Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.736
Filtrar
1.
Sci Rep ; 14(1): 13227, 2024 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-38851782

RESUMO

There are hundreds of genes typically overexpressed in breast cancer cells and it's often assumed that their overexpression contributes to cancer progression. However, the precise proportion of these overexpressed genes contributing to tumorigenicity remains unclear. To address this gap, we undertook a comprehensive screening of a diverse set of seventy-two genes overexpressed in breast cancer. This systematic screening evaluated their potential for inducing malignant transformation and, concurrently, assessed their impact on breast cancer cell proliferation and viability. Select genes including ALDH3B1, CEACAM5, IL8, PYGO2, and WWTR1, exhibited pronounced activity in promoting tumor formation and establishing gene dependencies critical for tumorigenicity. Subsequent investigations revealed that CEACAM5 overexpression triggered the activation of signaling pathways involving ß-catenin, Cdk4, and mTOR. Additionally, it conferred a growth advantage independent of exogenous insulin in defined medium and facilitated spheroid expansion by inducing multiple layers of epithelial cells while preserving a hollow lumen. Furthermore, the silencing of CEACAM5 expression synergized with tamoxifen-induced growth inhibition in breast cancer cells. These findings underscore the potential of screening overexpressed genes for both oncogenic drivers and tumor dependencies to expand the repertoire of therapeutic targets for breast cancer treatment.


Assuntos
Neoplasias da Mama , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Proliferação de Células/genética , Linhagem Celular Tumoral , Transdução de Sinais , Oncogenes , beta Catenina/metabolismo , beta Catenina/genética , Tamoxifeno/farmacologia , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Transformação Celular Neoplásica/genética
2.
PLoS One ; 19(6): e0304607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848383

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive liver cancer with significant morbidity and mortality rates. AXIN1 is one of the top-mutated genes in HCC, but the mechanism by which AXIN1 mutations contribute to HCC development remains unclear. METHODS: In this study, we utilized CRISPR/Cas9 genome editing to repair AXIN1-truncated mutations in five HCC cell lines. RESULTS: For each cell line we successfully obtained 2-4 correctly repaired clones, which all show reduced ß-catenin signaling accompanied with reduced cell viability and colony formation. Although exposure of repaired clones to Wnt3A-conditioned medium restored ß-catenin signaling, it did not or only partially recover their growth characteristics, indicating the involvement of additional mechanisms. Through RNA-sequencing analysis, we explored the gene expression patterns associated with repaired AXIN1 clones. Except for some highly-responsive ß-catenin target genes, no consistent alteration in gene/pathway expression was observed. This observation also applies to the Notch and YAP/TAZ-Hippo signaling pathways, which have been associated with AXIN1-mutant HCCs previously. The AXIN1-repaired clones also cannot confirm a recent observation that AXIN1 is directly linked to YAP/TAZ protein stability and signaling. CONCLUSIONS: Our study provides insights into the effects of repairing AXIN1 mutations on ß-catenin signaling, cell viability, and colony formation in HCC cell lines. However, further investigations are necessary to understand the complex mechanisms underlying HCC development associated with AXIN1 mutations.


Assuntos
Proteína Axina , Sistemas CRISPR-Cas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Mutação , beta Catenina , Proteína Axina/genética , Proteína Axina/metabolismo , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Regulação Neoplásica da Expressão Gênica , Edição de Genes , Transdução de Sinais/genética
3.
Mol Cancer ; 23(1): 124, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849840

