Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.488
Filtrar
1.
Food Chem ; 374: 131760, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915363

RESUMO

Menthol inclusion complexes (ICs) have addressed a range of opportunities in food applications due to their volatile resistance. However, previous protocols used for their synthesis give low yields and high industrial application costs. In the present investigation, metal-organic frameworks based on ß-cyclodextrin (ß-CD-MOF) have been prepared for the molecular encapsulation of menthol. Menthol/ß-CD-MOF-IC was synthesized under the optimized parameters, after which release behavior was studied. In this optimized manner, a higher menthol capacity was obtained in which the menthol content and encapsulation efficiency were 27.1 and 30.6%, respectively. Compared with menthol/ß-CD-IC, menthol/ß-CD-MOF-IC is resistant to high temperature, but sensitive to moisture. In a simulated oral release experiment, the rate of menthol release from different samples followed the order of: pure menthol > ß-CD > ß-CD-MOF, which can be attributed to two mechanisms: non-specific binding and site preference. We propose that ß-CD-MOF can be used as a promising delivery system for aroma compounds.


Assuntos
Ciclodextrinas , Estruturas Metalorgânicas , beta-Ciclodextrinas , Preparações de Ação Retardada , Mentol
2.
J Chromatogr A ; 1662: 462731, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34915189

RESUMO

As a welcomed porous material, covalent organic frameworks (COFs) have many advantages and are widely used in various aspects. Particularly, COFs have aroused great attentions of scientists in chromatographic separation field due to their outstanding advantages, such as high stability, large specific surface area and multiple voids. However, endowing COFs with chirality to construct chiral stationary phase (CSP) function is still facing many challenges. Here, we firstly prepared a ß-cyclodextrin (ß-CD) and covalent organic framework functional silica CSP named as COF@CD@SiO2 by one-pot method to perform high performance liquid chromatography (HPLC) chiral separation. The morphology and structure of the synthesized stationary phase were investigated by a variety of characterization methods including Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), N2 adsorption experiment, powder X-ray diffraction (XRD) and elemental analysis (EA). The prepared stationary phase realized fast separation of six enantiomers in a short time. The separation mechanism was mainly ascribed to the inclusion complexation of ß-cyclodextrin and the mutli-interaction sites from COFs material. In conclusion, the prepared chiral column can be used to achieve fast separation of enantiomers with good stability and reproducibility. These results can open new avenue for using chiral COFs in liquid chromatographic separation.


Assuntos
Estruturas Metalorgânicas , beta-Ciclodextrinas , Reprodutibilidade dos Testes , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Sci Total Environ ; 806(Pt 4): 150739, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619202

RESUMO

Chlorophenols (CPs) have been listed as priority control pollutants because of their high toxicity and wide range. An In-situ monitoring technique using diffusive gradients in thin films based on porous ß-cyclodextrin polymers as binding materials (CDP-DGT), was established to monitor four typical CPs, namely, 4-Chlorophenol (4-CP), 2,4-Dichlorophenol (2,4-DCP), 2,4,5-Trichlorophenol (2,4,5-TCP), 2,4,6-Trichlorophenol (2,4,6-TCP) in water and soils. The performance of CDP-DGT are stable under the conditions of pH 3.5-9.3, ionic strength 0.001-0.500 mol L-1 and dissolved organic matter concentration 0-20 mol L-1. The adsorption capacities of CDP-DGT for 4-CP, 2,4-DCP, 2,4,5-TCP, 2,4,6-TCP were 57.80 µg cm-2, 98.82 µg cm-2, 95.69 µg cm-2 and 98.91 µg cm-2, respectively. The time-average weighted concentrations of four CPs determined by CDP-DGT at Sanjiangkou wharf (Yangtze river, China) were consistent with the results of grab sampling, indicating the feasibility of CDP-DGT application in actual water. In addition, the distribution of CPs in the red soil of Kunming and paddy soil of Yixing were also studied by CDP-DGT, and the desorption kinetics in the two soils were analyzed with the DIFS model. The higher the soil organic matter content is, the more CPs are distributed in the soil solid phase. CPs in both soils can be partially resupplied to soil solution from the soil solid phase and the higher the partition coefficient for labile CPs is, the stronger the supplement capacity is.


