Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.422
Filtrar
1.
BMC Plant Biol ; 24(1): 624, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951758

RESUMO

Drought poses significant risks to maize cultivation by impairing plant growth, water uptake and yield; nano priming offers a promising avenue to mitigate these effects by enhancing plant water relations, stress tolerance and overall productivity. In the current experiment, we tested a hypothesis that seed priming with iron oxide nanoparticles (n-Fe2O3) can improve maize performance under water stress by improving its growth, water relations, yield and biochemical attributes. The experiment was conducted on a one main plot bisected into two subplots corresponding to the water and drought environments. Within each subplot, maize plants were raised from n-Fe2O3 primed seeds corresponding to 0 mg. L- 1 (as control treatment), 25, 50, 75, and 100 mg. L- 1 (as trial treatments). Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved the leaf relative water content, water potential, photosynthetic water use efficiency, and leaf intrinsic water use efficiency of maize plants by 13%, 44%, 64% and 17%, respectively compared to control under drought stress. The same treatments improved plant biochemical attributes such as total chlorophyll content, total flavonoids and ascorbic acid by 37%, 22%, and 36%, respectively. Seed priming with n-Fe2O3 accelerated the functioning of antioxidant enzymes such as SOD and POD and depressed the levels of leaf malondialdehyde and hydrogen peroxide significantly. Seed priming with n-Fe2O3 at a concentration of 75 mg. L- 1 improved cob length, number of kernel rows per cob, and 100 kernel weight by 59%, 27% and 33%, respectively, under drought stress. Seed priming with n-Fe2O3 can be used to increase maize production under limited water scenarios.


Assuntos
Desidratação , Sementes , Água , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Água/metabolismo , Secas , Fotossíntese/efeitos dos fármacos , Compostos Férricos , Clorofila/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia
2.
Physiol Plant ; 176(4): e14422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962815

RESUMO

Low temperatures pose a common challenge in the production of cucumbers and tomatoes, hindering plant growth and, in severe cases, leading to plant death. In our investigation, we observed a substantial improvement in the growth of cucumber and tomato seedlings through the application of corn steep liquor (CSL), myo-inositol (MI), and their combinations. When subjected to low-temperature stress, these treatments resulted in heightened levels of photosynthetic pigments, thereby fostering enhanced photosynthesis in both tomato and cucumber plants. Furthermore, it contributed to a decrease in malondialdehyde (MDA) levels and electrolyte leakage (REP). The effectiveness of the treatment was further validated through the analysis of key gene expressions (CBF1, COR, MIOX4, and MIPS1) in cucumber. Particularly, noteworthy positive outcomes were noted in the treatment involving 0.6 mL L-1 CSL combined with 72 mg L-1 MI. This study provides valuable technical insights into leveraging the synergistic effects of inositol and maize leachate to promote early crop growth and bolster resistance to low temperatures.


Assuntos
Temperatura Baixa , Cucumis sativus , Inositol , Plântula , Solanum lycopersicum , Zea mays , Inositol/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/genética , Zea mays/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Cucumis sativus/genética , Cucumis sativus/fisiologia , Fotossíntese/efeitos dos fármacos , Malondialdeído/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
3.
BMC Plant Biol ; 24(1): 642, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972980

RESUMO

Among the several threats to humanity by anthropogenic activities, contamination of the environment by heavy metals is of great concern. Upon entry into the food chain, these metals cause serious hazards to plants and other organisms including humans. Use of microbes for bioremediation of the soil and stress mitigation in plants are among the preferred strategies to provide an efficient, cost-effective, eco-friendly solution of the problem. The current investigation is an attempt in this direction where fungal strain PH1 was isolated from the rhizosphere of Parthenium hysterophorus which was identified as Aspergillus niger by sequence homology of the ITS 1 and ITS 4 regions of the rRNA. The strain was tested for its effect on growth and biochemical parameters as reflection of its potential to mitigate Pb stress in Zea mays exposed to 100, 200 and 500 µg of Pb/g of soil. In the initial screening, it was revealed that the strain has the ability to tolerate lead stress, solubilize insoluble phosphate and produce plant growth promoting hormones (IAA and SA) and other metabolites like phenolics, flavonoids, sugar, protein and lipids. Under 500 µg of Pb/g of soil, Z. mays exhibited significant growth retardation with a reduction of 31% in root length, 30.5% in shoot length, 57.5% in fresh weight and 45.2% in dry weight as compared to control plants. Inoculation of A. niger to Pb treated plants not only restored root and shoot length, rather promoted it to a level significantly higher than the control plants. Association of the strain modulated the physio-hormonal attributes of maize plants that resulted in their better growth which indicated a state of low stress. Additionally, the strain boosted the antioxidant defence system of the maize there by causing a significant reduction in the ascorbic acid peroxidase (1.5%), catalase (19%) and 1,1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging activity (33.3%), indicating a lower stress condition as compared to their non-inoculated stressed plants. Based on current evidence, this strain can potentially be used as a biofertilizer for Pb-contaminated sites where it will improve overall plant health with the hope of achieving better biological and agricultural yields.