RESUMO

BACKGROUND: Intestinal metaplasia (IM) is classified into complete intestinal metaplasia (CIM) and incomplete intestinal metaplasia (IIM). Patients diagnosed with IIM face an elevated susceptibility to the development of gastric cancer, underscoring the critical need for early screening measures. In addition to the complexities associated with diagnosis, the exact mechanisms driving the progression of gastric cancer in IIM patients remain poorly understood. OLFM4 is overexpressed in several types of tumors, including colorectal, gastric, pancreatic, and ovarian cancers, and its expression has been associated with tumor progression. METHODS: In this study, we used pathological sections from two clinical centers, biopsies of IM tissues, precancerous lesions of gastric cancer (PLGC) cell models, animal models, and organoids to explore the role of OLFM4 in IIM. RESULTS: Our results show that OLFM4 expression is highly increased in IIM, with superior diagnostic accuracy of IIM when compared to CDX2 and MUC2. OLFM4, along with MYH9, was overexpressed in IM organoids and PLGC animal models. Furthermore, OLFM4, in combination with Myosin heavy chain 9 (MYH9), accelerated the ubiquitination of GSK3ß and resulted in increased ß-catenin levels through the Wnt signaling pathway, promoting the proliferation and invasion abilities of PLGC cells. CONCLUSIONS: OLFM4 represents a novel biomarker for IIM and could be utilized as an important auxiliary means to delimit the key population for early gastric cancer screening. Finally, our study identifies cell signaling pathways involved in the progression of IM.


Assuntos
Progressão da Doença , Glicogênio Sintase Quinase 3 beta , Metaplasia , Cadeias Pesadas de Miosina , beta Catenina , Humanos , Metaplasia/metabolismo , Metaplasia/patologia , Metaplasia/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Animais , beta Catenina/metabolismo , beta Catenina/genética , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Feminino , Via de Sinalização Wnt , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Modelos Animais de Doenças , Masculino , Organoides/metabolismo , Organoides/patologia
4.
Med Oncol ; 41(7): 167, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831079

RESUMO

Cancer stem cells (CSCs) are mainly responsible for tumorigenesis, chemoresistance, and cancer recurrence. CSCs growth and progression are regulated by multiple signaling cascades including Wnt/ß-catenin and Hh/GLI-1, which acts independently or via crosstalk. Targeting the crosstalk of signaling pathways would be an effective approach to control the CSC population. Both Wnt/ß-catenin and Hh/GLI-1 signaling cascades are known to be regulated by p53/p21-dependent mechanism. However, it is interesting to delineate whether p21 can induce apoptosis in a p53-independent manner. Therefore, utilizing various subtypes of oral CSCs (SCC9-PEMT p53+/+p21+/+, SCC9-PEMT p53-/-p21+/+, SCC9-PEMT p53+/+p21-/- and SCC9-PEMT p53-/-p21-/-), we have examined the distinct roles of p53 and p21 in Resveratrol nanoparticle (Res-Nano)-mediated apoptosis. It is interesting to see that, besides the p53/p21-mediated mechanism, Res-Nano exposure also significantly induced apoptosis in oral CSCs through a p53-independent activation of p21. Additionally, Res-Nano-induced p21-activation deregulated the ß-catenin-GLI-1 complex and consequently reduced the TCF/LEF and GLI-1 reporter activities. In agreement with in vitro data, similar experimental results were obtained in in vivo mice xenograft model.


Assuntos
Apoptose , Inibidor de Quinase Dependente de Ciclina p21 , Neoplasias Bucais , Nanopartículas , Células-Tronco Neoplásicas , Resveratrol , Proteína Supressora de Tumor p53 , Proteína GLI1 em Dedos de Zinco , beta Catenina , Apoptose/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Resveratrol/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , beta Catenina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836810

RESUMO

Coxsackievirus A10 (CV-A10) infection, a prominent cause of childhood hand-foot-and-mouth disease (HFMD), frequently manifests with the intriguing phenomenon of onychomadesis, characterized by nail shedding. However, the underlying mechanism is elusive. Here, we found that CV-A10 infection in mice could suppress Wnt/ß-catenin signaling by restraining LDL receptor-related protein 6 (LRP6) phosphorylation and ß-catenin accumulation and lead to onychomadesis. Mechanistically, CV-A10 mimics Dickkopf-related protein 1 (DKK1) to interact with Kringle-containing transmembrane protein 1 (KRM1), the CV-A10 cellular receptor. We further found that Wnt agonist (GSK3ß inhibitor) CHIR99021 can restore nail stem cell differentiation and protect against nail shedding. These findings provide novel insights into the pathogenesis of CV-A10 and related viruses in onychomadesis and guide prognosis assessment and clinical treatment of the disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Via de Sinalização Wnt , Animais , Via de Sinalização Wnt/efeitos dos fármacos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Humanos , beta Catenina/metabolismo , Doenças da Unha/metabolismo , Doenças da Unha/virologia , Doenças da Unha/patologia , Unhas/metabolismo , Unhas/patologia , Diferenciação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/metabolismo , Doença de Mão, Pé e Boca/patologia , Doença de Mão, Pé e Boca/complicações , Fosforilação/efeitos dos fármacos , Infecções por Coxsackievirus/complicações , Infecções por Coxsackievirus/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Piridinas/farmacologia , Pirimidinas
6.
Science ; 384(6700): 1105-1110, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843334

