphological observations of cells acquiring oxaliplatin resistance indicated the loss of the epithelial phenotype and the acquisition of the mesenchymal phenotype. These findings suggest that EMT may contribute to acquired OXA resistance in CRC. Furthermore, C3G decreased the mobility of resistant cells, and reversed the EMT process, indicating its potential to overcome acquired OXA resistance.


Assuntos
Fenômenos Bioquímicos , Neoplasias Colorretais , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Vimentina/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Caderinas/metabolismo , Fenótipo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Transição Epitelial-Mesenquimal , Resistencia a Medicamentos Antineoplásicos , Movimento Celular
6.
Elife ; 122023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855367

RESUMO

Accumulation of dysfunctional chondrocytes has detrimental consequences on the cartilagehomeostasis and is thus thought to play a crucial role during the pathogenesis of osteoarthritis(OA). However, the underlying mechanisms of phenotypical alteration in chondrocytes areincompletely understood. Here, we provide evidence that disruption of the intracellularvimentin network and consequent phenotypical alteration in human chondrocytes results in anexternalization of the intermediate filament. The presence of the so-called cell surfacevimentin (CSV) on chondrocytes was associated with the severity of tissue degeneration inclinical OA samples and was enhanced after mechanical injury of cartilage tissue. By meansof a doxorubicine-based in vitro model of stress-induced premature senescence (SIPS), wecould confirm the connection between cellular senescence and amount of CSV. AlthoughsiRNA-mediated silencing of CDKN2A clearly reduced the senescent phenotype as well asCSV levels of human chondrocytes, cellular senescence could not be completely reversed.Interestingly, knockdown of vimentin resulted in a SIPS-like phenotype and consequentlyincreased CSV. Therefore, we concluded that the integrity of the intracellular vimentinnetwork is crucial to maintain cellular function in chondrocytes. This assumption could beconfirmed by chemically- induced collapse of the vimentin network, which resulted in cellularstress and enhanced CSV expression. Regarding its biological function, CSV was found to beassociated with enhanced chondrocyte adhesion and plasticity. While osteogenic capacitiesseemed to be enhanced in chondrocytes expressing high levels of CSV, the chondrogenicpotential was clearly compromised. Overall, our study reinforces the importance of thevimentin network in maintenance of the chondrogenic phenotype and introduces CSV as anovel membrane-bound marker of dysfunctional chondrocytes.


Assuntos
Filamentos Intermediários , Osteoartrite , Humanos , Filamentos Intermediários/metabolismo , Condrócitos/metabolismo , Vimentina/metabolismo , Senescência Celular/genética , Osteoartrite/metabolismo
7.
Tissue Cell ; 85: 102239, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865037

RESUMO

BACKGROUND: Toxic cardiomyopathies were a potentially fatal adverse effect of anthracycline therapy. AIM: This study was conducted to demonstrate the pathogenetic, morphologic, and toxicologic effects of doxorubicin on the heart and to investigate how the MAPK /TNF-α pathway can be modulated to improve doxorubicin-Induced cardiac lesions using bone marrow-derived mesenchymal stem cells (BM-MSCs) and olive leaf extract (OLE). METHODS: During the study, 40 adult male rats were used. Ten were used to donate MSCs, and the other 30 were split into 5 equal groups: Group I was the negative control, Group II obtained oral OLE, Group III obtained an intraperitoneal cumulative dose of DOX (12 mg/kg) in 6 equal doses of 2 mg/kg every 48 h for 12 days, Group IV obtained intraperitoneal DOX and oral OLE at the same time, and Group V obtained intraperitoneal DOX and BM-MSCs through the tail vein at the same time for 12 days. Four weeks after their last dose of DOX, the rats were euthanized. By checking the bioinformatic databases, a molecularly targeted path was selected. Then the histological, immunohistochemistry, and gene expression of ERK, JNK, NF-κB, IL-6, and TNF-α were done. RESULTS: Myocardial immunohistochemistry revealed severe fibrosis, cell degeneration, increased vimentin, and decreased CD-31 expression in the DOX-treated group, along with a marked shift in morphometric measurements, a disordered ultrastructure, and overexpression of inflammatory genes (ERK, NF-κB, IL-6, and TNF-α), oxidative stress markers, and cardiac biomarkers. Both groups IV and V displayed reduced cardiac fibrosis or inflammation, restoration of the microstructure and ultrastructure of the myocardium, downregulation of inflammatory genes, markers of oxidative stress, and cardiac biomarkers, a notable decline in vimentin, and an uptick in CD-31 expression. In contrast to group IV, group V showed a considerable beneficial effect. CONCLUSION: Both OLE and BM-MSCs showed an ameliorating effect in rat models of DOX-induced cardiotoxicity, with BM-MSCs showing a greater influence than OLE.


Assuntos
Cardiotoxicidade , Células-Tronco Mesenquimais , Ratos , Masculino , Animais , Cardiotoxicidade/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Doxorrubicina/toxicidade , Estresse Oxidativo , Células-Tronco Mesenquimais/metabolismo , Biomarcadores/metabolismo , Apoptose
8.
In Vivo ; 37(6): 2490-2497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905623

RESUMO

BACKGROUND/AIM: Endometriosis is an estrogen-dependent disease characterized by the ectopic implantation and growth of endometrial tissue outside the uterus. Endometrial stromal cells (ESCs) play a crucial role in the pathogenesis of endometriosis. Epithelial-mesenchymal transition (EMT) has recently been described in endometriosis and was induced by estrogen. Metformin has been shown to inhibit EMT in various diseases, but its role in endometriosis remains unclear. MATERIALS AND METHODS: We collected endometrial tissue samples from patients with endometriosis and healthy controls and isolated primary ESCs. We performed gene expression analysis using the Gene Expression Omnibus (GEO) dataset and validated the results by immunohistochemistry in tissue samples. We also assessed the effects of metformin on the proliferation, migration and invasion of ectopic ESCs (EESCs) by Cell Counting Kit-8 and Transwell migration and invasion assays, respectively. We analyzed the protein expression of EMT-related markers (N-cadherin, vimentin, twist, and snail) and ß-catenin by Western blotting and immunohistochemistry. RESULTS: We found that vimentin was highly expressed in ectopic endometrial tissues compared to normal endometrial tissues. Metformin treatment inhibited the proliferation, migration and invasion of EESCs in a dose-dependent manner. Metformin treatment also downregulated the expression of EMT-related markers and reduced the expression and nuclear translocation of ß-catenin in EESCs. CONCLUSION: Our results suggest that metformin inhibits estrogen-induced EMT and regulates the expression of ß-catenin in EESCs. This study provides new insights into the potential therapeutic role of metformin in endometriosis.


Assuntos
Endometriose , beta Catenina , Feminino , Humanos , beta Catenina/genética , Vimentina/metabolismo , Endometriose/tratamento farmacológico , Endometriose/genética , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Células Estromais/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Endométrio/patologia , Proliferação de Células
9.
West Afr J Med ; 40(10): 1035-1040, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906498

RESUMO

BACKGROUND: Renal cell carcinoma is the most lethal urological cancer and contributes significantly to morbidity and mortality due to cancers of the urogenital tract. In routine diagnostic surgical pathology practice of renal tumours, immunohistochemistry is a helpful ancillary technique after routine H & E. The role of renal immunohistochemistry is explored in this study. MATERIALS AND METHODS: The paraffin-embedded tissue blocks of all the confirmed cases of renal cell carcinoma seen at the University College Hospital (UCH), Ibadan, during the 10-year study period of 2007 to 2016 were retrieved, sectioned and immunohistochemistry done using monoclonal antibodies for EMA, Vimentin and CD117 following standard protocols. Frequency statistics and chi-square were applied to data to determine proportions and associations using the Statistical Package for the Social Sciences (SPSS) version 23. RESULTS: A total of 48 cases of renal cell carcinoma were seen within the study period that met the inclusion criteria for the study. The age range of the patients was between 3 to 76 years with an average age of 44.17 years. The male-to-female ratio was 1:1.3. Fuhrman Grade 2 nuclei were predominant (43.75%) while Fuhrman Grade 4 nuclei had the lowest frequency (6.25%). EMAstaining patterns for the different histological patterns of RCC showed no statistically significant difference while Vimentin and CD117 staining patterns showed a statistically significant difference. There was no statistically significant difference observed between the staining patterns of all three markers and the nuclear grades of the cases of RCC. CONCLUSION: This study demonstrated the usefulness of Vimentin and CD117 in differentiating chromophobe variant of renal cell carcinoma from other subtypes while EMA showed variable expression across the various subtypes.


CONTEXTE: Le carcinome à cellules rénales est le cancer urologique le plus mortel et contribue de manière significative à la morbidité et à la mortalité liées aux cancers du tractus urogénital. Dans la pratique courante de la pathologie chirurgicale diagnostique des tumeurs rénales, l'immunohistochimie est une technique auxiliaire utile après la coloration H & E (hématoxyline et éosine). Le rôle de l'immunohistochimie rénale est exploré dans cette étude. MATÉRIEL ET MÉTHODES: Les blocs de tissus inclus en paraffine de tous les cas confirmés de carcinome à cellules rénales observés à l'hôpital universitaire du collège (UCH) d'Ibadan, au cours de la période d'étude de 10 ans de 2007 à 2016, ont été récupérés, sectionnés et soumis à une immunohistochimie en utilisant des anticorps monoclonaux dirigés contre l'EMA, la vimentine et le CD117 suivant des protocoles standard.Des statistiques de fréquence et le test du chi-carré ont été appliqués aux données pour déterminer les proportions et les associations à l'aide du logiciel Statistical Package for the Social Sciences (SPSS) version 23. RÉSULTATS: Au cours de la période d'étude, un total de 48 cas de carcinome à cellules rénales répondant aux critères d'inclusion de l'étude ont été observés. L'âge des patients variait de 3 à 76 ans, avec un âge moyen de 44,17 ans. Le ratio hommes-femmes était de 1:1,3. Les noyaux de grade Fuhrman 2 étaient prédominants (43,75 %), tandis que les noyaux de grade Fuhrman 4 présentaient la fréquence la plus basse (6,25 %). Les schémas de coloration de l'EMA pour les différentes variantes histologiques du RCC n'ont montré aucune différence statistiquement significative, tandis que les schémas de coloration de la vimentine et du CD117 ont montré une différence statistiquement significative. Aucune différence statistiquement significative n'a été observée entre les schémas de coloration des trois marqueurs et les grades nucléaires des cas de RCC. CONCLUSION: Cette étude a démontré l'utilité de la vimentine et du CD117 pour différencier la variante chromophobe du carcinome à cellules rénales des autres sous-types, tandis que l'EMA a montré une expression variable dans les différents sous-types. Mots-clés: Carcinome à cellules rénales (CCR), antigène membranaire épithélial (EMA), vimentine, C-Kit (tyrosine kinase, CD 117), hématoxyline et éosine (H & E).


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Masculino , Feminino , Adulto , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Estudos Retrospectivos , Vimentina/metabolismo , Centros de Atenção Terciária , Biomarcadores Tumorais/metabolismo , Nigéria , Neoplasias Renais/diagnóstico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(9): 1460-1468, 2023 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-37814859

RESUMO

OBJECTIVE: To investigate the expression of calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) in gastric cancer and its effect on gastric cancer cell invasion and metastasis. METHODS: The association of CAMSAP2 expression levels with progression and prognosis of gastric cancer was analyzed using public cancer data and in 106 patients receiving radical gastrectomy in our hospital from October, 2013 to October, 2017. The biological functions of CAMSAP2 were predicted using bioinformatics analysis. Gastric cancer MGC803 cells with CAMSAP2 overexpression and knockdown were observed for epithelial-mesenchymal transition (EMT), migration and invasion. A nude mouse model bearing orthotopic gastric cancer cell xenografts was established for verifying the results and exploring the underlying molecular mechanism. RESULTS: Gastric cancer tissues expressed high levels of CAMSAP2, which were positively correlated with CEA and CA19-9 (P<0.001). Cox regression analysis showed that CAMSAP2 expression level was an independent risk factor affecting the 5-year survival rate of gastric cancer patients (HR=2.969, 95% CI: 1.031-8.548). Enrichment analysis suggested that CAMSAP2 was involved in epithelialmesenchymal transition (EMT) and TGF-ß signaling. In gastric cancer cells, CAMSAP2 overexpression significantly increased the expressions of vimentin and N-cadherin, inhibited the expression of E-cadherin, and enhanced cell migration and invasion (P<0.05); CAMSAP2 knockdown produced the opposite effects in the cells (P<0.05). In the tumor- bearing mice, xenografts overexpressing CAMSAP2 showed enhanced metastasis (P<0.05), increased vimentin and N-cadherin expressions and lowered E-cadherin expression (P<0.05), and the xenografts with CAMSAP2 knockdown showed the opposite changes (P<0.05). Both the in vivo and in vitro experiments showed that CAMSAP2 overexpression increased and CAMSAP2 knockdown lowered the levels of TGF-ß and p-Smad2/3 in the gastric cancer cells (P<0.05). CONCLUSION: The high expression of CAMSAP2 contributes to disease progression and poor prognosis of gastric cancer possibly by upregulating TGF-ß signaling to promote EMT.


Assuntos
Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/genética , Vimentina/metabolismo , Espectrina/metabolismo , Espectrina/farmacologia , Linhagem Celular Tumoral , Invasividade Neoplásica , Fator de Crescimento Transformador beta/metabolismo , Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/metabolismo
11.
Stem Cell Res Ther ; 14(1): 306, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880776

RESUMO

BACKGROUND: Skin tissue engineering is a rapidly evolving field of research that effectively combines stem cells and biological scaffolds to replace damaged tissues. Human Wharton's jelly mesenchymal stromal cells (hWJ-MSCs) are essential to generate tissue constructs, due to their potent immunomodulatory effects and release of paracrine factors for tissue repair. Here, we investigated whether hWJ-MSC grown on human acellular dermal matrix (hADM) scaffolds and exposed to a proinflammatory environment maintain their ability to produce in vitro growth factors involved in skin injury repair and promote in vivo wound healing. METHODS: We developed a novel method involving physicochemical and enzymatic treatment of cadaveric human skin to obtain hADM scaffold. Subsequently, skin bioengineered constructs were generated by seeding hWJ-MSCs on the hADM scaffold (construct 1) and coating it with human platelet lysate clot (hPL) (construct 2). Either construct 1 or 2 were then incubated with proinflammatory cytokines (IL-1α, IL-1ß, IL-6, TNF-α) for 12, 24, 48, 72 and 96 h. Supernatants from treated and untreated constructs and hWJ-MSCs on tissue culture plate (TCP) were collected, and concentration of the following growth factors, bFGF, EGF, HGF, PDGF, VEGF and Angiopoietin-I, was determined by immunoassay. We also asked whether hWJ-MSCs in the construct 1 have potential toward epithelial differentiation after being cultured in an epithelial induction stimulus using an air-liquid system. Immunostaining was used to analyze the synthesis of epithelial markers such as filaggrin, involucrin, plakoglobin and the mesenchymal marker vimentin. Finally, we evaluated the in vivo potential of hADM and construct 1 in a porcine full-thickness excisional wound model. RESULTS: We obtained and characterized the hADM and confirmed the viability of hWJ-MSCs on the scaffold. In both constructs without proinflammatory treatment, we reported high bFGF production. In contrast, the levels of other growth factors were similar to the control (hWJ-MSC/TCP) with or without proinflammatory treatment. Except for PDGF in the stimulated group. These results indicated that the hADM scaffold maintained or enhanced the production of these bioactive molecules by hWJ-MSCs. On the other hand, increased expression of filaggrin, involucrin, and plakoglobin and decreased expression of vimentin were observed in constructs cultured in an air-liquid system. In vivo experiments demonstrated the potential of both hADM and hADM/hWJ-MSCs constructs to repair skin wounds with the formation of stratified epithelium, basement membrane and dermal papillae, improving the appearance of the repaired tissue. CONCLUSIONS: hADM is viable to fabricate a tissue construct with hWJ-MSCs able to promote the in vitro synthesis of growth factors and differentiation of these cells toward epithelial lineage, as well as, promote in a full-thickness skin injury the new tissue formation. These results indicate that hADM 3D architecture and its natural composition improved or maintained the cell function supporting the potential therapeutic use of this matrix or the construct for wound repair and providing an effective tissue engineering strategy for skin repair.


Assuntos
Derme Acelular , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Animais , Suínos , Proteínas Filagrinas , Vimentina/metabolismo , Derme Acelular/metabolismo , gama Catenina/metabolismo , gama Catenina/farmacologia , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
12.
J Transl Med ; 21(1): 719, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833712

RESUMO

BACKGROUND: Polyploid giant cancer cells (PGCCs), a specific type of cancer stem cells (CSCs), can be induced by hypoxic microenvironments, chemical reagents, radiotherapy, and Chinese herbal medicine. Moreover, PGCCs can produce daughter cells that undergo epithelial-mesenchymal transition, which leads to cancer recurrence and disseminated metastasis. Vimentin, a mesenchymal cell marker, is highly expressed in PGCCs and their daughter cells (PDCs) and drives migratory persistence. This study explored the molecular mechanisms by which vimentin synergistically regulates PGCCs to generate daughter cells with enhanced invasive and metastatic properties. METHODS: Arsenic trioxide (ATO) was used to induce the formation of PGCCs in Hct116 and LoVo cells. Immunocytochemical and immunohistochemical assays were performed to determine the subcellular localization of vimentin. Cell function assays were performed to compare the invasive metastatic abilities of the PDCs and control cells. The molecular mechanisms underlying vimentin expression and nuclear translocation were investigated by real-time polymerase chain reaction, western blotting, cell function assays, cell transfection, co-immunoprecipitation, and chromatin immunoprecipitation, followed by sequencing. Finally, animal xenograft experiments and clinical colorectal cancer samples were used to study vimentin expression in tumor tissues. RESULTS: Daughter cells derived from PGCCs showed strong proliferative, migratory, and invasive abilities, in which vimentin was highly expressed and located in both the cytoplasm and nucleus. Vimentin undergoes small ubiquitin-like modification (SUMOylation) by interacting with SUMO1 and SUMO2/3, which are associated with nuclear translocation. P62 regulates nuclear translocation of vimentin by controlling SUMO1 and SUMO2/3 expression. In the nucleus, vimentin acts as a transcription factor that regulates CDC42, cathepsin B, and cathepsin D to promote PDC invasion and migration. Furthermore, animal experiments and human colorectal cancer specimens have confirmed the nuclear translocation of vimentin. CONCLUSION: P62-dependent SUMOylation of vimentin plays an important role in PDC migration and invasion. Vimentin nuclear translocation and overexpressed P62 of cancer cells may be used to predict patient prognosis, and targeting vimentin nuclear translocation may be a promising therapeutic strategy for metastatic cancers.


Assuntos
Neoplasias Colorretais , Células Gigantes , Animais , Humanos , Vimentina/metabolismo , Linhagem Celular Tumoral , Células Gigantes/metabolismo , Células Gigantes/patologia , Transição Epitelial-Mesenquimal , Neoplasias Colorretais/patologia , Poliploidia , Movimento Celular , Microambiente Tumoral
13.
Sci Rep ; 13(1): 16745, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798364

RESUMO

Pathophysiological response after acute myocardial infarction (AMI) is described as a three-stage model involving temporal phenotypic modifications of both immune cells and fibroblasts: a primary inflammatory phase, followed by a reparative phase and a fibrous scar maturation phase. Purinergic receptors, particularly the P2Y11 receptor, have been reported to be involved in the regulation of inflammation after ischemia and could act for the resolution of inflammation after AMI. For the first time, we characterized the immuno-inflammatory and P2Y11 expression profiles of peripheral blood mononuclear cells (PBMC) from AMI patients and analyzed the consequences of presenting these cells to cardiac fibroblasts in vitro. PBMC from 178 patients were collected at various times after reperfused ST-segment elevation AMI, from H0 to M12. Expression level of P2RY11 and genes involved in tolerogenic profile of dendritic cells and T cell polarization were evaluated by RT-PCR. P2Y11 protein expression was assessed by flow cytometry. PBMC and human cardiac fibroblasts (HCF) were cocultured and α-SMA/vimentin ratio was analyzed by flow cytometry. Within the first 48 h after AMI, expression levels of HMOX1, STAT3 and CD4 increased while IDO1 and TBX21/GATA3 ratio decreased. Concomitantly, the expression of P2RY11 increased in both T and B cells. In vitro, PBMC collected at H48 after AMI induced an increase in α-SMA/vimentin ratio in HCF. Our results suggest that human PBMC display an evolving inflammatory profile with reparative characteristics the first two days after AMI and secrete soluble mediators leading to the fibroblastic proteins modification, thus participating to myocardial fibrosis.


Assuntos
Leucócitos Mononucleares , Infarto do Miocárdio , Humanos , Leucócitos Mononucleares/metabolismo , Vimentina/metabolismo , Infarto do Miocárdio/metabolismo , Inflamação/metabolismo , Fenótipo , Fibroblastos/metabolismo
14.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5049-5055, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802847

RESUMO

This study aimed to explore the effect and mechanism of acetylalkannin from Arnebia euchroma on the proliferation, migration, and invasion of human melanoma A375 cells. A375 cells were divided into a blank group, and low-, medium-, and high-dose acetylalkannin groups(0.5, 1.0, and 2.0 µmol·L~(-1)). The MTT assay was used to detect cell proliferation. Cell scratch and transwell migration assays were used to detect cell migration ability, and the transwell invasion assay was used to detect cell invasion ability. Western blot was used to detect the protein expression of migration and invasion-related N-cadherin, vimentin, matrix metalloproteina-se-9(MMP-9), and Wnt/ß-catenin pathway-related Wnt1, Axin2, glycogen synthase kinase-3ß(GSK-3ß), phosphorylated GSK-3ß(p-GSK-3ß), ß-catenin, cell cycle protein D_1(cyclin D_1), and p21. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) was used to detect the mRNA expression of E-cadherin, matrix metalloproteinase-2(MMP-2), N-cadherin, vimentin, ß-catenin, snail-1, and CD44. MTT results showed that the cell inhibition rates in the acetylalkannin groups significantly increased as compared with that in the blank group(P<0.01). The results of cell scratch and transwell assays showed that compared with the blank group, the acetylalkannin groups showed reduced cell migration and invasion, and migration and invasion rates(P<0.05, P<0.01) and weakened horizontal and vertical migration and invasion abilities. Western blot results showed that compared with the blank group, the high-dose acetylalkannin group showed increased expression of Axin2 protein(P<0.05), and decreased expression of N-cadherin, vimentin, MMP-9, Wnt1, p-GSK-3ß, ß-catenin, cyclin D_1, and p21 proteins(P<0.05, P<0.01). The expression of GSK-3ß protein did not change significantly. PCR results showed that the overall trend of MMP-2, N-cadherin, vimentin, ß-catenin, snail-1, and CD44 mRNA expression was down-regulated(P<0.01), and the expression of E-cadherin mRNA increased(P<0.01). Acetylalkannin can inhibit the proliferation, migration, and invasion of human melanoma A375 cells, and its mechanism of action may be related to the regulation of Wnt/ß-catenin signaling pathway.


Assuntos
Boraginaceae , Melanoma , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Vimentina/genética , Vimentina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Linhagem Celular Tumoral , Via de Sinalização Wnt , Caderinas/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Ciclina D/metabolismo , Proliferação de Células , Boraginaceae/genética , RNA Mensageiro , Movimento Celular
15.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833937

RESUMO

The European Commission of the International League Against Epilepsy (ILAE) has identified glial mechanisms of seizures and epileptogenesis as top research priorities. The aim of our study was to conduct a comparative analysis of the expression levels of cytoskeletal proteins (glial fibrillar acidic protein (GFAP) and vimentin), protective protein S100, and proapoptotic caspase-3 protein in patients with drug-resistant epilepsy (DRE) associated with focal cortical dysplasia (FCD). We aimed to investigate how the expression levels of these proteins depend on age (both in children and adults), gender, and disease duration, using immunohistochemistry. Nonparametric statistical methods were employed for data analysis. In the epileptic focus area of the cortex and white matter in patients with FCD-associated temporal lobe DRE, a higher level of expression of these proteins was observed. Age and gender differences were found for vimentin and S100. In the early stages of disease development, there was a compensatory sequential increase in the expression of cytoskeletal and protective proteins. In patients with DRE, depending on the disease duration, patterns of development of neurodegeneration were noted, which is accompanied by apoptosis of gliocytes. These results provide insights into epilepsy mechanisms and may contribute to improving diagnostic and treatment approaches.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Displasia Cortical Focal , Humanos , Adulto , Criança , Epilepsia do Lobo Temporal/metabolismo , Vimentina/genética , Vimentina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Epilepsia/metabolismo , Lobo Temporal/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Estudos Retrospectivos
16.
Biomed Pharmacother ; 168: 115648, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812892

RESUMO

BACKGROUND: Vimentin, an intermediate filament protein, crucially contributes to the pathogenesis of inflammatory bowel disease (IBD) by interacting with genetic risk factors, facilitating pathogen infection, and modulating both innate and adaptive immune responses. This study aimed to demonstrate preclinical proof-of-concept for targeting vimentin therapeutically in IBD across diverse etiologies. METHODS: The small molecule compound ALD-R491 was assessed for vimentin binding using microscale thermophoresis, off-target effects via Eurofins screening, and therapeutic effects in mice with dextran sulfate sodium (DSS)-induced acute colitis and in IL-10 KO with spontaneous colitis. Parameters measured included body weight, survival, disease activity, colon length, and histology. The study analyzed intestinal proinflammatory cytokines, Th17/Treg cells, and epithelial barrier molecules, along with gut microbiota profiling. RESULTS: ALD-R491 specifically bound vimentin with a dissociation constant (KD) of 328 ± 12.66 nM and no off-target effects. In the DSS model, orally administered ALD-R491 exhibited dose-dependent therapeutic effects, superior to 5-ASA and Tofacitinib. In the IL-10 KO model, ALD-R491 significantly delayed colitis onset and progression, with near-zero disease activity index scores over a 15-week treatment. ALD-R491 consistently showed in both models a reduced proinflammatory cytokine expression, including TNF-α, IL-1ß, IL-6, IL-17, IL-22, a rebalanced Th17/Treg axis by reducing RORγt while enhancing FoxP3 expression, and an improved epithelial barrier integrity by increasing intestinal expressions of Mucin-2, ZO-1 and Claudin5. The intestinal dysbiosis was restored with enriched presence of probiotics. CONCLUSIONS: Targeting vimentin exhibits significant therapeutic effects on various facets of IBD pathogenesis, representing a compelling approach for the development of highly effective treatments in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-10/metabolismo , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Camundongos Endogâmicos C57BL , Vimentina/metabolismo
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(9): 1613-1621, 2023 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-37814877

RESUMO

OBJECTIVE: To investigate the role of solute carrier family 12 member A8 (SLC12A8) in regulation of biological behaviors of bladder cancer and the mechanism mediating its effect. METHODS: The TCGA database was used to analyze SLC12A8 expression in bladder cancer and is correlation with prognosis and clinicopathological characteristics of the patients. In different bladder cancer cell lines, the effects of transient transfection with SLC12A8 siRNA on cell proliferation, invasion and migration ability were examined using CCK-8 assay, Transwell assay and scratch experiment. Gene set enrichment analysis (GSEA) was carried out to analyze pathway enrichment. The correlation of SLC12A8 with the expressions of epithelial-mesenchymal transition (EMT) markers was analyzed using Western blotting. The effect of colivelin on biological behaviors of the cells with SLC12A8 knockdown was assessed using CCK-8 and Transwell assays. RESULTS: SLC12A8 was highly expressed in bladder cancer (P<0.05) and associated with a poor prognosis and advanced pathological stages of the patients (P<0.05), and could serve as an independent prognostic factor. The bladder cancer cell lines with SLC12A8 knockdown showed significantly attenuated proliferation, invasion and migration capacities (P<0.05). GSEA identified significant gene enrichment in the JAK/STAT signaling pathway (P=0.008). Correlation analysis showed that SLC12A8 expression was negatively correlated with E- cadherin expression (r=-0.167, P<0.001) but positively with N-cadherin (r=0.306, P<0.001) and vimentin (r=0.358, P<0.001) expressions. The bladder cancer cells with SLC12A8 knockdown showed significantly decreased expressions of p-Jak2, p-Stat3, N-cadherin and vimentin proteins with an increased expression of E-cadherin. Treatment with colivelin effectively enhanced proliferation, invasion and migration capacities of the bladder cancer cells with SLC12A8 knockdown (P<0.05). CONCLUSION: SLC12A8 promotes bladder cancer progression by activating the JAK/STAT signaling pathway and its high expression is closely associated with a poor prognosis of the patients.


Assuntos
Transição Epitelial-Mesenquimal , Simportadores de Cloreto de Sódio-Potássio , Neoplasias da Bexiga Urinária , Humanos , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Neoplasias da Bexiga Urinária/genética , Vimentina/metabolismo
18.
Folia Neuropathol ; 61(3): 249-265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818686

RESUMO

INTRODUCTION: Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) is involved in glioma progression, but the specific molecular mechanism of CDKN2A in glioma cell migration and invasion needs to be further explored. MATERIAL AND METHODS: Data related to CDKN2A expression and glioma overall survival were obtained from The Cancer Genome Atlas (TCGA) database. Then, CDKN2A expression in glioma tissues/cells or paracancer tissues/astrocytes was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or Western blot. Afterwards, Wound healing, Transwell and tube formation assay were performed to identify the invasion, migration and angiogenesis of glioma cells, respectively. TargetScan database predicted the targeted binding between miR-484 and CDKN2A, which was verified by dual luciferase reporter gene assay. Western blot and qRT-PCR were performed to detect the expression of VEGF, E-cadherin, N-cadherin and Vimentin in glioma cells. RESULTS: CDKN2A was low-expressed in glioma tissue/cells as compared to paracancer tissue/astrocytes, and was strongly associated to the poor prognosis of glioma. Further studies found that down-regulation of CDKN2A could promote migration, invasion and angiogenesis of glioma cells. Besides, miR-484 was high-expressed in glioma cells compared to astrocytes. Up-regulation of miR-484 could enhance migration, invasion and angiogenesis of glioma cells. In addition, up-regulated miR-484 suppressed the expression of E-cadherin, and promoted the expression of N-cadherin, Vimentin and VEGF. However, there was negative regulation of miR-484 and CDKN2A, and CDKN2A could partially offset the effect of miR-484. CONCLUSIONS: MiR-484 promoted cell migration, invasion and angiogenesis by inhibiting CDKN2A expression.


Assuntos
Glioma , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vimentina/genética , Vimentina/metabolismo , Linhagem Celular Tumoral , Fator A de Crescimento do Endotélio Vascular/genética , Glioma/genética , Glioma/patologia , Proliferação de Células/genética , Caderinas/genética , Caderinas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo
19.
Sci Rep ; 13(1): 18374, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884575

RESUMO

Recent experimental evidence indicates a role for the intermediate filament vimentin in regulating cellular mechanical homeostasis, but its precise contribution remains to be discovered. Mechanical homeostasis requires a balanced bi-directional interplay between the cell's microenvironment and the cellular morphological and mechanical state-this balance being regulated via processes of mechanotransduction and mechanoresponse, commonly referred to as mechanoreciprocity. Here, we systematically analyze vimentin-expressing and vimentin-depleted cells in a swatch of in vitro cellular microenvironments varying in stiffness and/or ECM density. We find that vimentin-expressing cells maintain mechanical homeostasis by adapting cellular morphology and mechanics to micromechanical changes in the microenvironment. However, vimentin-depleted cells lose this mechanoresponse ability on short timescales, only to reacquire it on longer time scales. Indeed, we find that the morphology and mechanics of vimentin-depleted cell in stiffened microenvironmental conditions can get restored to the homeostatic levels of vimentin-expressing cells. Additionally, we observed vimentin-depleted cells increasing collagen matrix synthesis and its crosslinking, a phenomenon which is known to increase matrix stiffness, and which we now hypothesize to be a cellular compensation mechanism for the loss of vimentin. Taken together, our findings provide further insight in the regulating role of intermediate filament vimentin in mediating mechanoreciprocity and mechanical homeostasis.


Assuntos
Filamentos Intermediários , Mecanotransdução Celular , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Homeostase
20.
J Toxicol Sci ; 48(10): 547-556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37778983

RESUMO

Pulmonary fibrosis is a lethal and progressive pulmonary disorder in human beings. Ephedrine is a compound isolated from Ephedra and plays a regulatory role in inflammatory response. This study focused on the anti-pulmonary fibrosis effect of ephedrine and its potential molecular mechanism. After a mouse model of pulmonary fibrosis was established through bleomycin (BLM) induction, the survival percentage, body weight, and pulmonary index were measured. Hematoxylin-eosin staining and Masson's trichrome staining for lung tissues were performed to observe the pathological alterations. The viability of lung epithelial BEAS-2B cells, intracellular production of reactive oxygen species, and the levels of pro-inflammatory cytokines were examined by cell counting kit-8 assays, 2',7'-dichlorofluorescein diacetate (DCF-DA) staining, and enzyme-linked immunosorbent assay, respectively. Immunofluorescence staining was performed to determine E-cadherin and vimentin expression after BLM or ephedrine treatment. The mRNA and protein levels of cytokeratin-8, E-cadherin, α-SMA, and vimentin were subjected to quantitative polymerase chain reaction and immunoblotting. Experimental results revealed that ephedrine treatment rescued the repressive impact of BLM on BEAS-2B cell viability, and ephedrine inhibited BLM-induced overproduction of reactive oxygen species and inflammatory response in BEAS-2B cells. Additionally, ephedrine suppressed epithelial-mesenchymal transition (EMT) process stimulated by BLM treatment, as demonstrated by the reduced α-SMA and vimentin levels together with the increased cytokeratin-8 and E-cadherin levels in BLM + Ephedrine group. In addition, ephedrine inhibited NF-κB and activated Nrf-2 signaling in BLM-treated BEAS-2B cells. Moreover, ephedrine ameliorated pulmonary fibrosis in BLM-induced mice and improved the survival of model mice. In conclusion, ephedrine attenuates BLM-evoked pulmonary fibrosis by repressing EMT process via blocking NF-κB signaling and activating Nrf-2 signaling, suggesting that ephedrine might become a potential anti-pulmonary fibrosis agent in the future.


Assuntos
Fibrose Pulmonar , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , NF-kappa B/metabolismo , Bleomicina/toxicidade , Efedrina/uso terapêutico , Efedrina/toxicidade , Queratina-8/metabolismo , Vimentina/metabolismo , Vimentina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transição Epitelial-Mesenquimal , Pulmão/metabolismo , Caderinas/toxicidade , Caderinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...