Assuntos
Clorofenóis , Poluentes Químicos da Água , beta-Ciclodextrinas , Difusão , Monitoramento Ambiental , Polímeros , Solo , Água , Poluentes Químicos da Água/análise
4.
Food Chem ; 370: 130933, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507211

RESUMO

Cyanidin-3-glucoside (C3G), an anthocyanin constituent of fruits and vegetables. It has been proven to possess numerous health benefits with no side effects. However, the poor stability of C3G is an intractable property that limits its application. Hence, the aim of this study is to improve the stability of C3G through the formation of well dispersed nanoparticles. In this study, C3G loaded ß-CD-EP-CMC nanoparticles exhibited nearly spherical with good disperse and homogeneous morphology. Results also indicated that the nanoparticles formation of grafting of C3G to ß-CD-EP-CMC could significantly improve the stability of C3G to against thermal or light degradation. Collectively, current results strongly aligned with the prospective purpose that the grafting of C3G to ß-CD-EP-CMC nanoparticles could be treated as an effective approach for improving the stability. This study opens a new avenue for the utilization and development of novel wall materials ß-CD-EP-CMC in C3G associated nutraceutical.


Assuntos
Quitosana , beta-Ciclodextrinas , Antocianinas , Epicloroidrina , Estudos Prospectivos
5.
Chemosphere ; 287(Pt 4): 132373, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34600005

RESUMO

Monitoring of pathogenic bacteria plays a vital role in precluding foodborne disease outbreaks. In this research work, a genosensor based on innovative label-free DNA was developed for the detection of Salmonella. typhimurium (S. typhimurium) in the milk samples. To realize this objective, bimetallic Fe/Mn MOF is synthesized and mixed with methyl-ß-cyclodextrin (MßCD) and AuNPs which are then stabilized on multi-walled carbon nanotubes (MWCNTs), and the obtained nanocomposite is immobilized on the Au electrode surface. Different characterization methods such as FE-SEM, TEM, EDS, FTIR, and XRD were used for investigating the particle size and morphological features. Electrochemical and impedimetric techniques were used for exploring the applicability of the fabricated genosensor. Under optimal circumstances, LOD and LOQ have acquired at 0.07 pM and 0.21 pM. Moreover, an extensive linear range of 1 pM-1 µM was resulted for ss-tDNA (single-stranded target DNA), R2 obtained 0.9991. The recoveries were obtained 95.6-104%. Great selectivity against one, two, and three-base mismatched sequences was also shown for fabricated biosensing assay. Furthermore, negative genosensing assay control for investigating selectivity was provided by the ss-tDNAs of Haemophilusinfluenzae and Shigella dysenteriae bacteria. Well-fabricated genosensing bio-assay represents better performance, great specificity, high sensitivity, increased active sites, and finally results in an increase in the electron transfer rate. It is to be noted that the organized genosensing bio-assay is capable of being re-used and re-generated in a straightforward manner to estimate the hybridization process.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Animais , DNA , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Leite , Salmonella typhimurium/genética , beta-Ciclodextrinas
6.
J Chromatogr A ; 1663: 462750, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34942488

RESUMO

A simple and efficient dispersive solid-phase extraction (D-SPE) method combined with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed to determine organochlorine pesticides (OCP) in honey. Firstly, a type of hybrid nanocomposite (CD-MOF/TiO2) was prepared by grafting a metal-organic framework material synthesized with cyclodextrin as an organic ligand onto titanium dioxide. Then, the CD-MOF/TiO2 was used as a D-SPE adsorbent to extract the OCP, and the effects of the amount of adsorbent, ultrasonic time, vortex time, pH, and salinity on the extraction were investigated using Plackett-Burman design and Box-Behnken Design. Under the optimized adsorption and desorption conditions, an analysis method that combined D-SPE with GC-MS/MS was established. The linear ranges of 14 OCP are 1-500 µg kg-1 and the correlation coefficients are between 0.9991 and 1.000. The limits of detection and quantification vary from 0.01 to 0.04 µg kg-1 and 0.04 to 0.12 µg kg-1, respectively. The intra-day and inter-day precision of this method are suitable (RSDs% less than 11.3%). The established CD-MOF/TiO2 / D-SPE method was used for the extraction of OCP in honey samples with recovery in the range of 76.4 to 114.3%. The results demonstrate that the CD-MOF/TiO2 has a good selective enrichment ability for OCP and is suitable for the D-SPE pretreat of honey sample analysis.


Assuntos
Mel , Estruturas Metalorgânicas , Nanocompostos , Resíduos de Praguicidas , beta-Ciclodextrinas , Cromatografia Gasosa-Espectrometria de Massas , Mel/análise , Resíduos de Praguicidas/análise , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Titânio
7.
J Chromatogr A ; 1663: 462765, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34963090

RESUMO

A simple and efficient analytical method for organic UV filters (UV-Fs) in environmental samples has been established in this study. Taking advantage of the hydrophobicity on the inner cavity, hydrophilicity on the outer wall, and host-guest interaction provided by beta-cyclodextrin, a core-shell magnetic extraction material was firstly synthesized by using a facile method. The extractant was utilized in magnetic solid-phase extraction of UV-Fs in complex environmental samples, including beach sand, sediment and river water samples, followed by the quantitation using high-performance liquid chromatography. A series of factors affecting extraction efficiencies of seven UV-Fs were profoundly optimized. Under the optimal conditions, the linear ranges were at 5.0-5.0 × 102 ng mL-1 for the UV-Fs with regression coefficients (r) at 0.9984-0.9998. The limits of detection were from 0.12 to 1.4 ng mL-1. The recoveries were in the range of 84.2-109%. Furthermore, the molecular dynamics simulations and independent gradient model analysis were applied to reveal the adsorption configuration and interaction mechanisms between target analytes and the sorbent.


Assuntos
Nanocompostos , Poluentes Químicos da Água , beta-Ciclodextrinas , Adsorção , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Magnetismo , Extração em Fase Sólida , Raios Ultravioleta , Poluentes Químicos da Água/análise
8.
Food Chem ; 370: 131059, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34649018

RESUMO

A novel surface-enhanced Raman spectroscopy (SERS) method for the determination of nitrofurazone was developed using AuNPs/γ-Al2O3 nanoparticles protected by ß-cyclodextrin (ß-CD) as substrate prepared in our lab. The optimum experimental conditions were obtained from single factor procedure and response surface modeling. A linear relationship (ISERS = 508.96c + 31987.87, c: nmol L-1, R2 = 0.996) between SERS intensity and the concentration of nitrofurazone in the range of 3.3 - 667.0 nmol L-1 was established, the limit of detection (LOD) was found at nmol L-1 level (0.37 nmol L-1 by 3S0/S). The selectivity for the method was studied by the influences of foreign substances on the determination. The recoveries and RSD (n = 5) for the six meat samples were 95.1 % - 104.5% and 2.4 % - 4.8% respectively, which suggesting that the new SERS method was successfully to detecting nitrofurazone.