RESUMO

Axis formation in fish and amphibians typically begins with a prepattern of maternal gene products. Annual killifish embryogenesis, however, challenges prepatterning models as blastomeres disperse and then aggregate to form the germ layers and body axes. We show that huluwa, a prepatterning factor thought to break symmetry by stabilizing ß-catenin, is truncated and inactive in Nothobranchius furzeri. Nuclear ß-catenin is not selectively stabilized on one side of the blastula but accumulates in cells forming the aggregate. Blocking ß-catenin activity or Nodal signaling disrupts aggregate formation and germ layer specification. Nodal signaling coordinates cell migration, establishing an early role for this signaling pathway. These results reveal a surprising departure from established mechanisms of axis formation: Huluwa-mediated prepatterning is dispensable, and ß-catenin and Nodal regulate morphogenesis.


Assuntos
Padronização Corporal , Fundulidae , Morfogênese , Proteína Nodal , beta Catenina , Animais , beta Catenina/metabolismo , Proteína Nodal/metabolismo , Fundulidae/embriologia , Fundulidae/metabolismo , Transdução de Sinais , Movimento Celular , Camadas Germinativas/metabolismo , Blástula/metabolismo , Desenvolvimento Embrionário , Embrião não Mamífero/metabolismo , Núcleo Celular/metabolismo
7.
FASEB J ; 38(11): e23716, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847490

RESUMO

Tumor hypoxia has been associated with cancer progression, angiogenesis, and metastasis via modifications in the release and cargo composition of extracellular vesicles secreted by tumor cells. Indeed, hypoxic extracellular vesicles are known to trigger a variety of angiogenic responses via different mechanisms. We recently showed that hypoxia promotes endosomal signaling in tumor cells via HIF-1α-dependent induction of the guanine exchange factor ALS2, which activates Rab5, leading to downstream events involved in cell migration and invasion. Since Rab5-dependent signaling is required for endothelial cell migration and angiogenesis, we explored the possibility that hypoxia promotes the release of small extracellular vesicles containing ALS2, which in turn activate Rab5 in recipient endothelial cells leading to pro-angiogenic properties. In doing so, we found that hypoxia promoted ALS2 expression and incorporation as cargo within small extracellular vesicles, leading to subsequent transfer to recipient endothelial cells and promoting cell migration, tube formation, and downstream Rab5 activation. Consequently, ALS2-containing small extracellular vesicles increased early endosome size and number in recipient endothelial cells, which was followed by subsequent sequestration of components of the ß-catenin destruction complex within endosomal compartments, leading to stabilization and nuclear localization of ß-catenin. These events converged in the expression of ß-catenin target genes involved in angiogenesis. Knockdown of ALS2 in donor tumor cells precluded its incorporation into small extracellular vesicles, preventing Rab5-downstream events and endothelial cell responses, which depended on Rab5 activity and guanine exchange factor activity of ALS2. These findings indicate that vesicular ALS2, secreted in hypoxia, promotes endothelial cell events leading to angiogenesis. Finally, these events might explain how tumor angiogenesis proceeds in hypoxic conditions.


