Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.368
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1407246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962322

RESUMO

Introduction: In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. Methods: This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). Results: Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. Discussion: The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Carbapenêmicos , Ceftazidima , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Klebsiella pneumoniae , Sequenciamento Completo do Genoma , beta-Lactamases , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , Humanos , Líbano , beta-Lactamases/genética , beta-Lactamases/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Transferência Genética Horizontal , Genoma Bacteriano , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Centros de Atenção Terciária
2.
Clin Transplant ; 38(7): e15390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973774

RESUMO

BACKGROUND: Extended-spectrum beta-lactamase-producing gram-negative rods (ESBL-GNR) are a rising cause of bacteremia in kidney transplant recipients (KT). The study purpose was to examine patient mortality, allograft survival, estimated glomerular filtration rate (eGFR) at the end of 1 year, and readmission rates while looking at treatment strategies among KTs with ESBL-GNR and non-ESBL-GNR bacteremia at our institution. METHODS: This study was a retrospective, cohort analysis of KTs with gram-negative bacteremia from January 1, 2020, to December 31, 2021. The primary outcome of the study was mortality. Patient outcomes were assessed for 365 days after positive blood cultures. RESULTS: The study included 63 patients. Of these, 18 (29%) patients had bacteremia caused by an ESBL-GNR and 45 (71%) patients had bacteremia caused by a non-ESBL-GNR. Patient survival at 90 days was 94% in the ESBL-GNR group and 96% in the non-ESBL-GNR group. Ciprofloxacin was the most common antimicrobial therapy at discharge (68.9%) in the non-ESBL-GNR group whereas ertapenem was the most common in the ESBL-GNR group (44.5%). Median eGFR at discharge was 41 mL/min/1.73 m2 in the ESBL-GNR group and 48 mL/min/1.73 m2 in the non-ESBL-GNR group. Ninety-day readmission occurred in 9 (50%) ESBL-GNR patients and 14 (32%) non-ESBL-GNR patients. None of the above comparisons are statistically significant (p > 0.05). Eleven (61%) ESBL-GNR and 2 (4%) non-ESBL-GNR patients used outpatient parenteral antimicrobial therapy (p < 0.001). CONCLUSIONS: Among KTs with ESBL-GNR bacteremia, no significant difference was detected in mortality or allograft function compared to non-ESBL-GNR bacteremia.


Assuntos
Bacteriemia , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Transplante de Rim , Complicações Pós-Operatórias , beta-Lactamases , Humanos , Masculino , Feminino , Transplante de Rim/efeitos adversos , Estudos Retrospectivos , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Pessoa de Meia-Idade , beta-Lactamases/metabolismo , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Prognóstico , Seguimentos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Fatores de Risco , Taxa de Sobrevida , Sobrevivência de Enxerto , Taxa de Filtração Glomerular , Antibacterianos/uso terapêutico , Testes de Função Renal , Adulto , Falência Renal Crônica/cirurgia , Transplantados
3.
Antimicrob Resist Infect Control ; 13(1): 72, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971782

RESUMO

BACKGROUND: Before the COVID-19 pandemic there has been a constant increase in antimicrobial resistance (AMR) of Escherichia coli, the most common cause of urinary tract infections and bloodstream infections. The aim of this study was to investigate the impact of the COVID-19 pandemic on extended-spectrum ß-lactamase (ESBL) production in urine and blood E. coli isolates in Finland to improve our understanding on the source attribution of this major multidrug-resistant pathogen. METHODS: Susceptibility test results of 564,233 urine (88.3% from females) and 23,860 blood E. coli isolates (58.8% from females) were obtained from the nationwide surveillance database of Finnish clinical microbiology laboratories. Susceptibility testing was performed according to EUCAST guidelines. We compared ESBL-producing E. coli proportions and incidence before (2018-2019), during (2020-2021), and after (2022) the pandemic and stratified these by age groups and sex. RESULTS: The annual number of urine E. coli isolates tested for antimicrobial susceptibility decreased 23.3% during 2018-2022 whereas the number of blood E. coli isolates increased 1.1%. The annual proportion of ESBL-producing E. coli in urine E. coli isolates decreased 28.7% among males, from 6.9% (average during 2018-2019) to 4.9% in 2022, and 28.7% among females, from 3.0 to 2.1%. In blood E. coli isolates, the proportion decreased 32.9% among males, from 9.3 to 6.2%, and 26.6% among females, from 6.2 to 4.6%. A significant decreasing trend was also observed in most age groups, but risk remained highest among persons aged ≥ 60 years. CONCLUSIONS: The reduction in the proportions of ESBL-producing E. coli was comprehensive, covering both specimen types, both sexes, and all age groups, showing that the continuously increasing trends could be reversed. Decrease in international travel and antimicrobial use were likely behind this reduction, suggesting that informing travellers about the risk of multidrug-resistant bacteria, hygiene measures, and appropriate antimicrobial use is crucial in prevention. Evaluation of infection control measures in healthcare settings could be beneficial, especially in long-term care.


