Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.961
Filtrar
1.
J Am Mosq Control Assoc ; 40(1): 32-49, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427588

RESUMO

The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.


Assuntos
Aedes , Wolbachia , Animais , Humanos , Controle de Mosquitos/métodos , Mosquitos Vetores , Insetos
2.
Arch Insect Biochem Physiol ; 115(3): e22102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500452

RESUMO

The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips Frankliniella occidentalis that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight F. occidentalis CP genes (FoCPs) were annotated in this study and they were classified into 10 distinct families, including 68 CPRs, 16 CPAP1s, 6 CPAP3s, 2 CPCFCs, 10 Tweedles, 4 CPFs, 16 CPLCPs, and 6 CPGs. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of F. occidentalis. Transcriptome analysis revealed more than 30% FoCPs were upregulated at least 1.5-fold when F. occidentalis was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of F. occidentalis CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.


Assuntos
Tisanópteros , Tospovirus , Animais , Insetos Vetores/genética , Insetos , Filogenia , Tisanópteros/genética , Tospovirus/genética
3.
BMC Genomics ; 25(1): 311, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532315

RESUMO

BACKGROUND: The Argentine stem weevil (ASW, Listronotus bonariensis) is a significant pasture pest in Aotearoa New Zealand, primarily controlled by the parasitoid biocontrol agent Microctonus hyperodae. Despite providing effective control of ASW soon after release, M. hyperodae parasitism rates have since declined significantly, with ASW hypothesised to have evolved resistance to its biocontrol agent. While the parasitism arsenal of M. hyperodae has previously been investigated, revealing many venom components and an exogenous novel DNA virus Microctonus hyperodae filamentous virus (MhFV), the effects of said arsenal on gene expression in ASW during parasitism have not been examined. In this study, we performed a multi-species transcriptomic analysis to investigate the biology of ASW parasitism by M. hyperodae, as well as the decline in efficacy of this biocontrol system. RESULTS: The transcriptomic response of ASW to parasitism by M. hyperodae involves modulation of the weevil's innate immune system, flight muscle components, and lipid and glucose metabolism. The multispecies approach also revealed continued expression of venom components in parasitised ASW, as well as the transmission of MhFV to weevils during parasitism and some interrupted parasitism attempts. Transcriptomics did not detect a clear indication of parasitoid avoidance or other mechanisms to explain biocontrol decline. CONCLUSIONS: This study has expanded our understanding of interactions between M. hyperodae and ASW in a biocontrol system of critical importance to Aotearoa-New Zealand's agricultural economy. Transmission of MhFV to ASW during successful and interrupted parasitism attempts may link to a premature mortality phenomenon in ASW, hypothesised to be a result of a toxin-antitoxin system. Further research into MhFV and its potential role in ASW premature mortality is required to explore whether manipulation of this viral infection has the potential to increase biocontrol efficacy in future.


Assuntos
Himenópteros , Vespas , Gorgulhos , Animais , Controle Biológico de Vetores , Insetos/genética , Himenópteros/genética , Gorgulhos/genética , Perfilação da Expressão Gênica , Vespas/genética , Interações Hospedeiro-Parasita
4.
Sci Total Environ ; 925: 171664, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508278

RESUMO

Grapevine leafroll-associated virus 3 (GLRaV-3) is the most prevalent and economically damaging virus in grapevines and is found on nearly all continents, except Antarctica. Ten mealybugs act as vector insects transmitting the GLRaV-3. Understanding the potential distribution range of vector insects under climate change is crucial for preventing and managing vector insects and controlling and delaying the spread of GLRaV-3. This study investigated the potential geographical range of insect vectors of GLRaV-3 worldwide using MaxEnt (maximum entropy) based on occurrence data under environmental variables. The potential distributions of these insects were projected for the 2030s, 2050s, 2070s, and 2090s under the three climate change scenarios. The results showed that the potential distribution range of most vector insects is concentrated in Southeastern North America, Europe, Asia, and Southeast Australia. Most vector insects contract their potential distribution ranges under climate-change conditions. The stacked model suggested that potential distribution hotspots of vector insects were present in Southeastern North America, Europe, Southeast Asia, and Southeast Australia. The potential distribution range of hotspots would shrink with climate change. These results provide important information for governmental decision-makers and farmers in developing control and management strategies against vector insects of GLRaV-3. They can also serve as references for studies on other insect vectors.