Assuntos
Movimento Celular , Vesículas Extracelulares , Fatores de Troca do Nucleotídeo Guanina , Transdução de Sinais , beta Catenina , Proteínas rab5 de Ligação ao GTP , Humanos , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , beta Catenina/metabolismo , Vesículas Extracelulares/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Linhagem Celular Tumoral
8.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847494

RESUMO

Visualization of protein dynamics is a crucial step in understanding cellular processes. Chromobodies, fluorescently labelled single-domain antibodies, have emerged as versatile probes for live cell imaging of endogenous proteins. However, how these chromobodies behave in vivo and how accurately they monitor tissue changes remain poorly explored. Here, we generated an endothelial-specific ß-catenin chromobody-derived probe and analyzed its expression pattern during cardiovascular development in zebrafish. Using high-resolution confocal imaging, we show that the chromobody signal correlates with the localization of ß-catenin in the nucleus and at cell-cell junctions, and thereby can be used to assess endothelial maturation. Loss of Cadherin 5 strongly affects the localization of the chromobody at the cell membrane, confirming the cadherin-based adherens junction role of ß-catenin. Furthermore, using a genetic model to block blood flow, we observed that cell junctions are compromised in most endothelial cells but not in the endocardium, highlighting the heterogeneous response of the endothelium to the lack of blood flow. Overall, our data further expand the use of chromobodies for in vivo applications and illustrate their potential to monitor tissue morphogenesis at high resolution.


Assuntos
Caderinas , Morfogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , beta Catenina , Animais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Caderinas/metabolismo , Caderinas/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/citologia , Antígenos CD
10.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38822516

RESUMO

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Assuntos
Caderinas , Toxina Diftérica , Transição Epitelial-Mesenquimal , Regiões Promotoras Genéticas , Humanos , Células A549 , Antígenos CD/genética , Antígenos CD/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos , Toxina Diftérica/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Genes Transgênicos Suicidas , Regiões Promotoras Genéticas/genética , Vimentina/genética , Vimentina/metabolismo
11.
BMC Cancer ; 24(1): 673, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825709

RESUMO

Hepatocellular carcinoma (HCC) genomic research has discovered actionable genetic changes that might guide treatment decisions and clinical trials. Nonetheless, due to a lack of large-scale multicenter clinical validation, these putative targets have not been converted into patient survival advantages. So, it's crucial to ascertain whether genetic analysis is clinically feasible, useful, and whether it can be advantageous for patients. We sequenced tumour tissue and blood samples (as normal controls) from 111 Chinese HCC patients at Qingdao University Hospital using the 508-gene panel and the 688-gene panel, respectively. Approximately 95% of patients had gene variations related to targeted treatment, with 50% having clinically actionable mutations that offered significant information for targeted therapy. Immune cell infiltration was enhanced in individuals with TP53 mutations but decreased in patients with CTNNB1 and KMT2D mutations. More notably, we discovered that SPEN, EPPK1, and BRCA2 mutations were related to decreased median overall survival, although MUC16 mutations were not. Furthermore, we found mutant MUC16 as an independent protective factor for the prognosis of HCC patients after curative hepatectomy. In conclusion, this study connects genetic abnormalities to clinical practice and potentially identifies individuals with poor prognoses who may benefit from targeted treatment or immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mutação , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Adulto , Biomarcadores Tumorais/genética , Genômica/métodos , Proteína BRCA2/genética , Terapia de Alvo Molecular , Hepatectomia , Perfilação da Expressão Gênica , Proteína Supressora de Tumor p53/genética , Proteínas de Ligação a DNA , Proteínas de Neoplasias , beta Catenina
12.
J Nanobiotechnology ; 22(1): 329, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858736

RESUMO

BACKGROUND: Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS: We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS: MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3ß at ser 9 (p-GSK-3ß S9) to inactivate GSK3ß, and facilitate translocation of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3ß/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS: These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.


Assuntos
Lentivirus , Lipossomos , MicroRNAs , Células-Tronco Neoplásicas , MicroRNAs/genética , MicroRNAs/metabolismo , Lipossomos/química , Humanos , Animais , Camundongos , Lentivirus/genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Camundongos Nus , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos BALB C , Movimento Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt
13.
Cell Commun Signal ; 22(1): 318, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858740

RESUMO

OBJECTIVES: Interleukin 33 (IL-33) is a crucial inflammatory factor that functions as an alarm signal in endometriosis (EMs). Epithelial-mesenchymal transition (EMT), a process related to inflammatory signals, intracellular reactive oxygen species (ROS) production, and lipid peroxidation, have been proposed as potential mechanisms that contribute to the development and progression of EMs. IL-33 is highly upregulated in the ectopic milieu. Moreover, ectopic endometrial cells constitutively express interleukin-33 receptor ST2 (IL-33R). However, the role of IL-33/ST2 in the EMT of EMs remains largely unknown. In this study, we aimed to mechanistically determine the role of IL-33/ST2 in EMs-associated fibrosis. MATERIALS AND METHODS: We established a non-lethal oxidative stress model to explore the conditions that trigger IL-33 induction. We performed α-smooth muscle actin (α-SMA) protein detection, cell counting kit-8 (CCK-8) assays, and scratch assays to analyze the impact of IL-33 on primary endometrial stromal cells (ESCs) proliferation and invasion. Clinical samples from patients with or without EMs were subjected to immunohistochemical (IHC) and and immunofluorescence(IF) staining to assess the clinical relevance of IL-33 receptor ST2 and EMT-related proteins. Furthermore, we used the ectopic human endometrial epithelial cell line 12Z and normal human epithelial cell line EEC to evaluate the effects of IL-33 on Wnt/ß-catenin signaling. The effect of IL-33 on EMT-associated fibrosis was validated in vivo by intraperitoneal injections of IL-33 and antiST2. RESULTS: We observed that ectopic milieu, characterized by ROS, TGF-ß1, and high level of estrogen, triggers the secretion of IL-33 from ectopic ESCs. Ectopic endometrial lesions exhibited higher level of fibrotic characteristics and ST2 expression than that in the normal endometrium. Exogenous recombinant human (rhIL-33) enhanced ESC migration and survival. Similarly, 12Z cells displayed a higher degree of EMT characteristics with elevated expression of CCN4 and Fra-1, downstream target genes of the WNT/ß-catenin pathway, than that observed in EECs. Conversely, blocking IL-33 with neutralizing antibodies, knocking down ST2 or ß-catenin with siRNA, and ß-catenin dephosphorylation abolished its effects on EMT promotion. In vivo validation demonstrated that IL-33 significantly promotes EMs-related fibrosis through the activation of Wnt/ß-catenin signaling. CONCLUSION: Our data strongly support the vital role of the IL-33/ST2 pathway in EMs-associated fibrosis and emphasize the importance of the EMT in the pathophysiology of fibrosis. Targeting the IL-33/ST2/Wnt/ß-catenin axis may hold promise as a feasible therapeutic approach for controlling fibrosis in EMs.


Assuntos
Endometriose , Transição Epitelial-Mesenquimal , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , beta Catenina , Feminino , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Interleucina-33/metabolismo , Interleucina-33/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , beta Catenina/metabolismo , Animais , Fosforilação , Camundongos , Endométrio/patologia , Endométrio/metabolismo , Adulto , Proliferação de Células , Movimento Celular , Transdução de Sinais
14.
Ren Fail ; 46(1): 2347462, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38832497

RESUMO

Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/ß-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of ß-catenin arrested cell migration and reduced the expression levels of Wnt/ß-catenin signaling-related molecules (Wnt4, p-GSK3ß and ß-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of ß-catenin. Furthermore, the combination of Ori treatment and ß-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/ß-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Diterpenos do Tipo Caurano , Fibrose , Ratos Sprague-Dawley , Via de Sinalização Wnt , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/etiologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/uso terapêutico , Ratos , Fibrose/tratamento farmacológico , Humanos , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Linhagem Celular , beta Catenina/metabolismo , Movimento Celular/efeitos dos fármacos , Rim/patologia , Rim/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/metabolismo
15.
BMJ Case Rep ; 17(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871641

RESUMO

We present an infant referred to Developmental Paediatrics for delays, slow growth, hypotonia, esotropia and spasticity. Over the course of 2 months, the infant's exam progressed, demonstrating worsening spasticity and tonal changes in the setting of a normal brain MRI with acquired microcephaly. Genetic testing demonstrated a pathogenic CTNNB1 nonsense mutation. Following the discovery of the underlying cause for the child's clinical picture, the child was evaluated by therapeutic services and neurology, which was initially only available via asynchronous telehealth, due to a resource limited area. Cerebral palsy is a nonprogressive neurodevelopmental disorder and, when associated with developmental delay, qualifies for further genetic investigation into the underlying aetiology. Genetic testing recommendations exist for developmental delay, but there is no current algorithm regarding testing for cerebral palsy. Education and clear guidelines on genetic testing allow for better prognostication and potential treatment in cases of cerebral palsy, especially when associated with other disorders.


Assuntos
Paralisia Cerebral , Deficiências do Desenvolvimento , Espasticidade Muscular , beta Catenina , Humanos , Espasticidade Muscular/genética , Espasticidade Muscular/diagnóstico , Lactente , Deficiências do Desenvolvimento/genética , Paralisia Cerebral/genética , beta Catenina/genética , Masculino , Códon sem Sentido , Feminino , Imageamento por Ressonância Magnética , Testes Genéticos
16.
Nat Commun ; 15(1): 5055, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871742

RESUMO

The anterior-posterior axis of the mammalian embryo is laid down by the anterior visceral endoderm (AVE), an extraembryonic signaling center that is specified within the visceral endoderm. Current models posit that AVE differentiation is promoted globally by epiblast-derived Nodal signals, and spatially restricted by a BMP gradient established by the extraembryonic ectoderm. Here, we report spatially restricted AVE differentiation in bilayered embryo-like aggregates made from mouse embryonic stem cells that lack an extraembryonic ectoderm. Notably, clusters of AVE cells also form in pure visceral endoderm cultures upon activation of Nodal signaling, indicating that tissue-intrinsic factors can restrict AVE differentiation. We identify ß-catenin activity as a tissue-intrinsic factor that antagonizes AVE-inducing Nodal signals. Together, our results show how an AVE-like population can arise through interactions between epiblast and visceral endoderm alone. This mechanism may be a flexible solution for axis patterning in a wide range of embryo geometries, and provide robustness to axis patterning when coupled with signal gradients.


Assuntos
Padronização Corporal , Diferenciação Celular , Endoderma , Proteína Nodal , Transdução de Sinais , beta Catenina , Animais , Endoderma/citologia , Endoderma/metabolismo , Endoderma/embriologia , beta Catenina/metabolismo , Camundongos , Proteína Nodal/metabolismo , Proteína Nodal/genética , Camadas Germinativas/metabolismo , Camadas Germinativas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Regulação da Expressão Gênica no Desenvolvimento , Embrião de Mamíferos/citologia
17.
J Transl Med ; 22(1): 565, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872189

RESUMO

Wnt/ß-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Via de Sinalização Wnt , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Animais , beta Catenina/metabolismo
18.
Exp Dermatol ; 33(5): e15101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770555

RESUMO

Skin hyperpigmentation is mainly caused by excessive synthesis of melanin; however, there is still no safe and effective therapy for its removal. Here, we found that the dermal freezer was able to improve UVB-induced hyperpigmentation of guinea pigs without causing obvious epidermal damage. We also mimic freezing stimulation at the cellular level by rapid freezing and observed that freezing treatments <2.5 min could not decrease cell viability or induce cell apoptosis in B16F10 and Melan-A cells. Critically, melanin content and tyrosinase activity in two cells were greatly reduced after freezing treatments. The dramatic decrease in tyrosinase activity was associated with the downregulation of MITF, TYR, TRP-1 and TRP-2 protein expression in response to freezing treatments for two cells. Furthermore, our results first demonstrated that freezing treatments significantly reduced the levels of p-GSK3ß and ß-catenin and the nuclear accumulation of ß-catenin in B16F10 and Melan-A cells. Together, these data suggest that fast freezing treatments can inhibit melanogenesis-related gene expression in melanocytes by regulating the Wnt/ß-catenin signalling pathway. The inhibition of melanin production eventually contributed to the improvement in skin hyperpigmentation induced by UVB. Therefore, fast freezing treatments may be a new alternative of skin whitening in the clinic in the future.


Assuntos
Congelamento , Hiperpigmentação , Melaninas , Melanócitos , Monofenol Mono-Oxigenase , Raios Ultravioleta , Via de Sinalização Wnt , beta Catenina , Animais , Melaninas/biossíntese , Melaninas/metabolismo , Melanócitos/metabolismo , Camundongos , Hiperpigmentação/metabolismo , beta Catenina/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Cobaias , Fator de Transcrição Associado à Microftalmia/metabolismo , Sobrevivência Celular , Oxirredutases Intramoleculares/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Apoptose , Oxirredutases/metabolismo , Interferon Tipo I , Proteínas da Gravidez
19.
Medicina (Kaunas) ; 60(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792963

RESUMO

Background and Objectives: Connexin 43 (Cx43) is involved in the transfer of small signaling molecules between neighboring cells, thereby exerting a major influence on the initiation and progression of tumorigenesis. However, there is a lack of systematic research on Cx43 expression and its predictive role in clinical diagnosis and prognosis in pan-cancer. Materials and Methods: Several biological databases were used to evaluate the expression levels of GJA1 (encoding Cx43) and its diagnostic and prognostic significance in pan-cancer. We targeted kidney renal clear cell carcinoma (KIRC) and investigated the relationship between GJA1 expression and different clinical features of KIRC patients. Then, we performed cell-based experiments to partially confirm our results and predicted several proteins that were functionally related to Cx43. Results: The expression of GJA1 has a high level of accuracy in predicting KIRC. High GJA1 expression was remarkably correlated with a favorable prognosis, and this expression was reduced in groups with poor clinical features in KIRC. Cell experiments confirmed the inhibitory effects of increased GJA1 expression on the migratory capacity of human renal cancer (RCC) cell lines, and protein-protein interaction (PPI) analysis predicted that CDH1 and CTNNB1 were closely related to Cx43. Conclusions: GJA1 could be a promising independent favorable prognostic factor for KIRC, and upregulation of GJA1 expression could inhibit the migratory capacity of renal cancer cells.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Conexina 43 , Neoplasias Renais , Humanos , Conexina 43/análise , Conexina 43/metabolismo , Neoplasias Renais/genética , Biomarcadores Tumorais/análise , Prognóstico , beta Catenina , Linhagem Celular Tumoral , Masculino , Feminino
20.
Commun Biol ; 7(1): 545, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714724

RESUMO

CircRNAs are covalently closed, single-stranded RNA that form continuous loops and play a crucial role in the initiation and progression of tumors. Cancer stem cells (CSCs) are indispensable for cancer development; however, the regulation of cancer stem cell-like properties in gastric cancer (GC) and its specific mechanism remain poorly understood. We elucidate the specific role of Circ-0075305 in GC stem cell properties. Circ-0075305 associated with chemotherapy resistance was identified by sequencing GC cells. Subsequent confirmation in both GC tissues and cell lines revealed that patients with high expression of Circ-0075305 had significantly better overall survival (OS) rates than those with low expression, particularly when treated with postoperative adjuvant chemotherapy for GC. In vitro and in vivo experiments confirmed that overexpression of Circ-0075305 can effectively reduce stem cell-like properties and enhance the sensitivity of GC cells to Oxaliplatin compared with the control group. Circ-0075305 promotes RPRD1A expression by acting as a sponge for corresponding miRNAs. The addition of LF3 (a ß-catenin/TCF4 interaction antagonist) confirmed that RPRD1A inhibited the formation of the TCF4-ß-catenin transcription complex through competitive to ß-catenin and suppressed the transcriptional activity of stem cell markers such as SOX9 via the Wnt/ß-catenin signaling pathway. This leads to the downregulation of stem cell-like property-related markers in GC. This study revealed the underlying mechanisms that regulate Circ-0075305 in GCSCs and suggests that its role in reducing ß-catenin signaling may serve as a potential therapeutic candidate.


Assuntos
Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Circular , Fatores de Transcrição SOX9 , Neoplasias Gástricas , Fator de Transcrição 4 , beta Catenina , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Humanos , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , beta Catenina/metabolismo , beta Catenina/genética , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Masculino , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...