Assuntos
COVID-19 , Infecções por Escherichia coli , Escherichia coli , Infecções Urinárias , beta-Lactamases , Humanos , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Finlândia/epidemiologia , COVID-19/epidemiologia , Feminino , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Masculino , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Pessoa de Meia-Idade , beta-Lactamases/metabolismo , beta-Lactamases/biossíntese , Idoso , Adulto , Adolescente , Adulto Jovem , Criança , Lactente , Pré-Escolar , Idoso de 80 Anos ou mais , Testes de Sensibilidade Microbiana , SARS-CoV-2 , Recém-Nascido , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Farmacorresistência Bacteriana Múltipla , Pandemias
4.
Microb Pathog ; 193: 106769, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955237

RESUMO

The bacterium Escherichia coli is one of the main causes of urinary tract infections. The formation of bacterial biofilms, especially associated with the use of urinary catheters, contributes to the establishment of recurrent infections and the development of resistance to treatment. Strains of E. coli that produce extended-spectrum beta-lactamases (ESBL) have a greater ability to form biofilms. In addition, there is a lack of drugs available in the market with antibiofilm activity. Promethazine (PMZ) is an antihistamine known to have antimicrobial activity against different pathogens, including in the form of biofilms, but there are still few studies of its activity against ESBL E. coli biofilms. The aim of this study was to evaluate the antimicrobial activity of PMZ against ESBL E. coli biofilms, as well as to assess the application of this drug as a biofilm prevention agent in urinary catheters. To this end, the minimum inhibitory concentration and minimum bactericidal concentration of PMZ in ESBL E. coli strains were determined using the broth microdilution assay and tolerance level measurement. The activity of PMZ against the cell viability of the in vitro biofilm formation of ESBL E. coli was analyzed by the MTT colorimetric assay and its ability to prevent biofilm formation when impregnated in a urinary catheter was investigated by counting colony-forming units (CFU) and confirmed by scanning electron microscopy (SEM). PMZ showed bactericidal activity and significantly reduced (p < 0.05) the viability of the biofilm being formed by ESBL E. coli at concentrations of 256 and 512 µg/ml, as well as preventing the formation of biofilm on urinary catheters at concentrations starting at 512 µg/ml by reducing the number of CFUs, as also observed by SEM. Thus, PMZ is a promising candidate to prevent the formation of ESBL E. coli biofilms on abiotic surfaces.


Assuntos
Antibacterianos , Biofilmes , Escherichia coli , Testes de Sensibilidade Microbiana , Prometazina , Cateteres Urinários , beta-Lactamases , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Prometazina/farmacologia , Escherichia coli/efeitos dos fármacos , beta-Lactamases/metabolismo , Cateteres Urinários/microbiologia , Antibacterianos/farmacologia , Humanos , Infecções Urinárias/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico
5.
Microb Pathog ; 193: 106778, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38972366

RESUMO

Antimicrobial resistance and biofilm formation by microbial pathogens pose a significant challenge to poultry production systems due to the persistent risk of dissemination and compromise of bird health and productivity. In this context, the study aimed to investigate the occurrence of different multiresistance phenotypes and the biofilm-forming ability of Enterobacteriaceae isolated from broiler chicken excreta in poultry production units in Ceará, Brazil. Samples were collected from three distinct broiler breeding facilities and subjected to isolation, identification, antibiotic susceptibility testing, phenotypic screening for ß-lactamases enzymes, and biofilm formation evaluation. Seventy-one strains were identified, being Escherichia coli (37 %) and Proteus mirabilis (32 %), followed by Klebsiella pneumoniae (11 %), Providencia stuartii (9 %), Klebsiella aerogenes (6 %), Alcaligenes faecalis (4 %), and Salmonella sp. (1 %). A significant proportion (87 %) of multiresistant strains were detected. For the phenotypic evaluation of ß-lactamases production, strains with resistance to second and third-generation cephalosporins and carbapenems were tested. About 4 of 6 and 10 of 26 were positive for inducible chromosomal AmpC ß-lactamase and extended-spectrum ß-lactamase (ESBL), respectively. Regarding biofilm formation, it was observed that all MDR strains were capable of forming biofilm. In this sense the potential of these MDR bacteria to develop biofilms becomes a significant concern, representing a real threat to both human and animal health, as biofilms offer stability, antimicrobial protection, and facilitate genetic transfer.


Assuntos
Antibacterianos , Biofilmes , Galinhas , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae , Fazendas , Fezes , Testes de Sensibilidade Microbiana , beta-Lactamases , Animais , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Brasil , beta-Lactamases/genética , beta-Lactamases/metabolismo , Fezes/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Antibacterianos/farmacologia , Galinhas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aves Domésticas/microbiologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária
6.
Anal Chem ; 96(29): 12093-12101, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38975860

RESUMO

Antimicrobial resistance (AMR) is a significant global health threat concern, necessitating healthcare practitioners to accurately prescribe the most effective antimicrobial agents with correct doses to combat resistant infections. This is necessary to improve the therapeutic outcomes for patients and prevent further increase in AMR. Consequently, there is an urgent need to implement rapid and sensitive clinical diagnostic methods to identify resistant pathogenic strains and monitor the efficacy of antimicrobials. In this study, we report a novel proof-of-concept magnetic scaffold-recombinase polymerase amplification (RPA) technique, coupled with an enzyme-linked oligonucleotide assay (ELONA) and surface-enhanced Raman scattering (SERS) detection, aimed at selectively amplifying and detecting the DNA signature of three resistant carbapenemase genes, VIM, KPC, and IMP. To achieve this, streptavidin-coated magnetic beads were functionalized with biotin-modified forward primers. RPA was conducted on the surface of the beads, resulting in an immobilized duplex amplicon featuring a single overhang tail specific to each gene. These tails were subsequently hybridized with recognition HRP probes conjugated to a complementary single-stranded oligonucleotide and detected colorimetrically. Additionally, they underwent hybridization with similar selective SERS probes and were measured using a handheld Raman spectrometer. The resulting quantification limits were at subpicomolar level for both assays, allowing the potential for early diagnosis. Moreover, we demonstrated the platform capability to conduct a multiplex RPA-SERS detection of the three genes in a single tube. Compared to similar approaches like PCR, RPA offers advantages of speed, affordability, and isothermal operation at 37 °C, eliminating the need for a thermal cycler. The whole assay was completed within <2 h. Therefore, this novel magnetic scaffold ELONA/SERS-RPA platform, for DNA detection, demonstrated excellent capability for the rapid monitoring of AMR in point-of-care applications, in terms of sensitivity, portability, and speed of analysis.


Assuntos
Análise Espectral Raman , Humanos , Técnicas de Amplificação de Ácido Nucleico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Recombinases/metabolismo , Farmacorresistência Bacteriana/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Antibacterianos/farmacologia , Oligonucleotídeos/química , DNA Bacteriano/análise , DNA Bacteriano/genética , Limite de Detecção
7.
Front Cell Infect Microbiol ; 14: 1410997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027135

RESUMO

Background: Acinetobacter baumannii (AB) has emerged as one of the most challenging pathogens worldwide, causing invasive infections in the critically ill patients due to their ability to rapidly acquire resistance to antibiotics. This study aimed to analyze antibiotic resistance genes harbored in AB and non-baumannii Acinetobacter calcoaceticus-baumannii (NB-ACB) complex causing invasive diseases in Korean children. Methods: ACB complexes isolated from sterile body fluid of children in three referral hospitals were prospectively collected. Colistin susceptibility was additionally tested via broth microdilution. Whole genome sequencing was performed and antibiotic resistance genes were analyzed. Results: During January 2015 to December 2020, a total of 67 ACB complexes were isolated from sterile body fluid of children in three referral hospitals. The median age of the patients was 0.6 (interquartile range, 0.1-7.2) years old. Among all the isolates, 73.1% (n=49) were confirmed as AB and others as NB-ACB complex by whole genome sequencing. Among the AB isolates, only 22.4% susceptible to carbapenem. In particular, all clonal complex (CC) 92 AB (n=33) showed multi-drug resistance, whereas 31.3% in non-CC92 AB (n=16) (P<0.001). NB-ACB showed 100% susceptibility to all classes of antibiotics except 3rd generation cephalosporin (72.2%). The main mechanism of carbapenem resistance in AB was the bla oxa23 gene with ISAba1 insertion sequence upstream. Presence of pmr gene and/or mutation of lpxA/C gene were not correlated with the phenotype of colistin resistance of ACB. All AB and NB-ACB isolates carried the abe and ade multidrug efflux pumps. Conclusions: In conclusion, monitoring and research for resistome in ACB complex is needed to identify and manage drug-resistant AB, particularly CC92 AB carrying the bla oxa23 gene.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Humanos , Criança , Pré-Escolar , Lactente , República da Coreia/epidemiologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Feminino , Masculino , COVID-19/epidemiologia , Colistina/farmacologia , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/efeitos dos fármacos , Acinetobacter calcoaceticus/isolamento & purificação , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Estudos Prospectivos , beta-Lactamases/genética , beta-Lactamases/metabolismo
8.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955378

RESUMO

AIMS: This study was conducted to evaluate the in vitro activity of clinically relevant aminoglycosides and to determine the prevalence of genes encoding aminoglycoside modifying enzymes (AMEs) and 16S ribosomal RNA (rRNA) methyltransferases among aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) clinical isolates. Associated resistances to beta-lactams and their bla genes as well as the genetic relatedness of isolates were also investigated. MATERIALS AND METHODS: A total of 105 aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) isolates recovered between March and May 2017 from 100 patients hospitalized in different wards of Charles Nicolle Hospital of Tunis, Tunisia, were studied. Minimal inhibitory concentrations of aminoglycoside compounds were determined by broth microdilution method. Aminoglycosides resistance encoding genes [aph(3´)-Ia, aph(3') IIa, aph(3´)-VIa, ant(2″)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, rmtA, rmtB, rmtC, armA, and npmA] and bla genes were investigated by PCR and sequencing. Genetic relatedness was examined by multilocus sequence typing (MLST) for representative isolates. RESULTS: High rates of aminoglycoside resistance were found: gentamicin (85.7%), tobramycin (87.6%), kanamycin (78.0%), netilmincin (74.3%), and amikcin (18.0%). Most common AME gene was aac(3)-IIa (42%), followed by aac(6')-Ib (36.2%) and aph(3')-VIa (32.4%). The majority of isolates were resistant to beta-lactams and blaCTX-M-15 was the most common ESBL. The blaNDM-1 and blaOXA-48 were also produced by 1 and 23 isolates, respectively. Novel sequence types have been reported among our isolates and high-risk clonal lineages have been detected, such as E. coli ST43 (ST131 in Achtman MLST scheme) and K. pneumoniae (ST11/ST13). CONCLUSIONS: The high prevalence of aminoglycoside resistance rates and the diversity of corresponding genes, with diverse ß-lactamase enzymes among genetically heterogeneous clinical isolates present a matter of concern.


Assuntos
Aminoglicosídeos , Antibacterianos , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Aminoglicosídeos/farmacologia , Tunísia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Humanos , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , Infecções por Escherichia coli/microbiologia , Farmacorresistência Bacteriana/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Infecções por Klebsiella/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
J Korean Med Sci ; 39(25): e208, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952349

RESUMO

A 30-year-old Korean man with myelodysplastic syndrome admitted hospital due to undifferentiated fever and recurrent skin lesions. He received combination therapy with high doses of meropenem, tigecycline and amikacin, yielding carbapenem resistant Klebsiella pneumoniae (CRKP) harboring K. pneumoniae carbapenemase (KPC)-2 from blood cultures on hospital day (HD) 23. Ceftazidime/avibactam was started at HD 37 and CRKP was eradicated from blood cultures after 5 days. However, ceftazidime/avibactam-resistant CRKP carrying KPC-44 emerged after 26 days of ceftazidime/avibactam treatment and then ceftazidime/avibactam-resistant, carbapenem-susceptible K. pneumoniae carrying KPC-135 was isolated on HD 65. The 3-D homology of KPC protein showed that hot spot changes in the omega loop could be attributed to ceftazidime/avibactam resistance and loss of carbapenem resistance. Whole genome sequencing of serial isolates supported that phenotypic variation was due to clonal evolution than clonal replacement. The treatment regimen was changed from CAZ/AVI to meropenem-based therapy (meropenem 1 g iv q 8 hours and amikacin 600 mg iv per day) starting with HD 72. CAZ/AVI-susceptible CRKP was presented again from blood cultures on HD 84, and the patient expired on HD 85. This is the first Korean report on the acquisition of ceftazidime/avibactam resistance through the emergence of blaKPC variants.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Bacteriemia , Ceftazidima , Combinação de Medicamentos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , Ceftazidima/uso terapêutico , Ceftazidima/farmacologia , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Masculino , Compostos Azabicíclicos/uso terapêutico , Adulto , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia , Sequenciamento Completo do Genoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meropeném/uso terapêutico , Meropeném/farmacologia , Farmacorresistência Bacteriana Múltipla/genética
10.
Nat Commun ; 15(1): 5092, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877000

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) are of particular concern due to the spread of antibiotic resistance genes associated with mobile genetic elements. In this study, we collected 687 carbapenem-resistant strains recovered among clinical samples from 41 hospitals in nine Southern European countries (2016-2018). We identified 11 major clonal lineages, with most isolates belonging to the high-risk clones ST258/512, ST101, ST11, and ST307. blaKPC-like was the most prevalent carbapenemase-encoding gene (46%), with blaOXA-48 present in 39% of isolates. Through the combination and comparison of this EURECA collection with the previous EuSCAPE collection (2013-2014), we investigated the spread of high-risk clones circulating in Europe exhibiting regional differences. We particularly found blaKPC-like ST258/512 in Greece, Italy, and Spain, blaOXA-48 ST101 in Serbia and Romania, blaNDM ST11 in Greece, and blaOXA-48-like ST14 in Türkiye. Genomic surveillance across Europe thus provides crucial insights for local risk mapping and informs necessary adaptions for implementation of control strategies.