Assuntos
Antioxidantes , Aspergillus niger , Chumbo , Fosfatos , Fotossíntese , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Aspergillus niger/metabolismo , Chumbo/metabolismo , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico , Biodegradação Ambiental
4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000300

RESUMO

Maize is an important crop used for food, feed, and fuel. Abiotic stress is an important factor affecting maize yield. The EPF/EPFL gene family encodes class-specific secretory proteins that play an important role in the response to abiotic stress in plants. In order to explore and utilize the EPF/EPFL family in maize, the family members were systematically identified, and their chromosomal localization, physicochemical properties, cis-acting element prediction in promoters, phylogenetic tree construction, and expression pattern analysis were carried out using bioinformatics techniques. A total of 18 ZmEPF/EPFL proteins were identified in maize, which are mostly alkaline and a small portion acidic. Subcellular localization results showed that ZmEPF6, ZmEPF12, and ZmEPFL2 are localized in the nucleus and cytoplasm. Analysis of cis-acting elements revealed that members of the ZmEPF/EPFL family contain regulatory elements such as light response, anoxic, low temperature, and hormone response regulatory elements. RT-qPCR results showed that these family members are indeed responding to cold stress and hormone treatments. These results of this study provide a theoretical basis for improving the abiotic stress resistance of maize in future research.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regiões Promotoras Genéticas
5.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000567

RESUMO

Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00-4.01/4.03-4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses.


Assuntos
Benzoxazinas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Filogenia
6.
Sci Rep ; 14(1): 16823, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039220

RESUMO

Exploring host plant resistance and elevating plant defense mechanisms through the application of exogenous elicitors stands as a promising strategy for integrated pest management. The fall armyworm, a pernicious menace to grain crops in tropical and subtropical regions, stands as a formidable threat due to its capacity for devastation and a wide-ranging spectrum of host plants. There is no literature regarding artificially induced resistance in maize against fall armyworm (Spodoptera frugiperda) by exogenous application of phytohormones. The present investigation was performed to evaluate the role of jasmonic acid (JA) and salicylic acid (SA) on two maize hybrids namely FH-1046 and YH-1898 against fall armyworm. Results showed that plant height, biomass and lengths, fresh and dry weight of root shoot which decreased with armyworm infestation improved with phytohormonal application. JA treatment resulted in a higher increase in all attributes as compared to SA treatment. Improvement in relative water contents, photosynthetic pigments and pronounced levels of phenol and proline accumulation were observed in infested plants after JA treatment. Infested plants recovered from oxidative stress as JA application activated and increased the antioxidant enzyme activity of superoxide dismutase, peroxidase and polyphenol oxidase activity in both FH-1046 and YH-1898 . The oxidative stress reduction in infested plants after JA treatment was also evident from a fair decrease in MDA and H2O2 in both varieties. The SA and JA mediated genes expression was studied and it was found that in FH1046 maize cultivar, JA dependent genes, particularly marker genes PR1 and Lox5 were highly expressed along with TPS10 and BBT12. Whereas SPI, WRKY28, ICS and PAL were shown to be activated upon SA application. Evidently, both JA and SA elicited a robust defensive response within the maize plants against the voracious S. frugiperda, which in consequence exerted a discernible influence over the pest's developmental trajectory and physiological dynamics. A decrease in detoxification enzyme activity of the insects was observed after feeding on treated plants. Moreover, it was recorded that the survival and weight gain of FAW feeding on phytohormone treated maize plants also decelerated. In conclusion, FH-1046 was found to be more tolerant than YH-1898 against fall armyworm infestation and 1 mM JA was more effective than 1 mM SA for alleviation of fall armyworm stress. Therefore, it was inferred that phytohormones regulated redox homeostasis to circumvent oxidative damage and mediate essential metabolic events in maize under stress. To our current understanding, this study is the very first presentation of induced resistance in maize against S. frugiperda with the phytohormonal application (JA and SA).