Assuntos
Nanopartículas Metálicas , beta-Ciclodextrinas , Ouro , Nitrofurazona , Análise Espectral Raman
9.
J Pharm Biomed Anal ; 207: 114420, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34662781

RESUMO

Retention behavior of two structural isomeric pentacyclic triterpenic acids, maslinic acid and corosolic acid, was investigated by reverse phase high performance liquid chromatography (HPLC) with hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as mobile phase additive. Inclusion complexation of maslinic acid, corosolic acid with hydroxypropyl-ß-cyclodextrin was evaluated under different concentration of hydroxypropyl-ß-cyclodextrin. Apparent formation constant (Km) between methanol and hydroxypropyl-ß-cyclodextrin was determined to be 13.82 L mol-1 under 25 °C using UV-spectrophotometry. Two retention models were employed individually for evaluation of inclusion complexation between the two pentacyclic triterpenic acids and hydroxypropyl-ß-cyclodextrin. It was found that a higher apparent formation constant (Kf) for corosolic acid and hydroxypropyl-ß-cyclodextrin was obtained, 19115 L mol-1, indicating that a greater affinity of hydroxypropyl-ß-cyclodextrin with corosolic acid was produced compared with that of maslinic acid, 11775 L mol-1, in the selected mobile phase, and stoichiometric ratio for both of inclusion complex was found to be 1:1. Thermodynamic analysis showed that a negative standard enthalpy change (ΔH) and an entropy change (ΔS*) for analyte transfer were obtained, where ΔH of maslinic acid and corosolic acid was found to be -10.188 kJ mol-1 and -10.650 kJ mol-1, ΔS* of two compounds was -2.092 and -2.180, respectively, indicating that transfer of structural isomers from mobile phase to stationary phase was enthalpically driven. Meanwhile, positive values were obtained for standard enthalpy change and standard entropy change, 136 kJ mol-1 and 274 kJ mol-1 and 536 J mol-1 K-1and 1004 J mol-1 K-1, for inclusion complexation between maslinic acid, corosolic acid and hydroxypropyl-ß-cyclodextrin, while negative values were obtained for Gibbs free energy during formation of inclusion complex, -160 kJ mol-1 and -299 kJ mol-1, indicating a spontaneous inclusion reaction happened.


Assuntos
beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Cromatografia Líquida , Cromatografia de Fase Reversa , Triterpenos Pentacíclicos , Termodinâmica
10.
Talanta ; 237: 122907, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736644

RESUMO

In this paper, we developed a new ultrasensitive capacitance sensor for detection of amyloid beta 1-40 (aß40) protein (one of Alzheimer's disease core biomarkers) in human serum based on the high supramolecular recognition of the ß-cyclodextrin/reduced graphene oxide (ß-CD/RGO) nanohybrid toward the anti-aß40 antibody molecule. The sensor was established by immobilizing specific anti-aß40 antibody onto the ß-CD/RGO nanohybrid functionalized on indium tin oxide micro-disk electrode (anti-aß40/ß-CD/RGO/ITO). Detection of aß40 in the human serum (HS) using the sensor anti-aß40/ß-CD/RGO/ITO is carried out by capacitance measurement without a redox probe to prevent protein denaturation, serving as a convenient strategy for point-of-care diagnosis. In comparison with other studies, the sensor shows a very low limit of detection of 0.69 fg mL-1 in HS, demonstrating its ability for the ultrasensitive detection of aß40. Using this sensor, the dissociation constant KD of the binding interaction between anti-aß40 and aß40 in HS is found to be 2.9 × 10-7 nM, indicating the high binding affinity of antibody-antigen and the suitability of the anti-aß40/ß-CD/RGO/ITO sensor for aß40 protein detection. The good selectivity of the anti-aß40/ß-CD/RGO/ITO sensor in the presence of differential analytes was also performed in this paper.


