Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
1.
Nat Immunol ; 25(4): 682-692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396288

RESUMO

Fibroblasts are important regulators of inflammation, but whether fibroblasts change phenotype during resolution of inflammation is not clear. Here we use positron emission tomography to detect fibroblast activation protein (FAP) as a means to visualize fibroblast activation in vivo during inflammation in humans. While tracer accumulation is high in active arthritis, it decreases after tumor necrosis factor and interleukin-17A inhibition. Biopsy-based single-cell RNA-sequencing analyses in experimental arthritis show that FAP signal reduction reflects a phenotypic switch from pro-inflammatory MMP3+/IL6+ fibroblasts (high FAP internalization) to pro-resolving CD200+DKK3+ fibroblasts (low FAP internalization). Spatial transcriptomics of human joints indicates that pro-resolving niches of CD200+DKK3+ fibroblasts cluster with type 2 innate lymphoid cells, whereas MMP3+/IL6+ fibroblasts colocalize with inflammatory immune cells. CD200+DKK3+ fibroblasts stabilized the type 2 innate lymphoid cell phenotype and induced resolution of arthritis via CD200-CD200R1 signaling. Taken together, these data suggest a dynamic molecular regulation of the mesenchymal compartment during resolution of inflammation.


Assuntos
Artrite , Imunidade Inata , Humanos , Metaloproteinase 3 da Matriz , Interleucina-6/metabolismo , Linfócitos/metabolismo , Inflamação/metabolismo , Fibroblastos/metabolismo
2.
Arthritis Res Ther ; 25(1): 140, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542341

RESUMO

BACKGROUND: Disruption of glucocorticoid (GC) signaling in osteoblasts results in a marked attenuation of acute antibody-induced arthritis. The role of endogenous GCs in chronic inflammatory arthritis is however not fully understood. Here, we investigated the impact of endogenous GC signaling in osteoblasts on inflammation and bone integrity under chronic inflammatory arthritis by inactivating osteoblastic GC signaling in a long-term K/BxN serum transfer-induced induced arthritis (STIA) model. METHODS: Intracellular GC signaling in osteoblasts was disrupted by transgenic (tg) overexpression of 11beta-hydroxysteroid dehydrogenase type 2 (11ß-HSD2). Inflammatory arthritis was induced in 5-week-old male tg mice and their wild type (WT) littermates by intraperitoneal (i.p.) injection of K/BxN serum while controls (CTRLs) received phosphate-buffered saline (PBS). In a first cohort, K/BxN STIA was allowed to abate until  the endpoint of 42 days (STIA). To mimic rheumatic flares, a second cohort was additionally injected on days 14 and 28 with K/BxN serum (STIA boost). Arthritis severity was assessed daily by clinical scoring and ankle size measurements. Ankle joints were assessed histopathologically. Systemic effects of inflammation on long bone metabolism were analyzed in proximal tibiae by micro-computed tomography (µCT) and histomorphometry. RESULTS: Acute arthritis developed in both tg and WT mice (STIA and STIA boost) and peaked around day 8. While WT STIA and tg STIA mice showed a steady decline of inflammation until day 42, WT STIA boost and tg STIA boost mice exhibited an arthritic phenotype over a period of 42 days. Clinical arthritis severity did not differ significantly between WT and tg mice, neither in the STIA nor in the STIA boost cohorts. Correspondingly, histological indices of inflammation, cartilage damage, and bone erosion showed no significant difference between WT and tg mice on day 42. Histomorphometry revealed an increased bone turnover in tg CTRL and tg STIA boost compared to WT CTRL and WT STIA boost animals, respectively. CONCLUSIONS: In contrast to the previously reported modulating effects of endogenous GC signaling in osteoblasts during acute K/BxN STIA, this effect seems to perish during the chronic inflammatory and resolution phase. These findings indicate that endogenous GC signaling in osteoblasts may mainly be relevant during acute and subacute inflammatory processes.


Assuntos
Artrite Experimental , Artrite , Camundongos , Masculino , Animais , Glucocorticoides , Microtomografia por Raio-X , Artrite/metabolismo , Osteoblastos/metabolismo , Camundongos Transgênicos , Inflamação/patologia , Artrite Experimental/metabolismo
3.
Inflammopharmacology ; 31(4): 1893-1912, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37231284

RESUMO

Geranium essential oil (GEO) has been widely used in aromatherapy and traditional medicines. Nanoencapsulation, a novel technique has emerged to overcome the environmental degradation and less oral bioavailability of essential oils. This work was undertaken to encapsulate geranium essential oil in chitosan nanoparticles (GEO-CNPs) by ionic gelation technique and to explore anti-arthritic and anti-inflammatory potential in FCA-induced arthritic model in rats. The GEO was characterized by gas chromatography flame ionization detector (GCFID) and the nanosuspension was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-rays diffraction (XRD). The Wistar albino rats (n = 32) were separated into four groups; Group 1 and 2 were considered as normal and arthritic controls. Group 3 was positive control that received oral celecoxib for 21 days while Group 4 was treated with oral GEO-CNPs after the induction of arthritis. Hind paw ankle joints diameters were weekly measured throughout the study and significant decrease (5.5 ± 0.5 mm) was observed in GEO-CNPs treatment group in comparison to arthritic group (9.17 ± 0.52 mm). Blood samples were drawn at end for evaluation of hematological, biochemical and inflammatory biomarkers. A significant upregulation of red blood cells and hemoglobin while downregulation of white blood cells, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP) and rheumatoid factor (RF) was observed. Ankles were transected for the histopathological and radiographic examination after animals were sacrificed which confirmed the alleviation of necrosis along cellular infiltration. It was concluded that GEO-CNPs were found to possess excellent therapeutic potential and promising candidates to reduce FCA-induced arthritis.


Assuntos
Artrite Experimental , Artrite , Quitosana , Geranium , Óleos Voláteis , Ratos , Animais , Citocinas/metabolismo , Ratos Wistar , Regulação para Baixo , Quitosana/efeitos adversos , Quitosana/metabolismo , Geranium/metabolismo , Óleos Voláteis/uso terapêutico , Adjuvante de Freund/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo
4.
Arthritis Rheumatol ; 75(2): 220-231, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577442

RESUMO

OBJECTIVE: We undertook this study to examine the functional basis for epistasis between endoplasmic reticulum aminopeptidase 1 (ERAP1) and HLA-B27 in experimental spondyloarthritis (SpA). METHODS: ERAP1-knockout rats were created using genome editing and bred with HLA-B27/human ß2 -microglobulin-transgenic (HLA-B27-Tg) rats and HLA-B7-Tg rats. The effects of ERAP1 deficiency on HLA allotypes were determined using immunoprecipitation and immunoblotting, flow cytometry, allogeneic T cell proliferation assays, and gene expression analyses. Animals were examined for clinical features of disease, and tissue was assessed by histology. RESULTS: ERAP1 deficiency increased the ratio of folded to unfolded (ß2 m-free) HLA-B27 heavy chains, while having the opposite effect on HLA-B7. Furthermore, in rats with ERAP1 deficiency, HLA-B27 misfolding was reduced, while free HLA-B27 heavy chain dimers on the cell surface and monomers were increased. The effects of ERAP1 deficiency persisted during up-regulation of HLA-B27 and led to a reduction in endoplasmic reticulum stress. ERAP1 deficiency reduced the prevalence of arthritis in HLA-B27-Tg rats by two-thirds without reducing gastrointestinal inflammation. Dendritic cell abnormalities attributed to the presence of HLA-B27, including reduced allogeneic T cell stimulation and loss of CD103-positive/major histocompatibility complex class II-positive cells, were not rescued by ERAP1 deficiency, while excess Il23a up-regulation was mitigated. CONCLUSION: ERAP1 deficiency reduced HLA-B27 misfolding and improved folding while having opposing effects on HLA-B7. The finding that HLA-B27-Tg rats had partial protection against SpA in this study is consistent with genetic evidence that loss-of-function and/or reduced expression of ERAP1 reduces the risk of ankylosing spondylitis. Functional studies support the concept that the effects of ERAP1 on HLA-B27 and SpA may be a consequence of how peptides affect the biology of this allotype rather than their role as antigenic determinants.


Assuntos
Antígeno HLA-B27 , Espondilite Anquilosante , Animais , Humanos , Ratos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígeno HLA-B7 , Antígenos de Histocompatibilidade Menor/genética , Espondilite Anquilosante/genética , Artrite/genética , Artrite/metabolismo
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 811-827, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36512053

RESUMO

This study investigated the anti-arthritic potential of novel mannich-based derivatives of 2-mercaptobenzimidazole (AK7 and AK9) in rats. The compounds were characterized by NMR and FTIR spectroscopies and their acute anti-inflammatory effects were measured by carrageenan (CRG)-induced paw edema model. The most potent doses of AK7 and AK9 were subsequently evaluated in the complete Freund's adjuvant (CFA)-induced inflammatory arthritis model. AK7 and AK9 inhibited CRG-induced inflammation in a dose-dependent fashion and a similar reduction in CFA-induced paw inflammation was observed. Moreover, X-ray and histopathological analyses of AK7-treated animals displayed normal joint structure whereas AK9, despite of its anti-inflammatory effects, failed to protect against cartilage destruction. Interestingly, biochemical analysis revealed a better safety profile for AK7 than for AK9 and methotrexate. Both compounds suppressed mRNA levels of pro-inflammatory mediators (IRAK1, NF-κB1, TNF-α, IL1B) while only AK7 reduced the transcript levels of interstitial collagenase (MMP1). Molecular docking analysis of AK7 and AK9 with TNF-α and MMP1 also supported the experimental data. These findings clearly highlight the beneficial effects of AK7 in the prevention and/or treatment of inflammatory arthritis.


Assuntos
Artrite Experimental , Artrite , Animais , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite/induzido quimicamente , Artrite/tratamento farmacológico , Artrite/patologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Carragenina , Citocinas , Inflamação/tratamento farmacológico , Metaloproteinase 1 da Matriz , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , NF-kappa B/metabolismo
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1549-1556, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36208264

RESUMO

OBJECTIVE: To explore the effect of lenalidomide on human fibroblast-like synovial cells (HFLS) and the therapeutic efficacy on hemophilic arthropathy in hemophilia A mice model. METHODS: In vitro, to remodel the inflammatory environment of synovial tissue after hemorrhage, ferric citrate and recombinant TNF-α were added into the cell culture medium of HFLS. Cell Counting Kit-8 (CCK-8), Enzyme-linked immunosorbent assay (ELISA), Quantitative Real-time PCR (RT-qPCR) and flow cytometry were employed for detection of the effects of lenalidomide on the proliferation ability, pro-inflammatory cytokines release and apoptosis of HFLS cells. In vivo, hemophilia arthropathy was remodeled in hemophilia A mice by induction of hemarthrosis. A series of doses of lenalidomide (0.1, 0.3 and 1.0 g/kg) was administrated intra-articularly. Tissues of knee joints were collected on the 14th day after administration, and the protective effect of lenalidomide on arthritis in hemophilia A mice were evaluated by RT-qPCR and histological grading. RESULTS: In vitro, compared with the untreated control group, lenalidomide could significantly inhibit the proliferation of HFLS cells (P<0.05), and the effect was the most significant when the concentration was 0.01 µmol/L (P<0.001). Compared with the control group, lenalidomide could significantly inhibit the expression levels of TNF-α, IL-1ß, IL-6 and IFN-γ in HFLS cells (P<0.05). The flow cytometry results showed that lenalidomide could enhance the apoptotis of HFLS cells (P<0.05). The results of RT-qPCR showed that lenalidomide could significantly reduce the mRNA expression levels of TNF-α, IL-1ß, IL-6,MCP-1 and VEGF in the joint tissues (P<0.05). Histological results showed that compared with the injured group, lenalidomide could significantly reduce the pathological sequela after hemarthrosis induction, e.g. synovial thickening and neo-angiogenesis in the synovium. The protection displayed a dose-response pattern roughly. CONCLUSION: In vitro, lenalidomide can inhibit the proliferation of HFLS cells, promote their apoptosis, and inhibit the expression of pro-inflammatory cytokines. In vivo, lenalidomide can significantly decrease the expression of pro-inflammatory cytokines in the joints of mice, and prevent the development of inflammation and neo-angiogenesis. The results provide a theoretical and experimental basis for the clinical application of lenalidomide in the treatment of hemophilic arthropathy.


Assuntos
Artrite , Hemofilia A , Animais , Citocinas/metabolismo , Hemartrose/patologia , Hemofilia A/genética , Humanos , Interleucina-6 , Lenalidomida , Camundongos , Neovascularização Patológica , RNA Mensageiro , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular
7.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293292

RESUMO

The pathogenesis of autoimmune arthritis is a hot topic in current research. The main focus of this work was to study cytokines released in CFA-induced arthritis in ICR mice as well as the regulation of blood levels of cytokines by two peptides of the innate immunity protein Tag7 (PGLYRP1) capable of blocking the activation of the TNFR1 receptor. Arthritis was induced by local periarticular single-dose injections of 40 µL of complete Freund's adjuvant (CFA) into the left ankle joints of mice. The levels of chemokines and cytokines in plasma were measured using a Bio-Plex Pro Mouse Cytokine Kit at 3, 10, and 21 days after arthritis induction. Tag7 peptides were shown to decrease the blood levels of the pro-inflammatory cytokines IL-6, TNF, and IL-1ß. Administration of peptides also decreased the levels of chemokines MGSA/CXCL1, MIP-2α/CXCL2, ENA78/CXCL5, MIG/CXCL9, IP-10/CXCL10, MCP-1/CCL2, and RANTES/CCL5. Furthermore, a decrease in the levels of cytokines IL7, G-CSF, and M-CSF was demonstrated. Addition of the studied peptides strongly affected IFN-γ concentration. We believe that a decrease in the levels of cytokine IFN-γ was associated with a therapeutic effect of Tag7 peptides manifested in alleviation of the destruction of cartilage and bone tissues in the CFA-induced arthritis.


Assuntos
Artrite Experimental , Artrite , Camundongos , Animais , Citocinas/metabolismo , Adjuvante de Freund , Quimiocina CCL5 , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator Estimulador de Colônias de Macrófagos , Quimiocina CXCL10 , Interleucina-6 , Quimiocina CXCL2 , Interleucina-7 , Camundongos Endogâmicos ICR , Imunidade Inata , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Artrite Experimental/tratamento farmacológico
8.
Biomed Pharmacother ; 151: 113142, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623175

RESUMO

Inflammatory arthritis is the most prevalent chronic inflammatory disease worldwide. The pathology of the disease is characterized by increased inflammation and oxidative stress, which leads to chronic pain and functional loss in the joints. Conventional anti-arthritic drugs used to relieve pain and other arthritic symptoms often cause severe side effects. α-bisabolol (BIS) is a sesquiterpene that exhibits high anti-inflammatory potential and a significant antinociceptive effect. This study evaluates the anti-arthritic, anti-inflammatory and antihyperalgesic effects of BIS alone and in a ß-cyclodextrin (ßCD/BIS) inclusion complex in a CFA-induced arthritis model. Following the intra-articular administration of CFA, male mice were treated with vehicle, BIS and ßCD/BIS (50 mg/kg, p.o.) or a positive control and pain-related behaviors, knee edema and inflammatory and oxidative parameters were evaluated on days 4, 11, 18 and/or 25. Ours findings shows that the oral administration of BIS and ßCD/BIS significantly attenuated spontaneous pain-like behaviors, mechanical hyperalgesia, grip strength deficit and knee edema induced by repeated injections of CFA, reducing the joint pain and functional disability associated with arthritis. BIS and ßCD/BIS also inhibited the generation of inflammatory and oxidative markers in the knee and blocked MAPK in the spinal cord. In addition, ours results also showed that the incorporation of BIS in cyclodextrin as a drug delivery system improved the pharmacological profile of this substance. Therefore, these results contribute to the pharmacological knowledge of BIS and demonstrated that this terpene appears to be able to mitigate deleterious symptoms of arthritis.


Assuntos
Artrite Experimental , Artrite , Dor Crônica , beta-Ciclodextrinas , Animais , Anti-Inflamatórios/efeitos adversos , Artrite/induzido quimicamente , Artrite/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Dor Crônica/tratamento farmacológico , Modelos Animais de Doenças , Edema/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Interleucina-1beta/metabolismo , Interleucina-6 , Masculino , Camundongos , Sesquiterpenos Monocíclicos , beta-Ciclodextrinas/farmacologia
9.
Endocrinology ; 163(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35305012

RESUMO

Inflammatory arthritis defines a family of diseases influenced by reproductive hormones. Vasoinhibin, a fragment of the hormone prolactin (PRL), has antiangiogenic and proinflammatory properties. We recently showed that vasoinhibin reduces joint inflammation and bone loss in severe antigen-induced arthritis (AIA) by an indirect mechanism involving the inhibition of pannus vascularization. This unexpected finding led us to hypothesize that a severe level of inflammation in AIA obscured the direct proinflammatory action of vasoinhibin while allowing the indirect anti-inflammatory effect via its antiangiogenic properties. In agreement with this hypothesis, here we show that the intra-articular injection of an adeno-associated virus type-2 vector encoding vasoinhibin reduced joint inflammation in a severe AIA condition, but elevated joint inflammation in a mild AIA model. The proinflammatory effect, unmasked in mild AIA, resulted in joint swelling, enhanced leukocyte infiltration, and upregulation of expression of genes encoding proinflammatory mediators (Il1b, Il6, Inos, Mmp3), adhesion molecule (Icam1), and chemokines (Cxcl1, Cxcl2, Cxcl3, Ccl2). Furthermore, vasoinhibin induced the expression of proinflammatory mediators and chemokines in cultured synovial fibroblasts through nuclear factor-κB. Finally, matrix metalloproteases and cathepsin D, upregulated in the arthritic joint, cleaved PRL to vasoinhibin, and vasoinhibin levels increased in the circulation of mice subjected to AIA. We suggest that vasoinhibin is generated during inflammatory arthritis and acts on synovial fibroblasts and endothelial cells to initially promote and later inhibit inflammation, respectively. These opposite effects may work together to help keep joint inflammation under balance.


Assuntos
Artrite Experimental , Artrite , Animais , Artrite Experimental/genética , Células Endoteliais/metabolismo , Inflamação , Camundongos , Neovascularização Patológica , Prolactina/metabolismo
10.
Life Sci ; 295: 120372, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143824

RESUMO

Prolonged exposure to the pharmacological doses of disease-modifying anti-rheumatic drugs (DMARDs) often results in major organ toxicities resulting in poor patient compliance. Methotrexate (MTX) is one of the commonly prescribed DMARDs for the treatment of arthritis, which results in vital organ dysfunction. To retain the anti-arthritic activity of MTX with the reduction in toxicities, combination therapies are warranted. Nimbolide (NMB) is a potent anticancer, anti-inflammatory and anti-fibrotic agent whose potential has been demonstrated in various pre-clinical models. Monoarthritis was developed with Complete Freund's Adjuvant in the knees of Wistar rats and treatment was given with either NMB (3 mg/kg/day) or MTX (2 mg/kg/week) alone or combination therapy (NMB + MTX). The anti-arthritic effects were evaluated by arthritic scoring, radiological imaging, synovial tissue proteins analysis, and histopathological staining. While hepato-renal toxicity was assessed in serum by evaluating the kidney and liver functional parameters, in tissues by oxidative-nitrosative stress markers, and pro-inflammatory cytokines levels. Histopathological analysis was performed to study the extent of tissue damage. Molecular studies like immunoblotting and immunohistochemistry were performed to understand the effect of combination therapy. We thereby report that monotherapy with either NMB or MTX exhibited significant anti-arthritic effects, while combination therapy resulted in augmented anti-arthritic effects with significant reduction in hepato-renal toxicity produced by MTX probably through anti-inflammatory and anti-oxidant effects. Therefore, our proposed combination of NMB and MTX may serve as a potential strategy for the effective management of arthritis.


Assuntos
Artrite/tratamento farmacológico , Limoninas/farmacologia , Metotrexato/farmacologia , Animais , Antioxidantes/farmacologia , Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Quimioterapia Combinada/métodos , Feminino , Adjuvante de Freund/farmacologia , Limoninas/metabolismo , Fígado/metabolismo , Metotrexato/toxicidade , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar
11.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076027

RESUMO

Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA affects the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.


Assuntos
Artrite , Fenômenos Fisiológicos Bacterianos/imunologia , Microbioma Gastrointestinal/fisiologia , Fosfolipases A2 do Grupo II/metabolismo , Metabolismo dos Lipídeos/imunologia , Animais , Animais Geneticamente Modificados , Artrite/imunologia , Artrite/microbiologia , Humanos , Fenômenos do Sistema Imunitário , Lipidômica/métodos , Camundongos , Modelos Animais , Patologia Molecular/métodos , Transgenes
12.
Mol Neurobiol ; 59(4): 2246-2257, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066763

RESUMO

Accumulating evidence indicates that the continuous and intense nociceptive from inflamed tissue may increase the excitability of spinal dorsal horn neurons, which can signal back and modulate peripheral inflammation. Previous studies have demonstrated that spinal interleukin (IL)-33 contributes to the hyperexcitability of spinal dorsal horn neurons. This study was undertaken to investigate whether spinal IL-33 can also influence a peripheral inflammatory response in a rat model of arthritis. Lentivirus-delivered short hairpin RNA targeting IL-33 (LV-shIL-33) was constructed for gene silencing. Rats with adjuvant-induced arthritis (AIA) were injected intrathecally with LV-shIL-33 3 days before the complete Freund's adjuvant (CFA) injection. During an observation period of 21 days, pain-related behavior and inflammation were assessed. In addition, the expression of spinal proinflammatory cytokines and the activation of spinal extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) pathways were evaluated on 9 days after CFA treatment. The existence of tissue injury or inflammation in rats with AIA resulted in the upregulation of spinal IL-33, which is predominantly expressed in neurons, astrocytes, and oligodendrocytes. Intrathecal administration of LV-shIL-33 significantly alleviated hyperalgesia, paw swelling, and joint destruction, and attenuated the expression of proinflammatory cytokines [IL-6, IL-1ß, and tumor necrosis factor-α (TNF-α)], as well as the activation of ERK and NF-κB/p65 in the spinal cord. Our data suggest that spinal IL-33 contributes to the development of both peripheral inflammation and hyperalgesia. Thus, interference with IL-33 at the spinal level might represent a novel therapeutic target for painful inflammatory disorders.


Assuntos
Artrite , Hiperalgesia , Animais , Artrite/patologia , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Adjuvante de Freund/efeitos adversos , Adjuvante de Freund/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Inflamação/metabolismo , Interleucina-33/metabolismo , Interleucina-33/farmacologia , NF-kappa B/metabolismo , Ratos , Medula Espinal/patologia
13.
Arthritis Rheumatol ; 74(2): 212-222, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34398520

RESUMO

OBJECTIVE: To investigate whether thermogenesis and the hypothalamus may be involved in the physiopathology of experimental arthritis (EA). METHODS: EA was induced in male Lewis rats by intradermal injection of Freund's complete adjuvant (CFA). Food intake, body weight, plasma cytokines, thermographic analysis, gene and protein expression of thermogenic markers in brown adipose tissue (BAT) and white adipose tissue (WAT), and hypothalamic AMP-activated protein kinase (AMPK) were analyzed. Virogenetic activation of hypothalamic AMPK was performed. RESULTS: We first demonstrated that EA was associated with increased BAT thermogenesis and browning of subcutaneous WAT leading to elevated energy expenditure. Moreover, rats experiencing EA showed inhibition of hypothalamic AMPK, a canonical energy sensor modulating energy homeostasis at the central level. Notably, specific genetic activation of AMPK in the ventromedial nucleus of the hypothalamus (a key site modulating energy metabolism) reversed the effect of EA on energy balance, brown fat, and browning, as well as promoting amelioration of synovial inflammation in experimental arthritis. CONCLUSION: Overall, these data indicate that EA promotes a central catabolic state that can be targeted and reversed by the activation of hypothalamic AMPK. This might provide new therapeutic alternatives to treat rheumatoid arthritis (RA)-associated metabolic comorbidities, improving the overall prognosis in patients with RA.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Artrite/metabolismo , Artrite/fisiopatologia , Hipotálamo/enzimologia , Termogênese , Animais , Artrite/complicações , Masculino , Ratos , Ratos Endogâmicos Lew
14.
Int Immunopharmacol ; 101(Pt B): 108363, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34810129

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that causes joint destruction. Although its etiology remains unknown, citrullinated proteins have been considered as an auto-antigen able to trigger an inflammatory response in RA. Herein, we modified the classical antigen-induced arthritis (AIA) model by using citrullinated human plasma fibrinogen (hFIB) as an immunogen to investigate the mechanism of inflammation-driven joint damage by citrullinated hFIB in C57BL/6 mice. We found that hFIB-immunized mice showed high serum levels of anti-citrullinated peptides antibodies (ACPAs). Moreover, hFIB immunized mice showed increased mechanical hyperalgesia, massive leukocyte infiltration, high levels of inflammatory mediators, and progressive joint damage after the intra-articular challenge with citrullinated hFIB. Interestingly, hFIB-induced arthritis was dependent on IL-23/IL-17 immune axis-mediated inflammatory responses since leukocyte infiltration and mechanical hyperalgesia were abrogated in Il17ra-/- and Il23a-/- mice. Thus, we have characterized a novel model of experimental arthritis suitable to investigate the contribution of ACPAs and Th17 cell-mediated immune response in the pathogenesis of RA.


Assuntos
Artrite/induzido quimicamente , Fibrinogênio/toxicidade , Inflamação/induzido quimicamente , Interleucina-23/metabolismo , Animais , Citrulinação , Fibrinogênio/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoglobulina G , Inflamação/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-23/genética , Masculino , Camundongos , Camundongos Knockout , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo
15.
Arthritis Res Ther ; 23(1): 286, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784954

RESUMO

BACKGROUND: Gasdermin D (GSDMD) is cleaved by several proteases including by caspase-1, a component of intracellular protein complexes called inflammasomes. Caspase-1 also converts pro-interleukin-1ß (pro-IL-1ß) and pro-IL-18 into bioactive IL-1ß and IL-18, respectively. GSDMD amino-terminal fragments form plasma membrane pores, which mediate the secretion of IL-1ß and IL-18 and cause the inflammatory form of cell death pyroptosis. Here, we tested the hypothesis that GSDMD contributes to joint degeneration in the K/BxN serum transfer-induced arthritis (STIA) model in which autoantibodies against glucose-6-phosphate isomerase promote the formation of pathogenic immune complexes on the surface of myeloid cells, which highly express the inflammasomes. The unexpected outcomes with the STIA model prompted us to determine the role of GSDMD in the post-traumatic osteoarthritis (PTOA) model caused by meniscus ligamentous injury (MLI) based on the hypothesis that this pore-forming protein is activated by signals released from damaged joint tissues. METHODS: Gsdmd +/+ and Gsdmd-/- mice were injected with K/BxN mouse serum or subjected to MLI to cause STIA or PTOA, respectively. Paw and ankle swelling and DXA scanning were used to assess the outcomes in the STIA model whereas histopathology and micro-computed tomography (µCT) were utilized to monitor joints in the PTOA model. Murine and human joint tissues were also examined for GSDMD, IL-1ß, and IL-18 expression by qPCR, immunohistochemistry, or immunoblotting. RESULTS: GSDMD levels were higher in serum-inoculated paws compared to PBS-injected paws. Unexpectedly, ablation of GSDMD failed to reduce joint swelling and osteolysis, suggesting that GSDMD was dispensable for the pathogenesis of STIA. GSDMD levels were also higher in MLI compared to sham-operated joints. Importantly, ablation of GSDMD attenuated MLI-associated cartilage degradation (p = 0.0097), synovitis (p = 0.014), subchondral bone sclerosis (p = 0.0006), and subchondral bone plate thickness (p = 0.0174) based on histopathological and µCT analyses. CONCLUSION: GSDMD plays a key role in the pathogenesis of PTOA, but not STIA, suggesting that its actions in experimental arthropathy are tissue context-specific.


Assuntos
Complexo Antígeno-Anticorpo , Artrite , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ligação a Fosfato/genética , Ferimentos e Lesões/complicações , Animais , Artrite/etiologia , Autoanticorpos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Microtomografia por Raio-X
16.
Ann Rheum Dis ; 80(12): 1604-1614, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663597

RESUMO

Crystal structures activate innate immune cells, especially macrophages and initiate inflammatory responses. We aimed to understand the role of the mechanosensitive TRPV4 channel in crystal-induced inflammation. Real-time RT-PCR, RNAscope in situ hybridisation, and Trpv4eGFP mice were used to examine TRPV4 expression and whole-cell patch-clamp recording and live-cell Ca2+ imaging were used to study TRPV4 function in mouse synovial macrophages and human peripheral blood mononuclear cells (PBMCs). Both genetic deletion and pharmacological inhibition approaches were used to investigate the role of TRPV4 in NLRP3 inflammasome activation induced by diverse crystals in vitro and in mouse models of crystal-induced pain and inflammation in vivo. TRPV4 was functionally expressed by synovial macrophages and human PBMCs and TRPV4 expression was upregulated by stimulation with monosodium urate (MSU) crystals and in human PBMCs from patients with acute gout flares. MSU crystal-induced gouty arthritis were significantly reduced by either genetic ablation or pharmacological inhibition of TRPV4 function. Mechanistically, TRPV4 mediated the activation of NLRP3 inflammasome by diverse crystalline materials but not non-crystalline NLRP3 inflammasome activators, driving the production of inflammatory cytokine interleukin-1ß which elicited TRPV4-dependent inflammatory responses in vivo. Moreover, chemical ablation of the TRPV1-expressing nociceptors significantly attenuated the MSU crystal-induced gouty arthritis. In conclusion, TRPV4 is a common mediator of inflammatory responses induced by diverse crystals through NLRP3 inflammasome activation in macrophages. TRPV4-expressing resident macrophages are critically involved in MSU crystal-induced gouty arthritis. A neuroimmune interaction between the TRPV1-expressing nociceptors and the TRPV4-expressing synovial macrophages contributes to the generation of acute gout flares.


Assuntos
Artralgia/metabolismo , Artrite/metabolismo , Artropatias por Cristais/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Nociceptores/metabolismo , Canais de Cátion TRPV/genética , Adulto , Animais , Artralgia/imunologia , Artrite/imunologia , Artrite Gotosa/imunologia , Artrite Gotosa/metabolismo , Artropatias por Cristais/imunologia , Gota/imunologia , Gota/metabolismo , Humanos , Inflamassomos/imunologia , Inflamação , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Óptica , Técnicas de Patch-Clamp , Membrana Sinovial/citologia , Células THP-1 , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Ácido Úrico
17.
Vet Immunol Immunopathol ; 241: 110325, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562797

RESUMO

The role of resident cells such a synoviocytes and chondrocytes in intra-articular inflammation is well-characterized, however the in vivo gene expression patterns of cells (predominantly leukocytes) in the synovial fluid (SF) of an inflamed joint have never previously been investigated. The aim of this study was to investigate gene expression in SF leukocytes from the inflamed joint cavity after intra-articular lipopolysaccharide (LPS) injection in horses to improve our understanding of the temporal regulation of the intra-articular inflammatory response. Gene expression was investigated in SF samples available from six horses 2, 4, 8 16 and 24 h after experimental induction of inflammation in the radiocarpal joint by lipopolysaccharide (LPS) injection. Leukocytic expression of 43 inflammation-related genes was studied using microfluidic high throughput qPCR (Fluidigm®). Expression of 26 genes changed significantly over the 24 h study period, including pro- and anti-inflammatory genes such as interleukin (IL)1, IL6, tumor necrosis factor (TNF), cyclooxygenase 2 (COX2), IL1 receptor antagonist (IL1RN), IL10, and superoxide dismutase 2 (SOD2), chemokine genes, apoptosis-related genes, and genes related to cartilage turnover (matrix metalloproteinase 8 and tissue inhibitor of metalloproteinase 1). The inflammatory responses appeared to be regulated, as an early increase (at 2 h) in expression of the pro-inflammatory genes IL1, IL6, TNF and COX2 was rapidly followed by increased expression (at 4 h) of several anti-inflammatory genes (IL10, IL1RN and SOD2). Similarly, both pro- and anti-apoptotic gene expression as well as expression of chondrodegenerative and chondroprotective genes were activated in SF leukocytes. Thus, the inflammatory response in leukocytes infiltrating the joint in the acute stage of arthritis was well orchestrated in this single-hit LPS-induced arthritis model. This study is the first to describe gene expression patterns in SF-derived leukocytes in vivo during severe joint inflammation, and the results thus expand our knowledge of basic inflammatory mechanisms in the early local response in an inflamed joint.


Assuntos
Artrite , Regulação da Expressão Gênica , Doenças dos Cavalos , Leucócitos , Animais , Anti-Inflamatórios , Artrite/induzido quimicamente , Artrite/veterinária , Ciclo-Oxigenase 2/genética , Doenças dos Cavalos/induzido quimicamente , Cavalos , Inflamação/induzido quimicamente , Inflamação/veterinária , Interleucina-10 , Interleucina-6 , Leucócitos/metabolismo , Lipopolissacarídeos , Líquido Sinovial/citologia , Inibidor Tecidual de Metaloproteinase-1
18.
Sci Rep ; 11(1): 17345, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462464

RESUMO

Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease which affects primarily the joints. Peptides of several proteins have shown an effect in some experimental animal models of RA. We investigated arthritis development in male DBA/1 mice which were injected with bovine collagen II (bCII) and human fibrinogen (hFib) on days 0 and 21, leading to stable and reproducible disease induction in 100% of immunized mice (FIA-CIA). In a second study, two bCII-derived peptides were given three times in the course of 6 weeks after FIA-CIA induction to test for impact on arthritis. Mice were scored weekly for arthritis and anti-citrullinated peptide antibodies (ACPAs) were determined in the sera taken on days 0, 14, 35, 56 and 84. Histology of the hind paws was performed at the end of the experiment. Intravenous administration of peptide 90578, a novel fructosylated peptide derived from the immunodominant T cell epitope of bCII, at a dosage of 1 mg/kg resulted in significant beneficial effects on clinical outcome parameters and on the arthritis histology scores which was sustained over 12 weeks. Survival tended to be improved in peptide 90578-treated mice. Intravenous administration of pure soluble peptide 90578 without adjuvants is a promising approach to treat RA, with treatment starting at a time when ACPAs are already present. The results complement existing data on peptide "vaccination" of healthy animals, or on treatment using recombinant peptide expressing virus or complex biological compounds.


Assuntos
Artrite Reumatoide/imunologia , Artrite/imunologia , Artrite/metabolismo , Epitopos de Linfócito T/química , Frutose/química , Peptídeos/química , Animais , Antígenos de Diferenciação de Linfócitos B , Autoimunidade , Bovinos , Citrulina/química , Colágeno Tipo II/química , Antígenos de Histocompatibilidade Classe II , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos DBA , Peptídeos Cíclicos
19.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385304

RESUMO

Inflammation, the body's primary defensive response system to injury and infection, is triggered by molecular signatures of microbes and tissue injury. These molecules also stimulate specialized sensory neurons, termed nociceptors. Activation of nociceptors mediates inflammation through antidromic release of neuropeptides into infected or injured tissue, producing neurogenic inflammation. Because HMGB1 is an important inflammatory mediator that is synthesized by neurons, we reasoned nociceptor release of HMGB1 might be a component of the neuroinflammatory response. In support of this possibility, we show here that transgenic nociceptors expressing channelrhodopsin-2 (ChR2) directly release HMGB1 in response to light stimulation. Additionally, HMGB1 expression in neurons was silenced by crossing synapsin-Cre (Syn-Cre) mice with floxed HMGB1 mice (HMGB1f/f). When these mice undergo sciatic nerve injury to activate neurogenic inflammation, they are protected from the development of cutaneous inflammation and allodynia as compared to wild-type controls. Syn-Cre/HMGB1fl/fl mice subjected to experimental collagen antibody-induced arthritis, a disease model in which nociceptor-dependent inflammation plays a significant pathological role, are protected from the development of allodynia and joint inflammation. Thus, nociceptor HMGB1 is required to mediate pain and inflammation during sciatic nerve injury and collagen antibody-induced arthritis.


Assuntos
Proteína HMGB1/metabolismo , Neurônios/fisiologia , Nociceptores/metabolismo , Animais , Anticorpos/imunologia , Artrite/induzido quimicamente , Células Cultivadas , Colágeno/imunologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Gânglios Espinais/citologia , Regulação da Expressão Gênica , Proteína HMGB1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Neuropatia Ciática/metabolismo
20.
Biomed Pharmacother ; 139: 111635, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34243601

RESUMO

This study aimed to evaluate the anti-inflammatory effect of Auraptene (AUR) and Umbelliprenin (UMB) in a rat model of rheumatoid arthritis (RA) induced by using complete Freund's adjuvant (CFA). Paw swelling of adjuvant arthritis rats measured at various times after CFA injection. Over 15 days of RA induction, mediator/cytokine-mediated processes involved in managing the regulation and resolving RA's inflammation were also quantified with ELISA. Histopathological changes were also assessed under a microscope 15 days after the CFA injection. AUR at all doses and UMB administration only at a 16 mM /kg administration dose significantly reduced CFA-induced paw edema level compared to the control group. UMB (64 and 32 mM) and AUR (64, 32, and 16 mM) could reduce the PGE2 (p < .0001-.01) and NO (p < .0001-.05) levels in the treatment groups compared to the negative control group. However, these compounds showed no significant effect on the TNF-α, IFN-γ, TGF-ß, IL-4, and IL-10 levels than the control group (p > .05). Unlike indomethacin and prednisolone, treatment of rats with AUR (16, 32, and 64 mM/kg) and UMB (16 and 32 mM/kg) reduced the level of IL-2 (p < .0001). In all treatment groups, the serum level of IL-17 was significantly reduced compared to the CFA group (p < .001-0.05). We suggested AUR and UMB could diminish inflammation by reducing the serum level of IL-17 and could be considered a proper alternative in the treatment of IL-17 related inflammatory diseases such as rheumatoid arthritis. Given that AUR and UMB apply their anti-inflammatory effects by changing distinct cytokine release/inhibition patterns, their potential application in diverse inflammatory diseases seems different.


Assuntos
Artrite/tratamento farmacológico , Cumarínicos/farmacologia , Adjuvante de Freund/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Substâncias Protetoras/farmacologia , Umbeliferonas/farmacologia , Administração Oral , Animais , Anti-Inflamatórios/farmacologia , Artrite/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Inflamação/metabolismo , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...