Assuntos
Ciclopentanos , Oxilipinas , Ácido Salicílico , Spodoptera , Zea mays , Zea mays/parasitologia , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/genética , Spodoptera/efeitos dos fármacos , Animais , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Oxirredução/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Doenças das Plantas/parasitologia , Estresse Oxidativo/efeitos dos fármacos
7.
Physiol Plant ; 176(4): e14443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039017

RESUMO

The plasticity of the xylem and its associated hydraulic properties play crucial roles in plant acclimation to environmental changes, with vessel diameter (Dv) being the most functionally prominent trait. While the effects of external environmental factors on xylem formation and Dv are not fully understood, the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) are known to play significant signalling roles under stress conditions. This study investigates how these hormones impact Dv under various environmental changes. Experiments were conducted in maize plants subjected to drought, soil salinity, and high CO2 concentration treatments. We found that drought and soil salinity significantly reduced Dv at the same stem internode, while an elevated CO2 concentration can mitigate this decrease in Dv. Remarkably, significant negative correlations were observed between Dv and the contents of IAA and ABA when considering the different treatments. Moreover, appropriate foliar application of either IAA or ABA on well-watered and stressed plants led to a decrease in Dv, while the application of corresponding inhibitors resulted in an increase in Dv. This finding underscores the causal relationship between Dv and the levels of both IAA and ABA, offering a promising approach to manipulating xylem vessel size.


Assuntos
Ácido Abscísico , Ácidos Indolacéticos , Caules de Planta , Estresse Fisiológico , Xilema , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Xilema/efeitos dos fármacos , Xilema/fisiologia , Xilema/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Caules de Planta/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Secas , Solo/química , Salinidade , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia
8.
J Agric Food Chem ; 72(29): 16048-16075, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980762

RESUMO

Climate change, particularly drought and heat stress, may slash agricultural productivity by 25.7% by 2080, with maize being the hardest hit. Therefore, unraveling the molecular nature of plant responses to these stressors is vital for the development of climate-smart maize. This manuscript's primary objective was to examine how maize plants respond to these stresses, both individually and in combination. Additionally, the paper delved into harnessing the potential of maize wild relatives as a valuable genetic resource and leveraging AI-based technologies to boost maize resilience. The role of multiomics approaches particularly genomics and transcriptomics in dissecting the genetic basis of stress tolerance was also highlighted. The way forward was proposed to utilize a bunch of information obtained through omics technologies by an interdisciplinary state-of-the-art forward-looking big-data, cyberagriculture system, and AI-based approach to orchestrate the development of climate resilient maize genotypes.


Assuntos
Secas , Genômica , Termotolerância , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Termotolerância/genética , Mudança Climática , Multiômica
9.
Microb Cell Fact ; 23(1): 204, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033104

RESUMO

The global demand for plant oil has reached unprecedented levels and is relevant in all industrial sectors. Driven by the growing awareness for environmental issues of traditional plant oils and the need for eco-friendly alternatives, microbial oil emerges as a promising product with significant potential. Harnessing the capabilities of oleaginous microorganisms is an innovative approach for achieving sustainable oil production. To increase economic feasibility, it is crucial to explore feedstocks such as agricultural waste streams as renewable resource for microbial bioprocesses. The fungal model Ustilago maydis is one promising organism in the field of microbial triglyceride production. It has the ability to metabolize a wide variety of carbon sources for cell growth and accumulates high amounts of triglycerides intracellularly. In this study we asked whether this large variety of usable carbon sources can also be utilized for triglyceride production, using corn stover saccharides as a showcase.Our experiments revealed metabolization of the major saccharide building blocks present in corn stover, demonstrating the remarkable potential of U. maydis. The microorganism exhibited the capacity to synthesize triglycerides using the saccharides glucose, fructose, sucrose, xylose, arabinose, and galactose as carbon source. Notably, while galactose has been formerly considered as toxic to U. maydis, we found that the fungus can metabolize this saccharide, albeit with an extended lag phase of around 100 hours. We identified two distinct methods to significantly reduce or even prevent this lag phase, challenging previous assumptions and expanding the understanding of U. maydis metabolism.Our findings suggest that the two tested methods can prevent long lag phases on feedstocks with high galactose content and that U. maydis can produce microbial triglycerides very efficiently on many different carbon sources. Looking forward, exploring the metabolic capabilities of U. maydis on additional polymeric components of corn stover and beyond holds promise for innovative applications, marking a significant step toward environmentally sustainable bioprocessing technologies.


Assuntos
Galactose , Triglicerídeos , Zea mays , Zea mays/metabolismo , Triglicerídeos/metabolismo , Galactose/metabolismo , Carbono/metabolismo , Ustilago/metabolismo , Basidiomycota
11.
Environ Sci Pollut Res Int ; 31(32): 44900-44907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954337

RESUMO

Seed coating with pesticides is used extensively for the protection of both seeds and plants against pests. In this study, the uptake and transport of seed-coating pesticides (insecticides), including cyantraniliprole (CYN) and thiamethoxam (THX), were investigated. The translocation of these pesticides from the soil to the plant and their accumulation in different plant parts were also calculated. After sowing the seeds with seed coating pesticides, soil and plant samples were taken across the study area. These samples were extracted and analyzed in liquid chromatography with tandem mass spectrometry (LC-MS/MS). CYN and THX were used in maize plants for the first time to observe soil degradation kinetics, and CYN showed a higher half-life than THX in soil. Both pesticides have been taken up by the corn maize plant and transferred and accumulated to the upper parts of the plant. Although the THX concentration was between 2.240 and 0.003 mg/kg in the root, between 3.360 and 0.085 mg/kg in the stem, it was between 0.277 and 3.980 mg/kg in the leaf, whereas CYN was detected at higher concentrations. The concentration of CYN was 1.472 mg/ kg and 0.079 mg/kg in the roots and stems of the maize plant, respectively. However, the bioconcentration factor (BCF) indicates the soil-to-plant accumulation of CYN from 28 to 34.6 and that of 12.5 to 4567.1 for THX on different sampling days. The translocation factor (TFstem) represents the ratio of pesticides absorbed from the stem and transported to the roots. For CYN, TFstem ranges from 3.6 to 20.5, while for THX, it varies between 1.5 and 26.8, indicating a higher translocation rate for THX. The ratio of leaf to root concentration are 3.6 to 20.5 for CYN and 1.8 to 87.7 for THX, demonstrating effective translocation for both pesticides. The TF values for both pesticides are above 1, signifying successful root-to-stem-to-leaf movement. Notably, THX exhibits a notably higher transport rate compared to CYN.


Assuntos
Sementes , Tiametoxam , Zea mays , Zea mays/metabolismo , Pirazóis/metabolismo , Poluentes do Solo/metabolismo , ortoaminobenzoatos/metabolismo , Praguicidas/metabolismo , Solo/química
12.
Microbiol Res ; 286: 127826, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964074

RESUMO

Humic acids (HAs) are organic macromolecules that play an important role in improving soil properties, plant growth and agronomic parameters. However, the feature of relatively complex aromatic structure makes it difficult to be degraded, which restricts the promotion to the crop growth. Thus, exploring microorganisms capable of degrading HAs may be a potential solution. Here, a HAs-degrading strain, Streptomyces rochei L1, and its potential for biodegradation was studied by genomics, transcriptomics, and targeted metabolomics analytical approaches. The results showed that the high molecular weight HAs were cleaved to low molecular aliphatic and aromatic compounds and their derivatives. This cleavage may be associated with the laccase (KatE). In addition, the polysaccharide deacetylase (PdgA) catalyzes the removal of acetyl groups from specific sites on the HAs molecule, resulting in structural changes. The field experiment showed that the degraded HAs significantly promote the growth of corn seedlings and increase the corn yield by 3.6 %. The HAs-degrading products, including aromatic and low molecular weight aliphatic substances as well as secondary metabolites from S. rochei L1, might be the key components responsible for the corn promotion. Our findings will advance the application of HAs as soil nutrients for the green and sustainable agriculture.


Assuntos
Biodegradação Ambiental , Substâncias Húmicas , Microbiologia do Solo , Streptomyces , Zea mays , Streptomyces/metabolismo , Streptomyces/crescimento & desenvolvimento , Streptomyces/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Solo/química , Lacase/metabolismo , Metabolômica , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/microbiologia
13.
Nat Commun ; 15(1): 5868, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997252

RESUMO

The 3' end of a gene, often called a terminator, modulates mRNA stability, localization, translation, and polyadenylation. Here, we adapted Plant STARR-seq, a massively parallel reporter assay, to measure the activity of over 50,000 terminators from the plants Arabidopsis thaliana and Zea mays. We characterize thousands of plant terminators, including many that outperform bacterial terminators commonly used in plants. Terminator activity is species-specific, differing in tobacco leaf and maize protoplast assays. While recapitulating known biology, our results reveal the relative contributions of polyadenylation motifs to terminator strength. We built a computational model to predict terminator strength and used it to conduct in silico evolution that generated optimized synthetic terminators. Additionally, we discover alternative polyadenylation sites across tens of thousands of terminators; however, the strongest terminators tend to have a dominant cleavage site. Our results establish features of plant terminator function and identify strong naturally occurring and synthetic terminators.


Assuntos
Arabidopsis , Poliadenilação , Zea mays , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Regiões Terminadoras Genéticas/genética , Nicotiana/genética , Nicotiana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Sci Rep ; 14(1): 16419, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014045

RESUMO

In 2005-2007, a field study was conducted into intercropping of maize with faba bean at Pawlowice research station, Wroclaw University of Environmental and Life Sciences. The main aim of the multi-year field research was an investigation into the reactions of differing maize hybrid earliness to intercropping cultivation with faba bean. The field research evaluated the effect of three maize hybrids-Wilga (early-E), Blask (medium-M) and Iman (late-L)-and the sowing rate of faba bean-18 (Fb1), 27 (Fb2) and 36 (Fb3) seeds per 1 m2-on growth dynamics and yield structure, and biomass, protein, and energy yield. Cultivation of faba bean in maize inter-rows led to significant competition with maize and affected yields, causing a decrease in maize dry matter yield from 14.1 (Fb1) to 20.6% (FB3) compared with maize sown alone. In terms of total biomass yield from maize and faba beans, no significant differences were found, but a slight increase in yield of 1.1-4.2% (repective to Fb1 and Fb3) was noted compared to maize sown alone. The early maize hybrid had a significantly lower yield but was most suitable for intercropping with faba bean. The dry biomass yield of early hybrids increased in intercropping by 25% compared to pure maize cultivation. Total protein yield from both intercropping components was higher than in the pure sowing of maize: from 24 (Fb1) to 39% (Fb3). The increase in protein production resulted in an improvement in the energy-protein ratio. The number of UFL per kg of total protein decreased from 13.2 in pure maize cultivation (M-P) to 9.3 (Fb3). A more balanced forage biomass was produced from intercropping maize with faba bean, especially when an early maize hybrid was sown with faba beans.


Assuntos
Biomassa , Proteínas de Plantas , Vicia faba , Zea mays , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Vicia faba/metabolismo , Vicia faba/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Agricultura/métodos , Produção Agrícola/métodos
15.
Plant Cell Rep ; 43(8): 195, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008098