Assuntos
Técnicas Biossensoriais , Grafite , beta-Ciclodextrinas , Peptídeos beta-Amiloides , Técnicas Eletroquímicas , Eletrodos , Humanos
11.
Environ Pollut ; 292(Pt B): 118447, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742823

RESUMO

Heavy metals and organic dyes are the major source of water pollution. Herein, a trifunctional ß-cyclodextrin-ethylenediaminetetraacetic acid-chitosan (ß-CD-EDTA-CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated ß-CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg2+) and cadmium (Cd2+), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV) and safranin O (SO) were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of ß-CD-EDTA-CS in aqueous solution. The ß-CD-EDTA-CS shows monolayer adsorption capacity 346.30 ± 14.0 and 202.90 ± 13.90 mg g-1 for Hg2+ and Cd2+, respectively, and a heterogeneous adsorption capacity 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g-1 for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161-0.00368 g mg-1 min-1) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of ß-CD-EDTA-CS for the of four heavy metals Hg2+, Cd2+, Ni2+, and Cu2+ and three dyes MB, CV, and SO in secondary treated wastewater. Findings of this study indicate that ß-CD-EDTA-CS simple and essay to synthesize and can be use in wastewater treatment.


Assuntos
Quitosana , Metais Pesados , Poluentes Químicos da Água , beta-Ciclodextrinas , Adsorção , Corantes , Ácido Edético , Concentração de Íons de Hidrogênio , Cinética , Polímeros , Águas Residuárias
12.
Int J Food Microbiol ; 361: 109460, 2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785387

RESUMO

A series of alkyl gallates were evaluated for the antibacterial activity against two common Gram-negative foodborne bacteria (Pseudomonas fluorescens and Vibrio parahaemolyticus) associated with seafood. The length of the alkyl chain plays a pivotal role in eliciting their antibacterial activities and octyl gallate (OG) exerted an excellent inhibitory efficacy. To extend the aqueous solubility, stability, and bactericidal properties of octyl gallate (OG), an inclusion complex between OG and ß-cyclodextrin (ßCD), OG/ßCD, was prepared and identified with various methods including X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the enhanced inhibitory effect and potential antibacterial mechanism of OG/ßCD against two Gram-negative and Gram-positive foodborne bacteria were comprehensively investigated. The results show that OG/ßCD could function against bacteria through effectively damaging the membrane, permeating into cells, and then disturbing the activity of the respiratory electron transport chain to cause the production of high-level intracellular hydroxyl radicals. Moreover, the reinforced OG/ßCD-incorporated polylactic acid (PLA) nanofibers were fabricated using the electrospinning technique as food packaging to extend the Chinese giant salamander fillet's shelf life at 4 °C. This research highlights the antibacterial effectiveness of OG/ßCD in aqueous media, which can be used as a safe multi-functionalized food additive combined with the benefits of electrospun nanofibers to extend the Chinese giant salamander fillets shelf life by 15 d at 4 °C.


Assuntos
Nanofibras , Pseudomonas fluorescens , Vibrio parahaemolyticus , beta-Ciclodextrinas , Animais , Antibacterianos/farmacologia , China , Ácido Gálico/análogos & derivados , Espectroscopia de Infravermelho com Transformada de Fourier , Urodelos , beta-Ciclodextrinas/farmacologia
13.
J Hazard Mater ; 424(Pt A): 127254, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34583154

RESUMO

Bisphenols (BPs) are distributed in worldwide as typical environmental hormones, which potentially harm the ecological environment and human health. In this study, four BPs, i.e., bisphenol A, bisphenol F, bisphenol S, and bisphenol AF, were used as prototypes to identify the intrinsic differences in degradation mechanisms correlated with the molecular structures in peroxydisulfate (PDS)-based advanced oxidation processes (AOPs). Electron transfer was the main way of modified biochar to trigger the heterogenous catalysis of PDS, which can cause the degradation of BPs. Phenolic hydroxyl groups on bisphenol pollutants were considered as possible active sites, and the existence of substituents was the main reason for the differentiation in the degradation efficiency of various bisphenols. Results of ecotoxicity prediction showed that most intermediates produced by the degradation of BPs in the ß-SB/PDS system, which was dominated by the electron transfer pathway, had a lower toxicity than the parent molecules, while the toxicity of several ring cleavage intermediates was higher. This study presents a simple modification scheme for the conversion of biochar into functional catalysts and provides insights into the mechanism of heterogeneous catalytic degradation mediated by modified biochar as well as the degradation differences of bisphenol pollutants and their potential ecotoxicity.


Assuntos
Compostos Benzidrílicos , beta-Ciclodextrinas , Compostos Benzidrílicos/toxicidade , Catálise , Carvão Vegetal , Humanos , Fenóis
14.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946702

RESUMO

The encapsulation mode of dexamethasone (Dex) into the cavity of ß-cyclodextrin (ß-CD), as well as its potential as an inhibitor of the COVID-19 main protease, were investigated using density functional theory with the recent dispersion corrections D4 and molecular docking calculations. Independent gradient model and natural bond orbital approaches allowed for the characterization of the host-guest interactions in the studied systems. Structural and energetic computation results revealed that hydrogen bonds and van der Waals interactions played significant roles in the stabilization of the formed Dex@ß-CD complex. The complexation energy significantly decreased from -179.50 kJ/mol in the gas phase to -74.14 kJ/mol in the aqueous phase. A molecular docking study was performed to investigate the inhibitory activity of dexamethasone against the COVID-19 target protein (PDB ID: 6LU7). The dexamethasone showed potential therapeutic activity as a SARS CoV-2 main protease inhibitor due to its strong binding to the active sites of the protein target, with predicted free energy of binding values of -29.97 and -32.19 kJ/mol as calculated from AutoDock4 and AutoDock Vina, respectively. This study was intended to explore the potential use of the Dex@ß-CD complex in drug delivery to enhance dexamethasone dissolution, thus improving its bioavailability and reducing its side effects.


Assuntos
COVID-19/tratamento farmacológico , Dexametasona/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , Antivirais/farmacologia , Portadores de Fármacos/farmacologia , Humanos , Simulação de Acoplamento Molecular
15.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948364

RESUMO

Curcumin (Cur) is an anti-inflammatory polyphenol that can be complexed with polymeric cyclodextrin (CD) to improve solubility and bioavailability. The aim of the present work was to prepare a CurCD hydrogel to treat inflammatory skin conditions. Epichlorohydrin-ß-CD (EpißCD) was used as polymeric CD. To characterize the binary system, solid-state and in-solution studies were performed. Afterwards, an experimental design was performed to optimize the hydrogel system. Finally, the CurEpißCD hydrogel system was tested for anti-inflammatory activity using a HaCat psoriasis cell model. Co-grinded Cur/EpißCD binary system showed a strong interaction and Curcumin solubility was much improved. Its combination with Pluronic® F-127/hyaluronate hydrogel demonstrated an improvement in release rate and Curcumin permeation. After testing its anti-inflammatory activity, the system showed a significant reduction in IL-6 levels. Hydrogel-containing CurEpißCD complex is a great alternative to treat topical inflammatory diseases.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos/química , Epicloroidrina/química , beta-Ciclodextrinas/química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Curcumina/química , Curcumina/farmacologia , Liberação Controlada de Fármacos , Humanos , Psoríase/tratamento farmacológico , Solubilidade
16.
Biomolecules ; 11(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34944535

RESUMO

Plasma membrane H+-ATPase is known to be detected in detergent-resistant sterol-enriched fractions, also called "raft" domains. Studies on H+-ATPase reconstituted in artificial or native membrane vesicles have shown both sterol-mediated stimulations and inhibitions of its activity. Here, using sealed isolated plasma membrane vesicles, we investigated the effects of sterol depletion in the presence of methyl-ß-cyclodextrin (MßCD) on H+-ATPase activity. The rate of ATP-dependent ∆µH+ generation and the kinetic parameters of ATP hydrolysis were evaluated. We show that the relative sterols content in membrane vesicles decreased gradually after treatment with MßCD and reached approximately 40% of their initial level in 30 mM probe solution. However, changes in the hydrolytic and H+-transport activities of the enzyme were nonlinear. The extraction of up to 20% of the initial sterols was accompanied by strong stimulation of ATP-dependent H+-transport in comparison with the hydrolytic activity of enzymes. Further sterol depletion led to a significant inhibition of active proton transport with an increase in passive H+-leakage. The solubilization of control and sterol-depleted vesicles in the presence of dodecyl maltoside negated the differences in the kinetics parameters of ATP hydrolysis, and all samples demonstrated maximal hydrolytic activities. The mechanisms behind the sensitivity of ATP-dependent H+-transport to sterols in the lipid environment of plasma membrane H+-ATPase are discussed.


Assuntos
Vesículas Extracelulares/metabolismo , Hidrogênio/metabolismo , Ervilhas/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Esteróis/metabolismo , Trifosfato de Adenosina/química , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosídeos/farmacologia , Hidrólise/efeitos dos fármacos , Transporte de Íons , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , beta-Ciclodextrinas/farmacologia
17.
Cells ; 10(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34943920

RESUMO

Nucleofection (NF) is a safe, non-viral transfection method, compatible with Good Manufacturing Practice guidelines. Such a technique is useful to improve therapeutic effectiveness of adipose tissue mesenchymal stem cells (ASC) in clinical settings, but improvement of NF efficiency is mandatory. Supernatant rich in growth factors (SRGF) is a clinical-grade medium additive for ASC expansion. We showed a dramatically increased NF efficiency and post-transfection viability in ASC expanded in presence of SRGF (vs. fetal bovine serum). SRGF expanded ASC were characterized by increased vesicle endocytosis but lower phagocytosis properties. SRGF increased n-6/n-3 ratio, reduced membrane lipid raft occurrence, and lowered intracellular actin content in ASC. A statistical correlation between NF efficiency and lipid raft availability on cell membranes was shown, even though a direct relationship could not be demonstrated: attempts to selectively modulate lipid rafts levels were, in fact, limited by technical constraints. In conclusion, we reported for the first time that tuning clinical-grade compatible cell culture conditions can significantly improve ASC transfection efficiency by a non-viral and safe approach. A deep mechanistic characterization is extremely complex, but we can hypothesize that integrated changes in membrane structure and intracellular actin content could contribute to explain SRGF impact on ASC NF efficiency.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Transfecção , Eletroporação , Endocitose/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Microdomínios da Membrana/metabolismo , Pessoa de Meia-Idade , Nanopartículas/química , Fagocitose/efeitos dos fármacos , Tetraspanina 30/genética , Tetraspanina 30/metabolismo , beta-Ciclodextrinas/química
18.
AAPS PharmSciTech ; 23(1): 2, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34796406

RESUMO

Daidzein, an aglycone-type isoflavone, is useful in the prevention of atherosclerotic cardiovascular diseases. However, the solubility of daidzein remains relatively low even with pharmaceutical interventions (e.g., γ-cyclodextrin inclusion complex). In the present study, daidzein-cyclodextrin-metal organic framework solid dispersion complexes were prepared by the solvent evaporation method. The physicochemical properties of the complex and its effect on the solubility of daidzein were evaluated. The enhancement effect of a cyclodextrin-metal organic framework on the antioxidant properties of daidzein was verified using a diphenyl-picrylhydrazyl radical scavenging test. Powder X-ray diffraction results showed that the characteristic diffraction peaks of daidzein and cyclodextrin-metal organic framework disappeared and new peaks (2θ = 7.1°, 16.5°) were observed. FT-IR measurements showed that the peak derived from the carbonyl group of daidzein shifted to the lower wavenumber. NOESY 1H-1H NMR showed cross peaks at the proton on the resorcinol side of daidzein and the proton (H-5, H-6) in a cyclodextrin-metal organic framework. Dissolution rate of daidzein at 5 min in distilled water was 0.06% for daidzein alone while the daidzein inclusion complex was about 100%. When fasted state simulated intestinal fluid was used, the dissolution rate of the daidzein complex was about 71% compared with that of daidzein alone (~ 3.0%) at 5 min. The daidzein inclusion complex improved the antioxidant capacity to ~ 1.3 times (17.8 µg/mL) compared to the IC50 of daidzein alone (22.9 µg/mL). Preparations of cyclodextrin-metal organic framework inclusion complexes will be a platform in developing pharmaceutical formulations to enhance the bioavailability and activity of drugs.


Assuntos
Ciclodextrinas , Isoflavonas , Estruturas Metalorgânicas , beta-Ciclodextrinas , Antioxidantes , Varredura Diferencial de Calorimetria , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Int J Pharm ; 609: 121163, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34624448

RESUMO

Fungal infections pose a serious threat to humankind due to the toxicity of conventional antifungal therapy and continuous emerging incidence of multidrug resistance. Essential oils fascinated researchers because of their broad antimicrobial activity and minimal cytotoxicity. However, hydrophobic, volatile and low water solubility of essential oils hinder their applications in pharmaceutical industries. Therefore, in this study we have loaded eucalyptol/ ß-cyclodextrin inclusion complex to gellan/polyvinyl alcohol nanofibers (EPNF) to eradicate Candida albicans and Candida glabrata biofilms. The electrospun nanofibers characterized by various physicochemical techniques and it was observed that EPNF possess highly hydrophilic surface property that facilitate rapid drug release. EPNF inhibited approximately 70% biofilm of C. albicans and C. glabrata. Time kill results depicted that eucalyptol (EPTL) encapsulation in the nanofibers prolonged its antifungal activity than the pure EPTL. Electron microscopy studies revealed that EPNF disrupted the cell surface of Candida. Collectively the current study suggested nanofiber encapsulation enhanced antibiofilm activity of eucalyptol and these nanoscale systems can serve as an alternative therapeutic strategy to treat fungal infections. Further, the developed nanofibrous materials can be applied as cost effective coating agent for biomedical implants.


Assuntos
Nanofibras , beta-Ciclodextrinas , Antifúngicos , Sistemas de Liberação de Medicamentos , Eucaliptol , Polissacarídeos Bacterianos , Álcool de Polivinil
20.
Environ Pollut ; 291: 118260, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34601030

RESUMO

The rapid determination of the bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in soils is challenging due to their slow desorption rates and the insufficient extraction efficiency of the available methods. Herein, magnetic poly(ß-cyclodextrin) microparticles (Fe3O4@PCD) were combined with hydroxypropyl-ß-cyclodextrin (HPCD) or methanol (MeOH) as solubilizing agents to develop a rapid and effective method for the bioaccessibility measurement of PAHs. Fe3O4@PCD was first validated for the rapid and quantitative adsorption of PAHs from MeOH and HPCD solutions. The solubilizing agents were then coupled with Fe3O4@PCD to extract PAHs from soil-water slurries, affording higher extractable fractions than the corresponding solution extraction and comparable to or higher than single Fe3O4@PCD or Tenax extraction. The desorption rates of labile PAHs could be markedly accelerated in this process, which were 1.3-12.0 times faster than those of single Fe3O4@PCD extraction. Moreover, a low HPCD concentration was sufficient to achieve a strong acceleration of the desorption rate without excessive extraction of the slow desorption fraction. Finally, a comparison with a bioaccumulation assay revealed that the combination of Fe3O4@PCD with HPCD could accurately predict the PAH concentration accumulated in earthworms in three field soil samples, indicating that the method is a time-saving and efficient procedure to measure the bioaccessibility of PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Fenômenos Magnéticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Propilenoglicóis , Solo , Poluentes do Solo/análise , beta-Ciclodextrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...