Assuntos
Closteroviridae , Vitis , Animais , Doenças das Plantas , Insetos , Insetos Vetores
5.
Curr Biol ; 34(6): 1194-1205.e7, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38367617

RESUMO

To detect and escape looming threats, night-flying insects must rely on other senses than vision alone. Nocturnal mosquitoes can evade looming objects in the dark, but how they achieve this is still unknown. Here, we show how night-active female malaria mosquitoes escape from rapidly looming objects that simulate defensive actions of blood-hosts. First, we quantified the escape performance of flying mosquitoes from an event-triggered mechanical swatter, showing that mosquitoes use swatter-induced airflow to increase their escape success. Secondly, we used high-speed videography and deep-learning-based tracking to analyze escape flights in detail, showing that mosquitoes use banked turns to evade the threat. By combining escape kinematics data with numerical simulations of attacker-induced airflow and a mechanistic movement model, we unraveled how mosquitoes control these banked evasive maneuvers: they actively steer away from the danger, and then passively travel with the bow wave produced by the attacker. Our results demonstrate that night-flying mosquitoes can detect looming objects when visual cues are minimal, suggesting that they use attacker-induced airflow both to detect the danger and as a fluid medium to move with away from the threat. This shows that escape strategies of flying insects are more complex than previous visually induced escape flight studies suggest. As most insects are of similar or smaller sizes than mosquitoes, comparable escape strategies are expected among millions of flying insect species. The here-observed escape maneuvers are distinct from those of mosquitoes escaping from odor-baited traps, thus providing new insights for the development of novel trapping techniques for integrative vector management.


Assuntos
Culicidae , Animais , Feminino , Mosquitos Vetores , Odorantes , Visão Ocular , Insetos
6.
J Sci Food Agric ; 104(7): 4383-4390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323469

RESUMO

BACKGROUND: A variety of environmental factors can disrupt biotic interactions between plants, insects and soil microorganisms with consequences for agricultural management and production. Many of these belowground interactions are mediated by volatile organic compounds (VOCs) which can be used for communication under appropriate environmental conditions. Behavioral responses to these compounds may likewise be dependent on varying soil conditions which are influenced by a changing climate. To determine how changing environmental conditions may affect VOC-mediated biotic interactions, we used a belowground system where entomopathogenic nematodes (EPNs) - tiny roundworm parasitoids of soil-borne insects - respond to VOCs by moving through the soil pore matrix. Specifically, we used two genera of EPNs - Heterorhabditis and Steinernema - that are known to respond to four specific terpenes - α-pinene, linalool, d-limonene and pregeijerene - released by the roots of plants in the presence of herbivores. We assessed the response of these nematodes to these terpenes under three moisture regimes to determine whether drier conditions or inundated conditions may influence the response behavior of these nematodes. RESULTS: Our results illustrate that the recovery rate of EPNs is positively associated with soil moisture concentration. As soil moisture concentration increases from 6% to 18%, substantially more nematodes are recovered from bioassays. In addition, we find that soil moisture influences EPN preference for VOCs, as illustrated in the variable response rates. Certain compounds shifted from acting as a repellent to acting as an attractant and vice versa depending on the soil moisture concentration. CONCLUSION: On a broad scale, we demonstrate that soil moisture has a significant effect on EPN host-seeking behavior. EPN efficacy as biological control agents could be affected by climate change projections that predict varying soil moisture concentrations. We recommend that maintaining nematodes as biological control agents is essential for sustainable agriculture development, as they significantly contribute not only to soil health but also to efficient pest management. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Nematoides , Solo , Animais , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos , Nematoides/fisiologia , Insetos , Terpenos
7.
Sci Rep ; 14(1): 2255, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355700

RESUMO

Development of advanced pest control methods that do not rely on insecticides is an important issue for sustainable agriculture. Particularly with regards to micro pests that are not only highly resistant to various insecticides but also because we are running out of options for which insecticide to use against them, resulting in enormous economic damage worldwide. Here we report that the effectiveness of the conventional insect net can be greatly advanced by changing their color to red that helps significantly reduce pesticide use. We demonstrate the red effect using Onion thrips, Thrips tabaci a main vector of Iris Yellow Spot Virus (IYSV) and Tomato Spotted Wilt Virus (TSWV) that cause serious damage to various vegetables. New red nets succeeded in suppressing the invasion rates and damages (white spots on the leaves) in a Welsh onion greenhouse with minimum use of pesticides. We discuss how red nets are compatible with labor-saving, sustainable agriculture and the future potential of "optical pest control" based on insect color vision and its behavioral response.


Assuntos
Inseticidas , Tisanópteros , Animais , Doenças das Plantas/prevenção & controle , Insetos Vetores , Insetos/fisiologia , Tisanópteros/fisiologia , Agricultura , Cebolas/fisiologia
8.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 473-484, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38369834

RESUMO

Adeno-associated virus (AAV) is one of the most frequently used viral vectors in the field of gene therapy. However, the industrial production of AAV is facing key bottlenecks such as low yield and high-cost. The aim of this study was to establish a technology system for production of AAV in the double virus infected insects by using multiple-gene deleted baculovirus. First, a multiple gene deleted baculovirus for AAV production was constructed, and the baculovirus titer and its effect on infected cells was examined. Subsequently, the insect cells were co-infected with the double baculovirus and the infection conditions were optimized. At the final stage, we performed AAV production based on optimized conditions, and evaluated relevant parameters including production titer and quality. The results showed that the titer of AAV produced in the multiple gene deleted baculovirus was not different from that of the wild type, but the rate of cell death was significantly slower upon infection. Using the double virus route for optimized production of AAV, the genome titers were 1.63×1011 VG/mL for Bac4.0-1 and 1.02×1011 VG/mL for Bac5.0-2, which were elevated 240% and 110%, respectively, compared with that of the wild-type. Electron microscopy observations revealed that all three groups exhibited normal AAV viral morphology and they showed similar transduction activity. Taken together, we developed an AAV production system based on the infection of insect cells using multiple-gene deleted baculovirus, which significantly improved the virus yield and showed application potential.


Assuntos
Baculoviridae , Dependovirus , Animais , Dependovirus/genética , Dependovirus/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Linhagem Celular , Vetores Genéticos , Insetos/genética
9.
PLoS Pathog ; 20(1): e1011823, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236820

RESUMO

A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.


Assuntos
Bacillus thuringiensis , Praguicidas , Animais , Bacillus thuringiensis/genética , Janus Quinases/genética , Tirosina , Endotoxinas/genética , Insetos , Spodoptera/genética , Larva , Praguicidas/farmacologia , Regeneração , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Controle Biológico de Vetores/métodos
10.
Virology ; 589: 109949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041992

RESUMO

In this century, a disease caused by southern rice black-streaked dwarf virus (SRBSDV) has resulted in significant loss in rice production in Asia. Aside from infecting rice plants, SRBSDV is transmitted by white-backed planthopper (WBPH) in a persistent propagative manner. Recent studies showed that SRBSDV can dynamically modulate the host cells throughout the infection progress. However, the expression dynamics of the SRBSDV genes during infection remain unclear. Here we established an absolute real-time quantitative PCR method to assess the dynamic of the SRBSDV genes expression in rice plants and planthoppers. Apart from displaying the expression levels of viral genes, we discovered that the expression level of viral genes in insects significantly surpasses that in plant cells. In addition, we identified two nonstructural proteins with unknown functions that exhibit the highest expression levels in plant and insect cells, respectively, which provide possible targets for restraining the disease outbreaks.


Assuntos
Hemípteros , Oryza , Reoviridae , Animais , Insetos Vetores , Doenças das Plantas , Insetos , Reoviridae/genética , Reoviridae/metabolismo , Expressão Gênica
11.
Toxicon ; 238: 107588, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147939

RESUMO

Pest insects pose a heavy burden on global agricultural industries with small molecule insecticides being predominantly used for their control. Unwanted side effects and resistance development plagues most small molecule insecticides such as the neonicotinoids, which have been reported to be harmful to honeybees. Bioinsecticides like Bacillus thuringiensis (Bt) toxins can be used as environmentally-friendly alternatives. Arachnid venoms comprise another promising source of bioinsecticides, containing a multitude of selective and potent insecticidal toxins. Unfortunately, no standardised insect models are currently available to assess the suitability of insecticidal agents under laboratory conditions. Thus, we aimed to develop a laboratory model that closely mimics field conditions by employing a leaf disk assay (LDA) for oral application of insecticidal agents in a bioassay tray format. Neonate larvae of the cotton bollworm (Helicoverpa armigera) were fed with soybean (Glycine max) leaves that were treated with different insecticidal agents. We observed dose-dependent insecticidal effects for Bt toxin and the neonicotinoid insecticide imidacloprid, with imidacloprid exhibiting a faster response. Furthermore, we identified several insecticidal arachnid venoms that were active when co-applied with sub-lethal doses of Bt toxin. We propose the H. armigera LDA as a suitable tool for assessing the insecticidal effects of insecticidal agents against lepidopterans.


Assuntos
Venenos de Artrópodes , Bacillus thuringiensis , Inseticidas , Mariposas , Neonicotinoides , Nitrocompostos , Toxinas Biológicas , Humanos , Recém-Nascido , Animais , Inseticidas/toxicidade , Soja , 60627 , Toxinas de Bacillus thuringiensis/farmacologia , Larva , Insetos , Toxinas Biológicas/farmacologia , Venenos de Artrópodes/farmacologia , Bioensaio , Folhas de Planta , Proteínas de Bactérias/farmacologia , Proteínas Hemolisinas/toxicidade , Endotoxinas , Controle Biológico de Vetores , Resistência a Inseticidas
12.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069212

RESUMO

Plant diseases and insect pest damage cause tremendous losses in forestry and fruit tree production. Even though chemical pesticides have been effective in the control of plant diseases and insect pests for several decades, they are increasingly becoming undesirable due to their toxic residues that affect human life, animals, and the environment, as well as the growing challenge of pesticide resistance. In this study, we review the potential of hydrolytic enzymes from Bacillus species such as chitinases, ß-1,3-glucanases, proteases, lipases, amylases, and cellulases in the biological control of phytopathogens and insect pests, which could be a more sustainable alternative to chemical pesticides. This study highlights the application potential of the hydrolytic enzymes from different Bacillus sp. as effective biocontrol alternatives against phytopathogens/insect pests through the degradation of cell wall/insect cuticles, which are mainly composed of structural polysaccharides like chitins, ß-glucans, glycoproteins, and lipids. This study demonstrates the prospects for applying hydrolytic enzymes from Bacillus sp. as effective biopesticides in forest and fruit tree production, their mode of biocidal activity and dual antimicrobial/insecticidal potential, which indicates a great prospect for the simultaneous biocontrol of pests/diseases. Further research should focus on optimizing the production of hydrolytic enzymes, and the antimicrobial/insecticidal synergism of different Bacillus sp. which could facilitate the simultaneous biocontrol of pests and diseases in forest and fruit tree production.


Assuntos
Anti-Infecciosos , Bacillus , Inseticidas , Praguicidas , Animais , Florestas , Frutas , Insetos , Controle Biológico de Vetores/métodos , Árvores
13.
PLoS One ; 18(12): e0295980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134026

RESUMO

Parasitoid wasps are increasingly being used to control insect pest populations, where the pest is the host species parasitized by the wasp. Here we use the discrete-time formalism of the Nicholson-Bailey model to investigate a fundamental question-are there limits to parasitoid-driven suppression of the host population density while still ensuring a stable coexistence of both species? Our model formulation imposes an intrinsic self-limitation in the host's growth resulting in a carrying capacity in the absence of the parasitoid. Different versions of the model are considered with parasitism occurring at a developmental stage that is before, during, or after the growth-limiting stage. For example, the host's growth limitation may occur at its larval stage due to intraspecific competition, while the wasps attack either the host egg, larval or pupal stage. For slow-growing hosts, models with parasitism occurring at different life stages are identical in terms of their host suppression dynamics but have contrasting differences for fast-growing hosts. In the latter case, our analysis reveals that wasp parasitism occurring after host growth limitation yields the lowest pest population density conditioned on stable host-parasitoid coexistence. For ecologically relevant parameter regimes we estimate this host suppression to be roughly 10-20% of the parasitoid-free carrying capacity. We further expand the models to consider a fraction of hosts protected from parasitism (i.e., a host refuge). Our results show that for a given host reproduction rate there exists a critical value of protected host fraction beyond which, the system dynamics are stable even for high levels of parasitism that drive the host to arbitrary low population densities. In summary, our systematic analysis sheds key insights into the combined effects of density-dependence in host growth and parasitism refuge in stabilizing the host-parasitoid population dynamics with important implications for biological control.


Assuntos
Vespas , Animais , Insetos , Larva , Densidade Demográfica , Simbiose , Interações Hospedeiro-Parasita , Controle Biológico de Vetores
14.
Am J Trop Med Hyg ; 109(6): 1372-1379, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931314

RESUMO

Vector-borne diseases continue to impose a major health burden on Peru and neighboring countries. The challenge of addressing vector-borne disease is compounded by changing social, economic, and climatic conditions. Peri-urban Arequipa is an important region to study insect infestations because of ongoing challenges with disease vectors such as triatomines and a variety of other insects. We conducted surveys (N = 1,182) and seven focus groups (average seven participants) in peri-urban Arequipa to explore knowledge of and perception toward various insects that infest the region. Focus group participants reported the presence of a wide variety of insects in and around the home, including disease vectors such as triatomines (also identified by 27.2% of survey households), mosquitoes, spiders, and bed bugs, as well as nuisance insects. Health concerns related to insects included vector-borne diseases, spider bites, allergies, and sequelae from bed bug bites, and hygiene concerns. A majority of participants in the quantitative surveys identified triatomines as the insect they were most worried about (69.9%) and could identify Chagas disease as a health risk associated with triatomines (54.9%). Insect infestations in peri-urban Arequipa present multiple burdens to residents, including injury and illness from triatomines and other insects, as well as potential mental and economic concerns related to insects such as bed bugs. Future initiatives should continue to address triatomine infestations through educational outreach and implement a more holistic approach to address the burden of both disease and nuisance insects.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Humanos , Peru/epidemiologia , Mosquitos Vetores , Doença de Chagas/epidemiologia , Insetos
15.
J Invertebr Pathol ; 201: 108020, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956858

RESUMO

Bacillus thuringiensis (Bt) is an entomopathogenic bacterium that produces crystalline (Cry and Cyt) and soluble (vegetative insecticidal proteins or Vips) proteins during the sporulation and vegetative growth phases, respectively. Combining Cry and Vip proteins could delay insect resistance development and exhibit synergistic activity against various insect pests. This study aims to screen Bt isolates collected from Thailand for high Vip3A and Cry protein production levels and high thermostability to control Spodoptera spp. Among the selected Bt isolates with high target protein synthesis, Bt isolate 506 was found to be safe for further biopesticide formulation due to the absence of non-specific metabolite, as determined by the detection of thermo-stable ß-exotoxin I based on biological assays and PCR analysis. Bt isolate 506 showed the presence of Cry1A, Cry2A, and Vip3A-type proteins identified as Cry1Aa45, Cry2Aa22, and Vip3A87, respectively. The insecticidal activity of whole culture extracts containing Vip3A and Cry mixtures and culture supernatants containing secreted Vip3A protein was evaluated against the second-instar larvae of S. exigua and S. frugiperda. The Bt isolate 506 showed high toxicity against both insects, and the insecticidal proteins produced by this isolate retained their activity after heating at 50 °C. This Bt isolate is a promising candidate for further development as a biopesticide against lepidopteran pests.


Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/metabolismo , Spodoptera/metabolismo , Agentes de Controle Biológico/metabolismo , Proteínas de Bactérias/metabolismo , Inseticidas/farmacologia , Insetos , Larva/metabolismo , Proteínas Hemolisinas/metabolismo , Controle Biológico de Vetores , Endotoxinas/metabolismo
16.
BMC Biol ; 21(1): 274, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012718

RESUMO

BACKGROUND: Aedes aegypti (Ae. aegypti) is the major vector that transmits many diseases including dengue, Zika, and filariasis in tropical and subtropical regions. Due to the growing resistance to chemical-based insecticides, biological control methods have become an emerging direction to control mosquito populations. The sterile insect technique (SIT) deploys high doses of ionizing radiation to sterilize male mosquitoes before the release. The Wolbachia-based population suppression method of the incompatible insect technique (IIT) involves the release of Wolbachia-infected males to sterilize uninfected field females. Due to the lack of perfect sex separation tools, a low percentage of female contamination is detected in the male population. To prevent the unintentional release of these Wolbachia-infected females which might result in population replacement, a low dose of X-ray irradiation is deployed to sterilize any female escapees. However, it remains unclear whether these irradiation-induced male and female sterilizations share common mechanisms. RESULTS: In this work, we set out to define the minimum dose of X-ray radiation required for complete female sterilization in Ae. aegypti (NEA-EHI strain). Further results showed that this minimum dose of X-ray irradiation for female sterilization significantly reduced male fertility. Similar results have been reported previously in several operational trials. By addressing the underlying causes of the sterility, our results showed that male sterility is likely due to chromosomal damage in the germ cells induced by irradiation. In contrast, female sterility appears to differ and is likely initiated by the elimination of the somatic supporting cells, which results in the blockage of the ovariole maturation. Building upon these findings, we identified the minimum dose of X-ray irradiation on the Wolbachia-infected NEA-EHI (wAlbB-SG) strain, which is currently being used in the IIT-SIT field trial. Compared to the uninfected parental strain, a lower irradiation dose could fully sterilize wAlbB-SG females. This suggests that Wolbachia-carrying mosquitoes are more sensitive to irradiation, consistent with a previous report showing that a lower irradiation dose fully sterilized Wolbachia-infected Ae. aegypti females (Brazil and Mexican strains) compared to those uninfected controls. CONCLUSIONS: Our findings thus reveal the distinct mechanisms of ionizing X-ray irradiation-induced male or female sterility in Ae. aegypti mosquitoes, which may help the design of X-ray irradiation-based vector control methods.


Assuntos
Aedes , Infertilidade Feminina , Wolbachia , Infecção por Zika virus , Zika virus , Humanos , Animais , Masculino , Feminino , Raios X , Mosquitos Vetores , Controle de Mosquitos/métodos , Insetos
17.
Rev Saude Publica ; 57: 57, 2023.
Artigo em Inglês, Português | MEDLINE | ID: mdl-37878843

RESUMO

The Department of Hygiene of the Faculty of Medicine of São Paulo (FMUSP), organized with the support of the Rockefeller Foundation, became the Institute of Hygiene, with the inaugural class taught by Samuel Darling in 1918. The history of Public Health Entomology is mixed with that of the Institute itself, which became the Faculty of Hygiene and Public Health in 1945. Still in the 1930s, Paulo César de Azevedo Antunes and John Lane organized Public Health Entomology within the Medical Parasitology area of the then Institute of Hygiene. During this period, the entomology laboratory came to be recognized for its research in the systematics of hematophagous insects, as well as in the ecology, biology and behavior of vectors. The Entomological Reference Collection (CER) originated naturally from the research of Paulo César Antunes and John Lane and is a national and international heritage covering primary and secondary types of insect species that are of interest to public health. Over the years, it has been consolidated with the efforts of Augusto Ayroza Galvão, Renato Corrêa, José Coutinho, Nelson Cerqueira, Ernesto Rabello, Oswaldo Forattini and others. In its over eighty years of activities, CER has enabled the training of several scientists able to act in programs of surveillance and control of endemic diseases associated with insect vectors throughout Latin America, in addition to training taxonomists focused on insects of interest in Public Health. Researchers from other Brazilian institutes and abroad joined the entomology laboratory because of its importance and the research developed in it. The growing scientific production made it possible for entomological studies developed at the Faculty of Public Health (FSP) to gain international visibility, contributing to the development of disease prevention and epidemic control actions in the country.


Assuntos
Insetos Vetores , Saúde Pública , Animais , Humanos , Brasil , Entomologia , Doenças Endêmicas , Insetos
18.
PLoS One ; 18(9): e0292254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37773932

RESUMO

The use of pheromone traps can minimize the excess application of synthetic insecticides, while can also benefit the environment. The use of pheromone traps has been promoted and suggested to vegetable farmers of Bangladesh for widespread adoption. However, the majority of farmers have continued to spray insecticides instead of using pheromone traps. The present study investigated the factors influencing farmers' adoption, dis-adoption, and non-adoption behavior of pheromone traps for managing insect pests. Primary data were collected from 438 vegetable growers. Data were analyzed using descriptive statistics and multinomial logistic regression. About 27% of the farmers abandoned the technique shortly after it was adopted as it was time-consuming to manage insect pests. Marginal effect analysis revealed that the likelihood of continued adoption was 34.6% higher for farmers who perceived that pheromone traps were useful in controlling insect pests. In contrast, the likelihood of dis-adoption was 16.5% and 10.4% higher for farmers who maintained communication with private pesticide company agents and neighbor farmers, respectively. Extension services by government extension personnel might be encouraged and maintained as a key component in increasing farmer awareness regarding the use of pheromone trap. Strategies to promote pheromone traps in vegetable production should highlight the positive impacts to farmers and the environment, as this would most likely lead to their continued and widespread use after initial adoption.


Assuntos
Inseticidas , Animais , Humanos , Inseticidas/farmacologia , Fazendeiros , Verduras , Feromônios/farmacologia , Insetos , Controle Biológico de Vetores , Agricultura
19.
Transgenic Res ; 32(5): 351-381, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573273

RESUMO

Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.


Assuntos
Bacillus thuringiensis , Quitinases , Inseticidas , Animais , Humanos , Insetos/genética , Inseticidas/metabolismo , Transgenes , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Lectinas/genética , Quitinases/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Controle Biológico de Vetores
20.
PLoS Pathog ; 19(8): e1011588, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651317

RESUMO

Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.


Assuntos
Vírus de Insetos , Animais , Ecologia , Vetores Genéticos , Genômica , Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...