RESUMO

KEY MESSAGE: ZmRLCK58, a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation in the shoot. Magnesium (Mg) deficiency is one of critical limiting factors for crop production in widespread acidic soils worldwide. However, the molecular mechanism of crop response to Mg deficiency is still largely unclear. Here, we found higher concentrations of H2O2, soluble sugars, and starch (1.5-, 1.9-, and 1.4-fold, respectively) in the shoot of low-Mg-treated maize seedlings, compared with Mg sufficient plants under hydroponic culture. Consistent with over-accumulation of H2O2, transcriptome profiling revealed significant enrichment of 175 differentially expressed genes (DEGs) in "response to oxygen-containing compound" out of 641 DEGs in the shoot under low Mg. Among 175 DEGs, a down-regulated receptor-like cytoplasmic kinase ZmRLCK58 underwent a recent duplication event before Poaceae divergence and was highly expressed in the maize shoot. ZmRLCK58 overexpression enhanced H2O2 accumulation in shoots by 21.3% and 29.8% under control and low-Mg conditions, respectively, while reducing biomass accumulation compared with wild-type plants. Low Mg further led to 39.7% less starch accumulation in the ZmRLCK58 overexpression shoot and lower Mg utilization efficiency. Compared with wild-type plants, overall down-regulated expression of genes related to response to carbohydrate, photosynthesis, H2O2 metabolic, oxidation-reduction, and ROS metabolic processes in ZmRLCK58 overexpression lines preconditioned aforementioned physiological alterations. Together, ZmRLCK58, as a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Magnésio , Proteínas de Plantas , Plântula , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Magnésio/metabolismo , Magnésio/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Amido/metabolismo , Perfilação da Expressão Gênica , Brotos de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas
16.
J Agric Food Chem ; 72(28): 15633-15642, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950134

RESUMO

The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.


Assuntos
Bacillus , Proteínas de Bactérias , Biodegradação Ambiental , Nitrorredutases , Zea mays , Bacillus/enzimologia , Bacillus/metabolismo , Bacillus/genética , Nitrorredutases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Zea mays/metabolismo , Zea mays/microbiologia , Cucumis sativus/microbiologia , Cucumis sativus/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/química
17.
Sci Rep ; 14(1): 17032, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043883

RESUMO

Corn silage can usually improve the growth performance and the meat quality of ruminants, and subsequently increase the economic benefits of farming. However, little is known about the effects of corn silage on donkeys. This experiment investigated the effects of corn silage on the weight gain, gut microbiota and metabolites of Dezhou donkeys. A total of 24 Dezhou donkeys, sourced from the same farm and exhibiting similar age and average body weight, were utilized in this experiment. The donkeys were allocated into two groups: a control group receiving a basic diet and a test group receiving a basic diet supplemented with 30% corn silage. Each group comprised 12 donkeys, evenly distributed by sex (6 males and 6 females). The experiment lasted for 100 days. Results showed that dietary supplementation with corn silage significantly (P < 0.05) improved the weight gain of Dezhou donkeys at the end of the experiment. And the supplementation of corn silage in the diet significantly altered the bacterial community composition and metabolome in the feces of the donkeys. Notably, the relative abundance ratio of Bacteroidetes to Firmicutes was 0.76 in the control group compared to 0.96 in the test group. Furthermore, members of the Bacteroidetes and Firmicutes phyla were associated with differentiated metabolites enriched in the arachidonic acid metabolism and pentose and glucuronate interconversion pathways, both of which have been reported to be related to animal growth. Specifically, Bacteroidia exhibited statistically (P < 0.05) positive correlations with 15S-HpETE, while Bacilli demonstrated statistically (P < 0.05) negative correlations with D-Xylulose. The findings of this study can advance our mechanistic understanding of the remodeling of intestinal microbiota and metabolome induced by corn silage, as well as their relationships with the growth performance of Dezhou donkeys, which in turn favor the improvement in nutrition of Dezhou donkeys.


Assuntos
Equidae , Microbioma Gastrointestinal , Metaboloma , Silagem , Zea mays , Animais , Zea mays/metabolismo , Zea mays/microbiologia , Masculino , Feminino , Ração Animal , Fezes/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Aumento de Peso , Suplementos Nutricionais
18.
Physiol Plant ; 176(3): e14396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887929

RESUMO

Phosphorus (P) is a crucial macronutrient required for normal plant growth. Its effective uptake from the soil is a trait of agronomic importance. Natural variation in maize (339 accessions) root traits, namely root length and number of primary, seminal, and crown roots, root and shoot phosphate (Pi) contents, and root-to-shoot Pi translocation (root: shoot Pi) under normal (control, 40 ppm) and low phosphate (LP, 1 ppm) conditions, were used for genome-wide association studies (GWAS). The Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model of GWAS provided 23 single nucleotide polymorphisms (SNPs) and 12 relevant candidate genes putatively linked with root Pi, root: shoot Pi, and crown root number (CRN) under LP. The DNA-protein interaction analysis of Zm00001d002842, Zm00001d002837, Zm00001d002843 for root Pi, and Zm00001d044312, Zm00001d045550, Zm00001d025915, Zm00001d044313, Zm00001d051842 for root: shoot Pi, and Zm00001d031561, Zm00001d001803, and Zm00001d001804 for CRN showed the presence of potential binding sites of key transcription factors like MYB62, bZIP11, ARF4, ARF7, ARF10 and ARF16 known for induction/suppression of phosphate starvation response (PHR). The in-silico RNA-seq analysis revealed up or down-regulation of candidate genes along with key transcription factors of PHR, while Uniprot analysis provided genetic relatedness. Candidate genes that may play a role in P uptake and root-to-shoot Pi translocation under LP are proposed using common PHR signaling components like MYB62, ARF4, ARF7, ARF10, ARF16, and bZIP11 to induce changes in root growth in maize. Candidate genes may be used to improve low P tolerance in maize using the CRISPR strategy.


Assuntos
Estudo de Associação Genômica Ampla , Fosfatos , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Fosfatos/metabolismo , Fosfatos/deficiência , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Desequilíbrio de Ligação/genética
19.
Physiol Plant ; 176(3): e14386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887947

RESUMO

Silk of maize (Zea mays L.) contains diverse metabolites with complicated structures and functions, making it a great challenge to explore the mechanisms of metabolic regulation. Genome-wide identification of silk-preferential genes and investigation of their expression regulation provide an opportunity to reveal the regulatory networks of metabolism. Here, we applied the expression quantitative trait locus (eQTL) mapping on a maize natural population to explore the regulation of gene expression in unpollinated silk of maize. We obtained 3,985 silk-preferential genes that were specifically or preferentially expressed in silk using our population. Silk-preferential genes showed more obvious expression variations compared with broadly expressed genes that were ubiquitously expressed in most tissues. We found that trans-eQTL regulation played a more important role for silk-preferential genes compared to the broadly expressed genes. The relationship between 38 transcription factors and 85 target genes, including silk-preferential genes, were detected. Finally, we constructed a transcriptional regulatory network around the silk-preferential gene Bx10, which was proposed to be associated with response to abiotic stress and biotic stress. Taken together, this study deepened our understanding of transcriptome variation in maize silk and the expression regulation of silk-preferential genes, enhancing the investigation of regulatory networks on metabolic pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica de Plantas/genética , Seda/genética , Genoma de Planta/genética , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
20.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892238

RESUMO

Flavonoids are secondary metabolites that play important roles in the resistance of plants to abiotic stress. Despite the widely reported adverse effects of lead (Pb) contamination on maize, the effects of Pb on the biosynthetic processes of flavonoids in maize roots are still unknown. In the present work, we employed a combination of multi-omics and conventional assay methods to investigate the effects of two concentrations of Pb (40 and 250 mg/kg) on flavonoid biosynthesis in maize roots and the associated molecular regulatory mechanisms. Analysis using conventional assays revealed that 40 and 250 mg/kg Pb exposure increased the lead content of maize root to 0.67 ± 0.18 mg/kg and 3.09 ± 0.02 mg/kg, respectively, but they did not result in significant changes in maize root length. The multi-omics results suggested that exposure to 40 mg/kg of Pb caused differential expression of 33 genes and 34 metabolites related to flavonoids in the maize root system, while 250 mg/kg of Pb caused differential expression of 34 genes and 31 metabolites. Not only did these differentially expressed genes and metabolites participate in transferase activity, anthocyanin-containing compound biosynthetic processes, metal ion binding, hydroxyl group binding, cinnamoyl transferase activity, hydroxycinnamoyl transferase activity, and flavanone 4-reductase activity but they were also significantly enriched in the flavonoid, isoflavonoid, flavone, and flavonol biosynthesis pathways. These results show that Pb is involved in the regulation of maize root growth by interfering with the biosynthesis of flavonoids in the maize root system. The results of this study will enable the elucidation of the mechanisms of the effects of lead on maize root systems.


Assuntos
Flavonoides , Regulação da Expressão Gênica de Plantas , Chumbo , Raízes de Plantas , Estresse Fisiológico , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Flavonoides/biossíntese , Flavonoides/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Chumbo/toxicidade , Chumbo/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Metabolômica/métodos , Metaboloma/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA