Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.087
Filtrar
1.
Anal Chim Acta ; 1178: 338847, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482880

RESUMO

Photodynamic therapy has been generally developed and approved as a promising theranostic technique in recent years, which requires photosensitizers to bear high efficiency of reactive oxygen species production, precisely targeting ability and excellent biocompatibility. The real-time monitoring the microenvironments such as viscosity dynamic involved in mitophagy mediated by photodynamic therapy is significantly important to understand therapeutic process but barely reported. In this work, a pyridinium-functionalized triphenylamine derivative, (E)-4-(2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)vinyl)-1-methylpyridin-1-ium iodide (Mito-I), was exploited as photosensitizer for mitochondria-targeted photodynamic therapy and as fluorescent probe for imaging the mitochondrial viscosity dynamic during mitophagy simultaneously. The results indicated that the additional phenyl ring in Mito-I was beneficial to promote its efficiency of singlet oxygen production. The excellent capability of targeting mitochondria and singlet oxygen generation allowed Mito-I for the specifically mitochondria-targeted photodynamic therapy. Moreover, Mito-I displayed off-on fluorescence response to viscosity with high selectivity and sensitivity. The observed enhancement in fluorescence intensity of Mito-I revealed the increasingly mitochondrial viscosity during mitophagy mediated by the photodynamic therapy of Mito-I. As a result, this work presents a rare example to realize the mitochondria-targeting photodynamic therapy as well as the real-time monitoring viscosity dynamic during mitophagy, which is of great importance for the basic medical research involved in photodynamic therapy.


Assuntos
Mitofagia , Fotoquimioterapia , Mitocôndrias , Fármacos Fotossensibilizantes/farmacologia , Viscosidade
2.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3772-3779, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472249

RESUMO

To explore the correlation between concentrate viscosity and molding quality of personalized traditional Chinese medicine(TCM) condensed water pill, this study established a concentrate viscosity characterization method with rotational rheometry. Seven model prescriptions were respectively concentrated to different degrees and the viscosity of each concentrate was determined. The pre-sence of 'viscosity jump' in the middle stage of 'flag hanging' of all the model prescriptions implied that there might be an ideal viscosity range in the preparation of condensed water pill. The further study of 22 model prescriptions demonstrated that the optimum viscosity range of concentrate was 5-15 Pa·s(25 ℃) for approximately 82% of the prescriptions. About 18% of the prescriptions had a wide range, which might be caused by the high proportions of mineral and crustacean drugs in the crushing part and sugar and fibrous drugs in the decocting part. This study clarified the optimum viscosity range for concentrates of personalized TCM condensed water pills and achieved a preparation technology without any excipient, laying a foundation for the on-line control of the preparation.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Excipientes , Viscosidade , Água
4.
Talanta ; 235: 122719, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517587

RESUMO

Here, a dual lock-and-key fluorescence probe was developed for visualizing the inflammatory process in myocardial H9C2 cells. The probe possessed two-photon properties, viscosity sensitivity, and hydrogen peroxide (H2O2) responsiveness. A thiocarbamate spacer between fluorophore and H2O2 responsive unit enabled the release of carbonyl sulfide (COS). This rapidly converts to the anti-inflammatory hydrogen sulfide (H2S) by the ubiquitous enzyme carbon anhydrase. The probe displayed a dual response towards hydrogen peroxide and viscosity in vitro. No obvious fluorescence changes were observed towards either hydrogen peroxide or viscosity alone. In cellular experiments, the probe demonstrated good biocompatibility, low toxicity, and was shown responses towards exogenous and endogenous hydrogen peroxide under viscosity conditions. LPS induced cell inflammation showed it was able to effectively alleviate the inflammation-caused damage by releasing H2S and eliminating H2O2. The new protocol demonstrates its promising to achieve diagnosis and treatment of cellular inflammatory process.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Fluorescência , Células HeLa , Humanos , Peróxido de Hidrogênio , Inflamação/tratamento farmacológico , Viscosidade
5.
Analyst ; 146(17): 5316-5325, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34338684

RESUMO

The analysis of small molecules within complex mixtures is a particularly difficult task when dealing with the study of metabolite mixtures or chemical reaction media. This issue has fostered in recent years an active search for effective and practical solutions. In this context, the ViscY NMR approach has been recently proposed. ViscY collectively designates the NMR experiments that take advantage of spin diffusion in highly viscous solvents or solvent blends for the individualization of the NMR spectra of small molecule mixture components. Two viscous media were prepared from ortho-phosphoric acid (85%) solution by dilution with either D2O or DMSO-d6, thus providing solvent blends with slightly different polarities in which all liquid-state NMR experiments can be carried out easily. Two mixtures, one of four structurally close dipeptides and one of four low-polarity phosphorus-containing compounds, were used for the method assessment, using ViscY experiments such as homonuclear selective 1D and 2D 1H NOESY experiments, heteronuclear 2D 1H-15N/1H-31P HSQC-NOESY and 1H-13C/1H-15N/1H-31P NOAH experiments.


Assuntos
Ácidos Fosfóricos , Espectroscopia de Ressonância Magnética , Solventes , Viscosidade
6.
Food Res Int ; 147: 110451, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399453

RESUMO

Skim milk concentrates have important applications in the dairy industry, often as intermediate ingredients. Concentration of skim milk by reverse osmosis membrane filtration induces water removal, which reduces the free volume between the colloidal components, in particular the casein micelles. Thermal treatment before or after concentration impacts the morphology of casein micelles. These changes affect the flow behavior and viscosity, but the consequences for supermicellar structure have not been elucidated. In the present study, skim milk concentrates with different total solid contents from 8.7% (control) up to 22.8% (w/w), prepared by reverse osmosis membrane filtration of non-heated and pasteurized skim milk, were heat treated at 75 °C for 18 s, and compared with non-heated concentrates. The structure of the concentrates was studied using Ultra Small Angle X-ray Scattering (USAXS), and the viscosity of concentrates was measured. The USAXS intensity I(q) was fitted at small and intermediate q-regions (0.0005 < q < 0.003 Å-1 and 0.0035 < q < 0.03 Å-1, respectively) with a power law. The value of the power law exponent was used to assess the heat- and concentration-induced aggregation of the milk solids and correlate it with the apparent viscosity. The results showed that increased viscosity of skim milk concentrates, due to water removal and heat-load, can be explained by increased aggregation of the casein micelles into elongated aggregates and increased smoothening of the casein micelle surface.


Assuntos
Caseínas , Micelas , Animais , Leite , Viscosidade , Raios X
7.
Food Res Int ; 147: 110478, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399474

RESUMO

White Birch Sap (WBS) contains appreciable amounts of mineral ions and phenolic compounds and can be used as alternate solvent for food applications. In this study, the effect of the mineral and phenolic composition of WBS was evaluated on the physical properties of xanthan gum, guar gum, ultra-finely milled oatmeal and their combinations in solution. Solutions were formulated with WBS and with solvents mimicking WBS without phenolic compounds and WBS without phenolics nor mineral ions. The influence of solvent composition was evaluated on flow properties and water mobility of the solutions. From WBS without mineral ions nor phenolics, the addition of mineral ions led to increased pseudo-plasticity and decreased flow consistency, and decreased water mobility. Addition of phenolic compounds through WBS led to opposite effects possibly due to phenolic-driven aggregation of the hydrocolloids which also seemed to inhibit guar/xanthan interactions.


Assuntos
Cyamopsis , Betula , Polissacarídeos Bacterianos , Viscosidade , Água
8.
Food Res Int ; 147: 110558, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399535

RESUMO

Food behavior during oral processing plays an essential role in the perception of texture. It depends on different factors, including food structure and composition, as well as its behavior when interacting with saliva. This study aimed to investigate the effect of particle size and thickener type of emulsified systems on physical, rheological, tribological, and oral oily coating properties under oral conditions. Six matrices based on oil-in-water emulsions with different particle sizes (NE-nanoemulsion and CE-conventional emulsions) were prepared using a mixture of emulsifiers (10% w/w) and sunflower oil (10% w/w). Thickened agents were added to the matrices (NE and CE) at different concentrations (3-4.5% w/w of starch-ST or 0.4-0.8% w/w xanthan gum-XG) to obtain equi-viscous samples (NE-EV) with their CE-based counterpart. Results showed a decrease in apparent viscosity values under oral conditions (saliva and shearing at 10 s-1) during the shear time, but this behavior was more evident in starch-based matrices. The lubrication properties of the different matrices depended mainly on the thickener concentration since equi-viscous samples (NE-ST-EV and NE-XG-EV) showed higher coefficient of friction (CoF) values. Finally, oral oily coating was more related to the oil droplets size than to the type of thickener since all NE-based matrices showed a higher amount of coating retained compared to the CE-based ones. Therefore, NE-based matrices could be used as an alternative to increase mouthfeel sensations in food emulsions.


Assuntos
Emulsificantes , Emulsões , Tamanho da Partícula , Reologia , Viscosidade
9.
BMC Genomics ; 22(1): 596, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353280

RESUMO

BACKGROUND: The eating and cooking qualities (ECQs) of rice (Oryza sativa L.) are key characteristics affecting variety adoption and market value. Starch viscosity profiles tested by a rapid visco analyzer (RVA) offer a direct measure of ECQs and represent the changes in viscosity associated with starch gelatinization. RVA profiles of rice are controlled by a complex genetic system and are also affected by the environment. Although Waxy (Wx) is the major gene controlling amylose content (AC) and ECQs, there are still other unknown genetic factors that affect ECQs. RESULTS: Quantitative trait loci (QTLs) for starch paste viscosity in rice were analyzed using chromosome segment substitution lines (CSSLs) developed from the two cultivars 9311 and Nipponbare, which have same Wx-b allele. Thus, the effect of the major locus Wx was eliminated and the other locus associated with the RVA profile could be identified. QTLs for seven parameters of the starch RVA profile were tested over four years in Nanjing, China. A total of 310 QTLs were identified (from 1 to 55 QTLs per trait) and 136 QTLs were identified in more than one year. Among them, 6 QTLs were stalely detected in four years and 26 QTLs were detected in at least three years including 13 pleiotropic loci, controlling 2 to 6 RVA properties simultaneously. These stable QTL hotspots were co-located with several known starch synthesis-related genes (SSRGs). Sequence alignments showed that nucleotide and amino acid sequences of most SSRGs were different between the two parents. Finally, we detected stable QTLs associated with multiple starch viscosity traits near Wx itself, supporting the notion that additional QTLs near Wx control multiple characteristic values of starch viscosity. CONCLUSIONS: By eliminating the contribution from the major locus Wx, multiple QTLs associated with the RVA profile of rice were identified, several of which were stably detected over four years. The complexity of the genetic basis of rice starch viscosity traits might be due to their pleiotropic effects and the multiple QTL hot spots. Minor QTLs controlling starch viscosity traits were identified by using the chromosome segment substitution strategy. Allele polymorphism might be the reason that QTLs controlling RVA profile characteristics were detected in some known SSRG regions.


Assuntos
Oryza , Amido/química , Alelos , Cromossomos , Oryza/genética , Locos de Características Quantitativas , Viscosidade
10.
Talanta ; 234: 122621, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364430

RESUMO

Altered H2S levels and intracellular viscosity have both been seen in Parkinson's disease (PD). However, how H2S and intracellular viscosity are involved in PD pathogenesis remains unknown. Herein, a dual-function fluorescent probe DF was designed and synthesized to analyze intracellular viscosity and hydrogen sulfide. It is a near-infrared fluorescence probe with improved photostability and large Stokes shift (110 nm). The probe reveals increased viscosity and hydrogen sulfide in zebrafish model of PD for the first time.


Assuntos
Sulfeto de Hidrogênio , Doença de Parkinson , Animais , Corantes Fluorescentes , Células HeLa , Humanos , Viscosidade , Peixe-Zebra
11.
Soft Matter ; 17(32): 7585-7595, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341819

RESUMO

Mucus is a viscoelastic gel secreted by the pulmonary epithelium in the tracheobronchial region of the lungs. The coordinated beating of cilia moves mucus upwards towards the pharynx, removing inhaled pathogens and particles from the airways. The efficacy of this clearance mechanism depends primarily on the rheological properties of mucus. Here we use magnetic wire based microrheology to study the viscoelastic properties of human mucus collected from human bronchus tubes. The response of wires between 5 and 80 µm in length to a rotating magnetic field is monitored by optical time-lapse microscopy and analyzed using constitutive equations of rheology, including those of Maxwell and Kelvin-Voigt. The static shear viscosity and elastic modulus can be inferred from low frequency (3 × 10-3-30 rad s-1) measurements, leading to the evaluation of the mucin network relaxation time. This relaxation time is found to be widely distributed, from one to several hundred seconds. Mucus is identified as a viscoelastic liquid with an elastic modulus of 2.5 ± 0.5 Pa and a static viscosity of 100 ± 40 Pa s. Our work shows that beyond the established spatial variations in rheological properties due to microcavities, mucus exhibits secondary inhomogeneities associated with the relaxation time of the mucin network that may be important for its flow properties.


Assuntos
Magnetismo , Muco , Humanos , Fenômenos Magnéticos , Reologia , Viscosidade
12.
Sci Rep ; 11(1): 16051, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362974

RESUMO

With an increasing body of evidence that SARS-CoV-2 is an airborne pathogen, droplet character formed during speech, coughs, and sneezes are important. Larger droplets tend to fall faster and are less prone to drive the airborne transmission pathway. Alternatively, small droplets (aerosols) can remain suspended for long time periods. The small size of SARS-CoV-2 enables it to be encapsulated in these aerosols, thereby increasing the pathogen's ability to be transmitted via airborne paths. Droplet formation during human respiratory events relates to airspeed (speech, cough, sneeze), fluid properties of the saliva/mucus, and the fluid content itself. In this work, we study the fluidic drivers (fluid properties and content) and their influence on factors relating to transmissibility. We explore the relationship between saliva fluid properties and droplet airborne transmission paths. Interestingly, the natural human response appears to potentially work with these drivers to mitigate pathogen transmission. In this work, the saliva is varied using two approaches: (1) modifying the saliva with colloids that increase the viscosity/surface tension, and (2) stimulating the saliva content to increased/decreased levels. Through modern experimental and numerical flow diagnostic methods, the character, content, and exposure to droplets and aerosols are all evaluated. The results indicate that altering the saliva properties can significantly impact the droplet size distribution, the formation of aerosols, the trajectory of the bulk of the droplet plume, and the exposure (or transmissibility) to droplets. High-fidelity numerical methods used and verify that increased droplet size character enhances droplet fallout. In the context of natural saliva response, we find previous studies indicating natural human responses of increased saliva viscosity from stress and reduced saliva content from either stress or illness. These responses both favorably correspond to reduced transmissibility. Such a finding also relates to potential control methods, hence, we compared results to a surgical mask. In general, we find that saliva alteration can produce fewer and larger droplets with less content and aerosols. Such results indicate a novel approach to alter SARS-CoV-2's transmission path and may act as a way to control the COVID-19 pandemic, as well as influenza and the common cold.


Assuntos
COVID-19/transmissão , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Aerossóis/química , Microbiologia do Ar , Coloides/química , Tosse , Humanos , Pandemias , Saliva/química , Espirro , Viscosidade
13.
J Phys Chem Lett ; 12(32): 7777-7782, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34374547

RESUMO

Enzyme catalysis achieves tremendous rate accelerations. Enzyme reaction centers provide a constraint geometry that preferentially binds an activated form of the substrate and thus lowers the energy barrier. However, this transition state picture neglects the flexibility of proteins and its role in enzymatic catalysis. Especially for proton transfer reactions, it has been suggested that motions of the protein modulate the donor-acceptor distance and prepare a tunneling-ready state. We report the detection of frequency fluctuations of an azide anion (N3-) bound in the active site of the protein carbonic anhydrase II, where a low-frequency mode of the protein has been proposed to facilitate proton transfer over two water molecules during the catalyzed reaction. 2D-IR spectroscopy resolves an underdamped low-frequency mode at about 1 THz (30 cm-1). We find its frequency to be viscosity- and temperature-dependent and to decrease by 6 cm-1 between 230 and 320 K, reporting the softening of the mode's potential.


Assuntos
Anidrase Carbônica II/química , Animais , Azidas/química , Domínio Catalítico , Bovinos , Prótons , Espectrofotometria Infravermelho/métodos , Temperatura , Vibração , Viscosidade , Água/química
14.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443601

RESUMO

Surfactant aggregates have long been considered as a tool to improve drug delivery and have been widely used in medical products. The pH-responsive aggregation behavior in anionic gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and its mixture with a cationic monomeric surfactant cetyltrimethylammonium bromide (CTAB) have been investigated. The spherical-to-wormlike micelle transition was successfully realized in C12C3C12(SO3)2 through decreasing the pH, while the rheological properties were perfectly enhanced for the formation of wormlike micelles. Especially at 140 mM and pH 6.7, the mixture showed high viscoelasticity, and the maximum of the zero-shear viscosity reached 1530 Pa·s. Acting as a sulfobetaine zwitterionic gemini surfactant, the electrostatic attraction, the hydrogen bond and the short spacer of C12C3C12(SO3)2 molecules were all responsible for the significant micellar growth. Upon adding CTAB, the similar transition could also be realized at a low pH, and the further transformation to branched micelles occurred by adjusting the total concentration. Although the mixtures did not approach the viscosity maximum appearing in the C12C3C12(SO3)2 solution, CTAB addition is more favorable for viscosity enhancement in the wormlike-micelle region. The weakened charges of the headgroups in a catanionic mixed system minimizes the micellar spontaneous curvature and enhances the intermolecular hydrogen-bonding interaction between C12C3C12(SO3)2, facilitating the formation of a viscous solution, which would greatly induce entanglement and even the fusion of wormlike micelles, thus resulting in branched microstructures and a decline of viscosity.


Assuntos
Reologia , Tensoativos/química , Cetrimônio/química , Glutamatos/química , Concentração de Íons de Hidrogênio , Micelas , Viscosidade
15.
Nat Commun ; 12(1): 5065, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417452

RESUMO

The widespread UbiD enzyme family utilises the prFMN cofactor to achieve reversible decarboxylation of acrylic and (hetero)aromatic compounds. The reaction with acrylic compounds based on reversible 1,3-dipolar cycloaddition between substrate and prFMN occurs within the confines of the active site. In contrast, during aromatic acid decarboxylation, substantial rearrangement of the substrate aromatic moiety associated with covalent catalysis presents a molecular dynamic challenge. Here we determine the crystal structures of the multi-subunit vanillic acid decarboxylase VdcCD. We demonstrate that the small VdcD subunit acts as an allosteric activator of the UbiD-like VdcC. Comparison of distinct VdcCD structures reveals domain motion of the prFMN-binding domain directly affects active site architecture. Docking of substrate and prFMN-adduct species reveals active site reorganisation coupled to domain motion supports rearrangement of the substrate aromatic moiety. Together with kinetic solvent viscosity effects, this establishes prFMN covalent catalysis of aromatic (de)carboxylation is afforded by UbiD dynamics.


Assuntos
Carboxiliases/química , Carboxiliases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Reação de Cicloadição , Descarboxilação , Mononucleotídeo de Flavina/metabolismo , Cinética , Modelos Moleculares , Oxigênio/farmacologia , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Solventes , Relação Estrutura-Atividade , Especificidade por Substrato , Viscosidade
16.
Nat Commun ; 12(1): 5072, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417473

RESUMO

In vivo bioprinting has recently emerged as a direct fabrication technique to create artificial tissues and medical devices on target sites within the body, enabling advanced clinical strategies. However, existing in vivo bioprinting methods are often limited to applications near the skin or require open surgery for printing on internal organs. Here, we report a ferromagnetic soft catheter robot (FSCR) system capable of in situ computer-controlled bioprinting in a minimally invasive manner based on magnetic actuation. The FSCR is designed by dispersing ferromagnetic particles in a fiber-reinforced polymer matrix. This design results in stable ink extrusion and allows for printing various materials with different rheological properties and functionalities. A superimposed magnetic field drives the FSCR to achieve digitally controlled printing with high accuracy. We demonstrate printing multiple patterns on planar surfaces, and considering the non-planar surface of natural organs, we then develop an in situ printing strategy for curved surfaces and demonstrate minimally invasive in vivo bioprinting of hydrogels in a rat model. Our catheter robot will permit intelligent and minimally invasive bio-fabrication.


Assuntos
Bioimpressão , Cateteres , Imãs/química , Robótica , Animais , Linhagem Celular , Elasticidade , Condutividade Elétrica , Humanos , Hidrogéis/química , Fígado/diagnóstico por imagem , Ratos Sprague-Dawley , Suínos , Tomografia Computadorizada por Raios X , Viscosidade
17.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34451003

RESUMO

The mechanical properties of biological cells, especially the elastic modulus and viscosity of cells, have been identified to reflect cell viability and cell states. The existing measuring techniques need additional equipment or operation condition. This paper presents a cell's viscoelasticity measurement method based on the spheroidization process of non-spherical shaped cell. The viscoelasticity of porcine fetal fibroblast was measured. Firstly, we introduced the process of recording the spheroidization process of porcine fetal fibroblast. Secondly, we built the viscoelastic model for simulating a cell's spheroidization process. Then, we simulated the spheroidization process of porcine fetal fibroblast and got the simulated spheroidization process. By identifying the parameters in the viscoelastic model, we got the elasticity (500 Pa) and viscosity (10 Pa·s) of porcine fetal fibroblast. The results showed that the magnitude of the elasticity and viscosity were in agreement with those measured by traditional method. To verify the accuracy of the proposed method, we imitated the spheroidization process with silicone oil, a kind of viscous and uniform liquid with determined viscosity. We did the silicone oil's spheroidization experiment and simulated this process. The simulation results also fitted the experimental results well.


Assuntos
Técnicas de Imagem por Elasticidade , Animais , Simulação por Computador , Módulo de Elasticidade , Elasticidade , Suínos , Viscosidade
18.
Sensors (Basel) ; 21(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451028

RESUMO

A multiharmonic quartz crystal microbalance (QCM) has been applied to study the viscoelastic properties of the aptamer-based sensing layers at the surface of a QCM transducer covered by neutravidin following interaction with bacteria Listeria innocua. Addition of bacteria in the concentration range 5 × 103-106 CFU/mL resulted in a decrease of resonant frequency and in an increase of dissipation. The frequency decrease has been lower than one would expect considering the dimension of the bacteria. This can be caused by lower penetration depth of the acoustics wave (approximately 120 nm) in comparison with the thickness of the bacterial layer (approximately 500 nm). Addition of E. coli at the surface of neutravidin as well as aptamer layers did not result in significant changes in frequency and dissipation. Using the Kelvin-Voight model the analysis of the viscoelastic properties of the sensing layers was performed and several parameters such as penetration depth, Γ, viscosity coefficient, η, and shear modulus, µ, were determined following various modifications of QCM transducer. The penetration depth decreased following adsorption of the neutravidin layer, which is evidence of the formation of a rigid protein structure. This value did not change significantly following adsorption of aptamers and Listeria innocua. Viscosity coefficient was higher for the neutravidin layer in comparison with the naked QCM transducer in a buffer. However, a further increase of viscosity coefficient took place following attachment of aptamers suggesting their softer structure. The interaction of Listeria innocua with the aptamer layer resulted in slight decrease of viscosity coefficient. The shearing modulus increased for the neutravidin layer and decreased following aptamer adsorption, while a slight increase of µ was observed after the addition of Listeria innocua.


Assuntos
Escherichia coli , Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Listeria , Propriedades de Superfície , Viscosidade
19.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361713

RESUMO

The textural properties of butter are influenced by its fat content and implicitly by the fatty acids composition. The impact of butter's chemical composition variation was studied in accordance with texture and color properties. From 37 fatty acids examined, only 18 were quantified in the analyzed butter fat samples, and approximately 69.120% were saturated, 25.482% were monounsaturated, and 5.301% were polyunsaturated. The butter samples' viscosity ranged between 0.24 and 2.12 N, while the adhesiveness ranged between 0.286 to 18.19 N·mm. The principal component analysis (PCA) separated the butter samples based on texture parameters, fatty acids concentration, and fat content, which were in contrast with water content. Of the measured color parameters, the yellowness b* color parameter is a relevant indicator that differentiated the analyzed sample into seven statistical groups; the ANOVA statistics highlighted this difference at a level of p < 0.001.


Assuntos
Manteiga/análise , Ácidos Graxos Insaturados/química , Ácidos Graxos/química , Água/análise , Animais , Cor , Ácidos Graxos/classificação , Ácidos Graxos/isolamento & purificação , Ácidos Graxos Insaturados/classificação , Ácidos Graxos Insaturados/isolamento & purificação , Análise de Alimentos/métodos , Humanos , Análise de Componente Principal , Paladar/fisiologia , Viscosidade
20.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361717

RESUMO

The development of bio-based nanocomposites is of high scientific and industrial interest, since they offer excellent advantages in creating functional materials. However, dispersion and distribution of the nanomaterials inside the polymer matrix is a key challenge to achieve high-performance functional nanocomposites. In this context, for better dispersion, biobased triethyl citrate (TEC) as a dispersing agent in a liquid-assisted extrusion process was used to prepare the nanocomposites of poly (lactic acid) (PLA) and chitin nanocrystals (ChNCs). The aim was to identify the effect of the TEC content on the dispersion of ChNCs in the PLA matrix and the manufacturing of a functional nanocomposite. The nanocomposite film's optical properties; microstructure; migration of the additive and nanocomposites' thermal, mechanical and rheological properties, all influenced by the ChNC dispersion, were studied. The microscopy study confirmed that the dispersion of the ChNCs was improved with the increasing TEC content, and the best dispersion was found in the nanocomposite prepared with 15 wt% TEC. Additionally, the nanocomposite with the highest TEC content (15 wt%) resembled the mechanical properties of commonly used polymers like polyethylene and polypropylene. The addition of ChNCs in PLA-TEC15 enhanced the melt viscosity, as well as melt strength, of the polymer and demonstrated antibacterial activity.


Assuntos
Antibacterianos/síntese química , Quitina/química , Citratos/química , Nanocompostos/química , Nanopartículas/química , Poliésteres/química , Antibacterianos/farmacologia , Módulo de Elasticidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Reologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Resistência à Tração , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...