Assuntos
Antibacterianos , Proteínas de Bactérias , Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Europa (Continente)/epidemiologia , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Carbapenêmicos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus
11.
BMC Vet Res ; 20(1): 259, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877453

RESUMO

The health of calves has a significant impact on the production of cows and livestock. Some desert plants have pharmacological importance, as they can be used to reduce antibiotic resistance. Our hypothesis is designed to detect Virulent- Multidrug-Resistant and Extended- spectrum Beta- lactamase Enterobacteriaceae (Virulent-MDR-ESBL Enterobacteriaceae and to determine whether Moringa oleifera has antibacterial activity against the detected isolates. A total of 39 Enterobacteriaceae isolates from 28 diarrheic samples were collected from calves aged between 20 days and 20 months from 3 different flocks in North Sinai, Sahl-Eltina region, Egypt. E.coli 46% (18/39), O157 13% (5/39), Klebsiella pneumoniae 41% (16/39). MDR members accounted for 87%, while ESBL isolates accounted for 43%. The antibacterial activity is represented by microdilution. Minimum inhibition concentration (MIC) for the methanol extract of Moringa oleifera ranged from 2.5,5,10, and 25mg/ ml among E.coli isolates, and O157 was susceptible to (2.5mg/ ml), Klebsiella pneumoniae isolates were susceptible to (5-50mg/ ml). Analysis of the methanol extract revealed that ferulic acid was the dominant phenolic compound with a concentration of 29,832 parts per million (ppm). In silico docking study expected the active site of ferulic acid to act on the tyrosine bacterial enzyme through Pi-alkyl, Pi-anion, Carbon hydrogen bonds, and extra ionic attractive interactions with copper ions which can stabilize ferulic acid inside the targeted pocket Diverse virulent gene profiles were observed in E. coli. The Shiga toxin-producing Escherichia coli (STEC) was reported in 83% of the isolated E. coli, while the DNA gyrase (gyrA) was harbored in 100% of Klebsiella pneumoniae isolates. Various profiles of antibiotic resistance genes for both E. coli and Klebsiella pneumoniae isolates were distinguished. blaTEM genes were detected in 99% of E. coli and 100% of Klebsiella pneumoniae. Sequence analysis for E. coli strain DRC-North Sinai-Eg was placed in accession numbers (OP955786) for the Shiga toxin 2 gene (Stx2A), (OP997748) and (OP997749) for the Adhesion to host cell gene (Eae). For the hemolysine gene (hylA), the accession number was (OP946183). Klebsiella pneumoniae strain DRC-North Sinai-Eg was placed in (OP946180) for (gyrA). This study has proven the broad range of Moringa oliefera's antibacterial effects in vitro against the virulent-MDR- ESBL E. coli and Klebsiella pneumoniae isolated from North Sinai calves diarrhea. These are congruent with the disability effect on bacterial tyrosinase enzyme through docking study therefore, we recommend the usage of this desert plant as a prospective feed additive, we endorse this as an antibacterial new insight natural source and for the medication of considered pathogens with zoonotic impacts.


Assuntos
Antibacterianos , Doenças dos Bovinos , Diarreia , Escherichia coli , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Moringa oleifera , Extratos Vegetais , Animais , Bovinos , Klebsiella pneumoniae/efeitos dos fármacos , Moringa oleifera/química , Diarreia/veterinária , Diarreia/microbiologia , Diarreia/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Farmacorresistência Bacteriana Múltipla , beta-Lactamases/genética , beta-Lactamases/metabolismo , Egito , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Klebsiella/veterinária , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Virulência , Simulação de Acoplamento Molecular
12.
Cell Rep ; 43(6): 114351, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923465

RESUMO

Klebsiella pneumoniae carbapenemase (KPC) poses a major public health risk. Understanding its transmission dynamics requires examining the epidemiological features of related plasmids. Our study compiled 15,660 blaKPC-positive isolates globally over the past two decades. We found extensive diversity in the genetic background of KPC, with 23 Tn4401-related and 341 non-Tn4401 variants across 163 plasmid types in 14 genera. Intra-K. pneumoniae and cross-genus KPC transmission patterns varied across four distinct periods. In the initial periods, plasmids with narrow host ranges gradually established a survival advantage. In later periods, broad-host-range plasmids became crucial for cross-genera transmission. In total, 61 intra-K. pneumoniae and 66 cross-genus transmission units have been detected. Furthermore, phylogenetic reconstruction dated the origin of KPC transmission back to 1991 and revealed frequent exchanges across countries. Our research highlights the frequent and transient spread events of KPC mediated by plasmids across multiple genera and offers theoretical support for high-risk plasmid monitoring.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Filogenia , Plasmídeos , beta-Lactamases , Plasmídeos/genética , Plasmídeos/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Klebsiella pneumoniae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Infecções por Klebsiella/transmissão , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia
13.
Nat Commun ; 15(1): 5498, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944647

RESUMO

IncX3 plasmids carrying the New Delhi metallo-ß-lactamase-encoding gene, blaNDM-5, are rapidly spreading globally in both humans and animals. Given that carbapenems are listed on the WHO AWaRe watch group and are prohibited for use in animals, the drivers for the successful dissemination of Carbapenem-Resistant Enterobacterales (CRE) carrying blaNDM-5-IncX3 plasmids still remain unknown. We observe that E. coli carrying blaNDM-5-IncX3 can persist in chicken intestines either under the administration of amoxicillin, one of the largest veterinary ß-lactams used in livestock, or without any antibiotic pressure. We therefore characterise the blaNDM-5-IncX3 plasmid and identify a transcription regulator, VirBR, that binds to the promoter of the regulator gene actX enhancing the transcription of Type IV secretion systems (T4SS); thereby, promoting conjugation of IncX3 plasmids, increasing pili adhesion capacity and enhancing the colonisation of blaNDM-5-IncX3 transconjugants in animal digestive tracts. Our mechanistic and in-vivo studies identify VirBR as a major factor in the successful spread of blaNDM-5-IncX3 across one-health AMR sectors. Furthermore, VirBR enhances the plasmid conjugation and T4SS expression by the presence of copper and zinc ions, thereby having profound ramifications on the use of universal animal feeds.


Assuntos
Antibacterianos , Galinhas , Conjugação Genética , Escherichia coli , Plasmídeos , beta-Lactamases , Animais , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Galinhas/microbiologia , Humanos , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Amoxicilina/farmacologia , Regiões Promotoras Genéticas/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Intestinos/microbiologia
14.
Molecules ; 29(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930934

RESUMO

Spermacoce alata Aubl. is widely available in the market as traditional Chinese medicine and animal feed, due to its properties of clearing heat and treating malaria and its high-protein and crude fiber content. In this study, the essential oil of S. alata was obtained through hydrodistillation. GC-MS and GC-FID methods were used to identify the chemical components and their relative abundance. Furthermore, the antioxidant capacity was measured using DPPH, ABTS, and FRAP assays, and the inhibitory effects of acetylcholinesterase, α-glucosidase, and ß-lactamase were also evaluated. A total of 67 compounds were identified, with the major constituents being palmitic acid (30.74%), linoleic acid (16.13%), and phenylheptatriyne (8.07%). The essential oil exhibited moderate antioxidant activity against DPPH (IC50 > 10 mg/mL), while the IC50 value for the ABTS assay was 3.84 ± 2.12 mg/mL and the FRAP assay value was 87.22 ± 12.22 µM/g. Additionally, the essential oil showed moderate anti-acetylcholinesterase activity (IC50 = 286.0 ± 79.04 µg/mL), significant anti-α-glucosidase activity (IC50 = 174.7 ± 13.12 µg/mL), and potent anti-ß-lactamase activity (IC50 = 37.56 ± 3.48 µg/mL). The results suggest that S. alata has the potential for application in pharmacology, warranting further exploration and investigation.


Assuntos
Acetilcolinesterase , Antioxidantes , Inibidores da Colinesterase , Óleos Voláteis , beta-Lactamases , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Antioxidantes/química , beta-Lactamases/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/metabolismo
15.
J Microorg Control ; 29(2): 81-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880620

RESUMO

Although recent propagation of carbapenemase-producing Enterobacterales (CPE) has become a problem worldwide, the picture of CPE infection in Japan has not fully been elucidated. In this study, we examined clinical and microbiological characteristics of invasive CPE infection occurring at 8 hospitals in Minami Ibaraki Area between July 2001 to June 2017. Of 7294 Enterobacterales strains isolated from independent cases of bacteremia and/or meningitis, 10 (0.14%) were CPE (8 Enterobacter cloacae-complex, 1 Escherichia coli, and 1 Edwardsiella tarda), all of which had the blaIMP-1 gene and susceptible to gentamicin and trimethoprim/sulfamethoxazole. These strains were isolated from 7 adult and 2 infant bacteremia (1 infant patient developed CPE bacteremia twice) after 2007. The most common portal of entry was intravenous catheters. All of the adult patients were recovered, while the infant patients eventually died. Genomic analyses showed that the 8 E. cloacae-complex strains were classified into 5 groups, each of which was exclusively detected in specific facilities at intervals of up to 3 years, suggesting persistent colonization in the facilities. This study showed that invasive CPE infection in the area was rare, caused by IMP-1-type CPE having susceptibility to various antibiotics, and nonfatal among adult patients.


Assuntos
Antibacterianos , Bacteriemia , Proteínas de Bactérias , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , Japão/epidemiologia , Bacteriemia/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Masculino , Feminino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lactente , Pessoa de Meia-Idade , Adulto , Idoso , Enterobacter cloacae/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Idoso de 80 Anos ou mais , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação
16.
Nat Commun ; 15(1): 5141, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902262

RESUMO

A major challenge in protein design is to augment existing functional proteins with multiple property enhancements. Altering several properties likely necessitates numerous primary sequence changes, and novel methods are needed to accurately predict combinations of mutations that maintain or enhance function. Models of sequence co-variation (e.g., EVcouplings), which leverage extensive information about various protein properties and activities from homologous protein sequences, have proven effective for many applications including structure determination and mutation effect prediction. We apply EVcouplings to computationally design variants of the model protein TEM-1 ß-lactamase. Nearly all the 14 experimentally characterized designs were functional, including one with 84 mutations from the nearest natural homolog. The designs also had large increases in thermostability, increased activity on multiple substrates, and nearly identical structure to the wild type enzyme. This study highlights the efficacy of evolutionary models in guiding large sequence alterations to generate functional diversity for protein design applications.


Assuntos
Evolução Molecular , Mutação , Engenharia de Proteínas , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamases/química , Engenharia de Proteínas/métodos , Modelos Moleculares , Sequência de Aminoácidos , Estabilidade Enzimática , Conformação Proteica
17.
Microbiol Res ; 285: 127774, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833829

RESUMO

Extended-spectrumß-lactam producing Escherichia coli (ESBL-EC) readily colonizes live poultry and serves as a major source of contamination in retail chicken meat, posing significant threats to public health. This study aims to investigate the impact of inappropriate antibiotic use on the dissemination and exacerbation of antibiotic resistance in ESBL-EC and explore the underlying molecular mechanisms. Through experimental analysis, we propose a hypothesis that inappropriate antibiotic use may exacerbate resistance by affecting vesicle formation and protein secretion. Experimental results demonstrate that under the influence of amoxicillin, the concentration of proteins secreted in outer membrane vehicles (OMVs) by ESBL-EC significantly increases, along with a significant upregulation in the expression of the CTX-M-55-type Extended-spectrum beta-lactamase (CTX-M-55). Proteomic analysis and differential gene knockout experiments identified the key protein YdcZ, associated with OMVs formation and protein transportation in ESBL-EC under amoxicillin treatment. Further investigations reveal direct interactions between YdcZ and other proteins (YdiH and BssR). Upon ydcz gene knockout, a significant decrease in protein concentration within OMVs is observed, accompanied by a noticeable reduction in protection against sensitive bacteria. These findings suggest a critical role of YdcZ in regulating the process of protein transportation to OMVs in ESBL-EC under the influence of amoxicillin. In summary, our research uncovers the significant role of inappropriate antibiotic use in promoting the secretion of OMVs by ESBL-EC, aiding the survival of antibiotic-sensitive bacteria in the vicinity of infection sites. These findings provide new insights into the mechanisms underlying antibiotic-induced bacterial resistance dissemination and offer novel avenues for exploring prevention and control strategies against bacterial resistance propagation.


Assuntos
Amoxicilina , Antibacterianos , Proteínas de Escherichia coli , Escherichia coli , Transporte Proteico , beta-Lactamases , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , beta-Lactamases/metabolismo , beta-Lactamases/genética , Amoxicilina/farmacologia , Animais , Testes de Sensibilidade Microbiana , Proteômica , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Galinhas/microbiologia , Farmacorresistência Bacteriana , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico
18.
Commun Biol ; 7(1): 695, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844513

RESUMO

Infection caused by KPC and NDM carbapenemases co-producing Klebsiella pneumoniae (KPC_NDM_CRKP) poses serious public health concerns. Here, we elucidate the prevalence of a hypertransmissible lncM1 plasmid, pKPC_NDM, co-carrying blaKPC-2 and blaNDM-1 genes in sequence type 1049 K_locus 5 (ST1049-KL5) KPC_NDM_CRKP isolates. Genetic and clonal relatedness analyses using pulsed-field gel electrophoresis, single nucleotide polymorphism analysis and core genome multilocus sequence typing suggested clonal dissemination of ST1049-KL5 KPC_NDM_CRKP strains in our hospital. Whole genome sequencing identified an identical 76,517 bp- blaKPC-2 and blaNDM-1 genes co-carrying IncM1 plasmid pKPC_NDM and a pLVPK-like hypervirulent plasmid in all ST1049-KL5 KPC_NDM_CRKP isolates. pKPC_NDM shared 100% identity with a previously sequenced plasmid CRKP35_unnamed4, demonstrating high transferability in conjugation assay, with conjugation frequencies reaching 10-4 and 10-5 in Escherichia coli and K. pneumoniae recipients, respectively. It also maintained favorable stability and flexible compatibility, with retention rates exceeding 80% after 10 days of continuous passage, and could be compatible with pre-existing blaKPC- or blaNDM-carrying plasmids in recipient strains. This study summarizes the characteristics of KPC_NDM_CRKP outbreaks and highlights the importance of ongoing surveillance and infection control strategies to address the challenges posed by ST1049 K. pneumoniae strains.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Plasmídeos , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , beta-Lactamases/genética , beta-Lactamases/metabolismo , Plasmídeos/genética , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Humanos , Prevalência , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Sequenciamento Completo do Genoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
19.
Clin Transl Sci ; 17(6): e13855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853376

RESUMO

Bloodstream infections (BSI) caused by carbapenem-resistant Enterobacterales (CRE) are associated with a high mortality rate. This study aimed to investigate factors associated with 14-day mortality and identify a potential treatment option. A retrospective cohort study was conducted on patients with CRE-BSI in Thailand from 2015 to 2020. The multivariate Cox proportional-hazards model was employed to identify factors influencing 14-day mortality. Out of 134 diagnosed cases of CRE-BSI, the all-cause 14-day mortality rate was 35.1%. The most prevalent organism isolated was Klebsiella pneumoniae (85.8%), followed by Escherichia coli (11.9%). Among the 60 isolates tested for carbapenemase genes, the majority exhibited co-occurring blaNDM-1 and blaOXA-48 (51.7%), followed by blaOXA-48 (31.7%) and blaNDM-1 (15.0%). In the multivariate analysis, neutropenia (adjusted hazard ratio [aHR] 2.55; 95% confidence interval [95%CI] 1.28-5.06; p = 0.008), sepsis/septic shock (aHR 3.02; 95%CI 1.33-6.86; p = 0.008), and previous metronidazole exposures (aHR 3.58; 95%CI 1.89-6.71; p < 0.001) were identified as independent factors for 14-day mortality. The fosfomycin-based regimen was found to be protective (aHR 0.37; 95%CI 0.15-0.92; p = 0.032). In patients with CRE-BSI, particularly in regions with a high occurrence of co-occurring blaNDM-1 and blaOXA-48, neutropenia, sepsis/septic shock, and previous metronidazole exposures emerged as independent risk factors for mortality. Moreover, the fosfomycin-based regimen showed an improvement in the survival rate.


Assuntos
Antibacterianos , Bacteriemia , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , beta-Lactamases , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , beta-Lactamases/metabolismo , beta-Lactamases/genética , Estudos Retrospectivos , Idoso , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Bacteriemia/epidemiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/mortalidade , Infecções por Enterobacteriaceae/epidemiologia , Tailândia/epidemiologia , Prevalência , Fatores de Risco , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Adulto , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico
20.
Curr Microbiol ; 81(7): 206, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831051

RESUMO

The presence of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae in fresh fruits and vegetables is a growing public health concern. The primary objective of this study was to investigate the relationship between biofilm formation and extended-spectrum ß-lactamase (ESBL) production in K. pneumoniae strains obtained from fresh fruits and vegetables. Out of 120 samples analysed, 94 samples (78%) were found to be positive for K. pneumoniae. Among the K. pneumoniae strains isolated, 74.5% were from vegetables, whereas the remaining (25.5%) were from fresh fruits. K. pneumoniae isolates were resistant to at least three different classes of antibiotics, with ceftazidime (90%) and cefotaxime (70%) showing the highest resistance rates. While the high occurrence of ESBL-producing and biofilm-forming K. pneumoniae strains were detected in vegetables (73.5% and 73.7%, respectively), considerable amounts of the same were also found in fresh fruits (26.5% and 26.3%, respectively). The results further showed a statistically significant (P < 0.001) association between biofilm formation and ESBL production in K. pneumoniae strains isolated from fresh fruits and vegetables. Furthermore, the majority (81%) of the ESBL-producing strains harbored the blaCTX-M gene, while a smaller proportion of strains carried the blaTEM gene (30%), blaSHV gene (11%) or blaOXA (8%). This study highlights the potential public health threat posed by K. pneumoniae in fresh fruits and vegetables and emphasizes the need for strict surveillance and control measures.


Assuntos
Antibacterianos , Biofilmes , Frutas , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Verduras , beta-Lactamases , Biofilmes/crescimento & desenvolvimento , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Verduras/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Frutas/microbiologia , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA