Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.229
Filtrar
1.
Science ; 384(6693): eadl2016, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38635718

RESUMO

Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.


Assuntos
Doenças Transmissíveis , Interferon gama , Humanos , Interferon gama/metabolismo , Interferons
2.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589444

RESUMO

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferons , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
3.
Scand J Rheumatol ; 53(3): 207-216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38505972

RESUMO

OBJECTIVE: Immunoglobulin G (IgG) autoantibodies in systemic lupus erythematosus (SLE) are considered pathogenic, whereas immunoglobulin M (IgM) autoantibodies may have protective effects. The aim of this study was to identify whether IgG/IgM autoantibody ratios differ between patients with incomplete systemic lupus erythematosus (iSLE), patients with SLE, and healthy controls (HCs), and whether IgG/IgM autoantibody ratios relate to progression from iSLE to SLE. METHOD: This prospective cohort study included 34 iSLE patients, 41 SLE patients, and 11 HCs. IgG and IgM anti-dsDNA, anti-Ro52, and anti-Ro60 were measured by fluoro-enzyme immunoassay in serum samples obtained at baseline in all groups and in follow-up samples of up to 5 years for iSLE patients. Correlations between IgG/IgM autoantibody ratios, interferon signature, and clinical parameters were also assessed. RESULTS: At baseline, IgG anti-dsDNA, anti-Ro52, anti-Ro60, and IgM anti-dsDNA were elevated in iSLE and SLE patients. IgG/IgM anti-dsDNA and anti-Ro52 ratios were similar between groups, while IgG/IgM anti-Ro60 ratios were significantly elevated in iSLE and SLE patients compared to HCs. IgG/IgM autoantibody ratios were not correlated with interferon signature or clinical parameters. IgG/IgM ratios at baseline were similar and remained relatively stable during a median follow-up of 18 months in non-progressors and six iSLE patients who progressed to SLE. CONCLUSION: IgG anti-dsDNA, anti-Ro52, anti-Ro60, and IgM anti-dsDNA were elevated in iSLE and SLE patients, which was not apparent from the respective IgG/IgM ratios only. IgG/IgM autoantibody ratios remained relatively stable over up to 5 years in iSLE non-progressors and six patients who progressed to SLE.


Assuntos
Autoanticorpos , Lúpus Eritematoso Sistêmico , Humanos , Imunoglobulina M , Imunoglobulina G , Estudos Prospectivos , Interferons
4.
BMC Cancer ; 24(1): 395, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549061

RESUMO

BACKGROUND: Although immune cell therapy has long been used for treating solid cancer, its efficacy remains limited. Interferon (IFN)-producing killer dendritic cells (IKDCs) exhibit cytotoxicity and present antigens to relevant cells; thus, they can selectively induce tumor-associated antigen (TAA)-specific CD8 T cells and may be useful in cancer treatment. Various protocols have been used to amplify human IKDCs from peripheral sources, but the complexity of the process has prevented their widespread clinical application. Additionally, the induction of TAA-specific CD8 T cells through the adoptive transfer of IKDCs to immunocompromised patients with cancer may be insufficient. Therefore, we developed a method for generating an immune cell-based regimen, Phyduxon-T, comprising a human IKDC counterpart (Phyduxon) and expanded TAA-specific CD8 T cells. METHODS: Peripheral blood mononuclear cells from ovarian cancer patients were cultured with human interleukin (hIL)-15, hIL-12, and hIL-18 to generate Phyduxon-T. Then, its phenotype, cytotoxicity, and antigen-presenting function were evaluated through flow cytometry using specific monoclonal antibodies. RESULTS: Phyduxon exhibited the characteristics of both natural killer and dendritic cells. This regimen also exhibited cytotoxicity against primary ovarian cancer cells and presented TAAs, thereby inducing TAA-specific CD8 T cells, as evidenced by the expression of 4-1BB and IFN-γ. Notably, the Phyduxon-T manufacturing protocol effectively expanded IFN-γ-producing 4-1BB+ TAA-specific CD8 T cells from peripheral sources; these cells exhibited cytotoxic activities against ovarian cancer cells. CONCLUSIONS: Phyduxon-T, which is a combination of natural killer cells, dendritic cells, and TAA-specific CD8 T cells, may enhance the efficacy of cancer immunotherapy.


Assuntos
Neoplasias Ovarianas , Linfócitos T Citotóxicos , Feminino , Humanos , Interferons/metabolismo , Interferon gama/metabolismo , Leucócitos Mononucleares/metabolismo , Células Matadoras Naturais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antígenos de Neoplasias , Neoplasias Ovarianas/metabolismo , Células Dendríticas
5.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396843

RESUMO

The ORF6 protein of the SARS-CoV-2 virus plays a crucial role in blocking the innate immune response of the infected cells by inhibiting interferon pathways. Additionally, it binds to and immobilises the RAE1 protein on the cytoplasmic membranes, thereby blocking mRNA transport from the nucleus to the cytoplasm. In all these cases, the host cell proteins are tethered by the flexible C-terminus of ORF6. A possible strategy to inhibit the biological activity of ORF6 is to bind its C-terminus with suitable ligands. Our in silico experiments suggest that hIFNγ binds the ORF6 protein with high affinity, thus impairing its interactions with RAE1 and, consequently, its activity in viral invasion. The in vitro studies reported here reveal a shift of the localisation of RAE1 in ORF6 overexpressing cells upon treatment with hIFNγ from predominantly cytoplasmic to mainly nuclear, resulting in the restoration of the export of mRNA from the nucleus. We also explored the expression of GFP in transfected-with-ORF6 cells by means of fluorescence microscopy and qRT-PCR, finding that treatment with hIFNγ unblocks the mRNA trafficking and reinstates the GFP expression level. The ability of the cytokine to block ORF6 is also reflected in minimising its negative effects on DNA replication by reducing accumulated RNA-DNA hybrids. Our results, therefore, suggest hIFNγ as a promising inhibitor of the most toxic SARS-CoV-2 protein.


Assuntos
COVID-19 , Interferon gama , SARS-CoV-2 , Humanos , Interferon gama/farmacologia , Interferons/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/metabolismo
6.
Diabetologia ; 67(5): 908-927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409439

RESUMO

AIMS/HYPOTHESIS: The proinflammatory cytokines IFN-α, IFN-γ, IL-1ß and TNF-α may contribute to innate and adaptive immune responses during insulitis in type 1 diabetes and therefore represent attractive therapeutic targets to protect beta cells. However, the specific role of each of these cytokines individually on pancreatic beta cells remains unknown. METHODS: We used deep RNA-seq analysis, followed by extensive confirmation experiments based on reverse transcription-quantitative PCR (RT-qPCR), western blot, histology and use of siRNAs, to characterise the response of human pancreatic beta cells to each cytokine individually and compared the signatures obtained with those present in islets of individuals affected by type 1 diabetes. RESULTS: IFN-α and IFN-γ had a greater impact on the beta cell transcriptome when compared with IL-1ß and TNF-α. The IFN-induced gene signatures have a strong correlation with those observed in beta cells from individuals with type 1 diabetes, and the level of expression of specific IFN-stimulated genes is positively correlated with proteins present in islets of these individuals, regulating beta cell responses to 'danger signals' such as viral infections. Zinc finger NFX1-type containing 1 (ZNFX1), a double-stranded RNA sensor, was identified as highly induced by IFNs and shown to play a key role in the antiviral response in beta cells. CONCLUSIONS/INTERPRETATION: These data suggest that IFN-α and IFN-γ are key cytokines at the islet level in human type 1 diabetes, contributing to the triggering and amplification of autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Interferons/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interferon gama/metabolismo , Ilhotas Pancreáticas/metabolismo
7.
FEBS Open Bio ; 14(4): 532-544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321830

RESUMO

Unlike mammals, fish express two type II interferons, IFNγ and fish-specific IFNγ (IFNγ-related or IFNγrel). We previously reported the presence of two IFNγrel genes, IFNγrel 1 and IFNγrel 2, which exhibit potent antiviral activity in the Ginbuna crucian carp, Carassius auratus langsdorfii. We also found that IFNγrel 1 increased allograft rejection; however, the IFNγrel 1 receptor(s) and signaling pathways underlying this process have not yet been elucidated. In this study, we examined the unique signaling mechanism of IFNγrel 1 and its receptors. The phosphorylation and transcriptional activation of STAT6 in response to recombinant Ginbuna IFNγrel 1 (rgIFNγrel 1) was observed in Ginbuna-derived cells. Binding of rgIFNγrel 1 to Class II cytokine receptor family members (Crfbs), Crfb5 and Crfb17, which are also known as IFNAR1 and IFNGR1-1, respectively, was detected by flow cytometry. Expression of the IFNγrel 1-inducible antiviral gene, Isg15, was highest in Crfb5- and Crfb17-overexpressing GTS9 cells. Dimerization of Crfb5 and Crfb17 was detected by chemical crosslinking. The results indicate that IFNγrel 1 activates Stat6 through an interaction with unique pairs of receptors, Crfb5 and Crfb17. Indeed, this cascade is distinct from not only that of IFNγ but also that of known IFNs in other vertebrates. IFNs may be classified by their receptor and signal transduction pathways. Taken together, IFNγrel 1 may be classified as a novel type of IFN family member in vertebrates. Our findings provide important information on interferon gene evolution in bony fish.


Assuntos
Carpas , Interferon gama , Animais , Interferon gama/metabolismo , Interferons , Carpas/metabolismo , Transdução de Sinais , Antivirais , Mamíferos
8.
Front Immunol ; 15: 1356216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384452

RESUMO

Interferons (IFNs) are a family of cytokines with diverse functions in host resistance to pathogens and in immune regulation. Type II IFN, i.e. IFN-γ, is widely recognized as a major mediator of resistance to intracellular pathogens, including the protozoan Toxoplasma gondii. More recently, IFN-α/ß, i.e. type I IFNs, and IFN-λ (type III IFN) have been identified to also play important roles during T. gondii infections. This parasite is a widespread pathogen of humans and animals, and it is a model organism to study cell-mediated immune responses to intracellular infection. Its success depends, among other factors, on the ability to counteract the IFN system, both at the level of IFN-mediated gene expression and at the level of IFN-regulated effector molecules. Here, I review recent advances in our understanding of the molecular mechanisms underlying IFN-mediated host resistance and immune regulation during T. gondii infections. I also discuss those mechanisms that T. gondii has evolved to efficiently evade IFN-mediated immunity. Knowledge of these fascinating host-parasite interactions and their underlying signalling machineries is crucial for a deeper understanding of the pathogenesis of toxoplasmosis, and it might also identify potential targets of parasite-directed or host-directed supportive therapies to combat the parasite more effectively.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Humanos , Animais , Interferons , Evasão da Resposta Imune , Interferon gama
9.
Mycoses ; 67(1): e13680, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214420

RESUMO

CIITA, a member of NOD-like receptor (NLR) family, is the major MHC II trans-activator and mediator of Th1 immunity, but its function and interaction with NLRP3 have been little studied. We found activation of NLRP3 inflammasome, increased expression of CIITA, CBP, pSTAT1, STAT1, MHC II, IFN-γ and IFN-γ-inducible chemokines (CCL1 and CXCL8), and colocalisation of NLRP3 with CIITA in Malassezia folliculitis lesions, Malassezia globosa-infected HaCaT cells and mouse skin. CoIP with anti-CIITA or anti-NLRP3 antibody pulled down NLRP3 or both CIITA and ASC. NLRP3 silencing or knockout caused CIITA downexpression and their colocalisation disappearance in HaCaT cells and mouse skin of Nlrp3-/- mice, while CIITA knockdown had no effect on NLRP3, ASC, IL-1ß and IL-18 expression. NLRP3 inflammasome inhibitors and knockdown significantly suppressed IFN-γ, CCL1, CXCL8 and CXCL10 levels in M. globosa-infected HaCaT cells. CCL1 and CXCL8 expression was elevated in Malassezia folliculitis lesions and reduced in Nlrp3-/- mice. These results demonstrate that M. globosa can activate NLRP3 inflammasome, CIITA/MHC II signalling and IFN-γ-inducible chemokines in human keratinocytes and mouse skin. NLRP3 may regulate CIITA by their binding and trigger Th1 immunity by secreting CCL1 and CXCL8/IL-8, contributing to the pathogenesis of Malassezia-associated skin diseases.


Assuntos
Quimiocinas C , Foliculite , Malassezia , Humanos , Camundongos , Animais , Interferon gama , Interferons , Antígenos de Histocompatibilidade Classe II/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos , Regiões Promotoras Genéticas , Transativadores/genética , Transativadores/metabolismo , Quimiocinas/genética , Queratinócitos
10.
Fish Shellfish Immunol ; 145: 109292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145783

RESUMO

Type II interferons (IFNs) exert antiviral functions by binding to receptors and activating downstream signaling pathways. However, our understanding of the antiviral functions and the receptor complex model of type II IFNs in teleost fish remains limited. In this study, we determined the functions of type II IFNs (LmIFN-γ and LmIFN-γrel) in Lateolabrax maculatus and assessed their antiviral ability mediated by their combination with different cytokine receptor family B members (LmCRFB6, LmCRFB13, and LmCRFB17). After infection with largemouth bass ulcer syndrome virus (LBUSV), the expression levels of LmIFNs and LmCRFBs increased significantly in vitro and in vivo. Incubation or injection with LmIFNs-His activated the expressions of LmISG15, LmMx, and LmIRF1. LmIFN-γ and LmIFN-γrel both bound to the extracellular domains of the three CRFBs via Pull-down. Furthermore, LmIFN-γ combined with LmCRFB6, LmCRFB6+LmCRFB13, and LmCRFB6+LmCRFB13+LmCRFB17 and LmIFN-γrel combined with all combinations containing LmCRFB17 induced the transcription of downstream genes and reduced the number of LBUSV copies. Therefore, type II IFNs (LmIFN-γ and LmIFN-γrel) contribute to enhanced antiviral immunity in L. maculatus and that ligand-receptor combinations effectively suppress virus replication. These findings provide a reference for future studies of the signal transduction mechanism of type II IFNs in teleost fish.


Assuntos
Bass , Vírus , Animais , Interferon gama/genética , Bass/metabolismo , Transdução de Sinais , Interferons
11.
mSphere ; 8(6): e0051123, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37975677

RESUMO

IMPORTANCE: Toxoplasma gondii (Tg) is a ubiquitous parasitic pathogen, infecting about one-third of the global population. Tg is controlled in immunocompetent people by mechanisms that are not fully understood. Tg infection drives the production of the inflammatory cytokine interferon gamma (IFNγ), which upregulates intracellular anti-pathogen defense pathways. In this study, we describe host proteins p97/VCP, UBXD1, and ANKRD13A that control Tg at the parasitophorous vacuole (PV) in IFNγ-stimulated endothelial cells. p97/VCP is an ATPase that interacts with a network of cofactors and is active in a wide range of ubiquitin-dependent cellular processes. We demonstrate that PV ubiquitination is a pre-requisite for recruitment of these host defense proteins, and their deposition directs Tg PVs to acidification in endothelial cells. We show that p97/VCP universally targets PVs in human cells and restricts Tg in different human cell types. Overall, these findings reveal new players of intracellular host defense of a vacuolated pathogen.


Assuntos
Parasitos , Toxoplasma , Animais , Humanos , Toxoplasma/metabolismo , Interferons/metabolismo , Vacúolos/metabolismo , Células Endoteliais , Interferon gama , Proteína com Valosina/metabolismo
13.
Viruses ; 15(10)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896854

RESUMO

Ebola virus disease (EVD) represents a global health threat. The etiological agents of EVD are six species of Orthoebolaviruses, with Orthoebolavirus zairense (EBOV) having the greatest public health and medical significance. EVD pathogenesis occurs as a result of broad cellular tropism of the virus, robust viral replication and a potent and dysregulated production of cytokines. In vivo, tissue macrophages are some of the earliest cells infected and contribute significantly to virus load and cytokine production. While EBOV is known to infect macrophages and to generate high titer virus in the liver, EBOV infection of liver macrophages, Kupffer cells, has not previously been examined in tissue culture or experimentally manipulated in vivo. Here, we employed primary murine Kupffer cells (KC) and an immortalized murine Kupffer cell line (ImKC) to assess EBOV-eGFP replication in liver macrophages. KCs and ImKCs were highly permissive for EBOV infection and IFN-γ polarization of these cells suppressed their permissiveness to infection. The kinetics of IFN-γ-elicited antiviral responses were examined using a biologically contained model of EBOV infection termed EBOV ΔVP30. The antiviral activity of IFN-γ was transient, but a modest ~3-fold reduction of infection persisted for as long as 6 days post-treatment. To assess the interferon-stimulated gene products (ISGs) responsible for protection, the efficacy of secreted ISGs induced by IFN-γ was evaluated and secreted ISGs failed to block EBOV ΔVP30. Our studies define new cellular tools for the study of EBOV infection that can potentially aid the development of new antiviral therapies. Furthermore, our data underscore the importance of macrophages in EVD pathogenesis and those IFN-γ-elicited ISGs that help to control EBOV infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Interferon gama/farmacologia , Células de Kupffer , Ebolavirus/genética , Interferons/farmacologia , Antivirais/farmacologia
14.
Am J Pathol ; 193(9): 1170-1184, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263343

RESUMO

Brucellosis is a globally significant zoonotic disease. Human patients with brucellosis develop recurrent fever and focal complications, including arthritis and neurobrucellosis. The current study investigated the role of innate lymphoid cells (ILCs) in the pathogenesis of focal brucellosis caused by Brucella melitensis. After footpad infection, natural killer cells and ILC1 cells both limited joint colonization by Brucella. Mice lacking natural killer cells, and in particular mice lacking all ILCs, also developed marked arthritis after footpad infection. Following pulmonary infection, mice lacking adaptive immune cells and ILCs developed arthritis, neurologic complications, and meningitis. Adaptive immune cells and ILCs both limited colonization of the brain by Brucella following pulmonary infection. Transcriptional analysis of Brucella-infected brains revealed marked up-regulation of genes associated with inflammation and interferon responses, as well as down-regulation of genes associated with neurologic function. Type II interferon deficiency resulted in colonization of the brain by Brucella, but mice lacking both type I and type II interferon signaling more rapidly developed clinical signs of neurobrucellosis, exhibited hippocampal neuronal loss, and had higher levels of Brucella in their brains than mice lacking type II interferon signaling alone. Collectively, these findings indicate ILCs and interferons play an important role in prevention of focal complications during Brucella infection, and that mice with deficiencies in ILCs or interferons can be used to study pathogenesis of neurobrucellosis.


Assuntos
Artrite , Brucelose , Humanos , Animais , Camundongos , Interferons , Interferon gama , Imunidade Inata , Linfócitos/patologia , Brucelose/complicações , Brucelose/prevenção & controle , Artrite/complicações
15.
Mol Neurobiol ; 60(8): 4679-4692, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37140843

RESUMO

Neuroinflammatory responses to neurotoxic manganese (Mn) in CNS have been associated with the Mn-induced Parkinson-like syndromes. However, the framework of molecular mechanisms contributing to manganism is still unclear. Using an in vitro neuroinflammation model based on the insulated signaling pathway reporter transposon constructs stably transfected into a murine BV-2 microglia line, we tested effects of manganese (II) together with a set of 12 metal salts on the transcriptional activities of the NF-κB, activator protein-1 (AP-1), signal transducer and activator of transcription 1 (STAT1), STAT1/STAT2, STAT3, Nrf2, and metal-responsive transcription factor-1 (MTF-1) via luciferase assay, while concatenated destabilized green fluorescent protein expression provided for simultaneous evaluation of cellular viability. This experiment revealed specific and strong responses to manganese (II) in reporters of the type I and type II interferon-induced signaling pathways, while weaker activation of the NF-κB in the microglia was detected upon treatment of cells with Mn(II) and Ba(II). There was a similarity between Mn(II) and interferon-γ in the temporal STAT1 activation profile and in their antagonism to bacterial LPS. Sixty-four natural and synthetic flavonoids differentially affected both cytotoxicity and the pro-inflammatory activity of Mn (II) in the microglia. Whereas flavan-3-ols, flavanones, flavones, and flavonols were cytoprotective, isoflavones enhanced the cytotoxicity of Mn(II). Furthermore, about half of the tested flavonoids at 10-50 µM could attenuate both basal and 100-200 µM Mn(II)-induced activity at the gamma-interferon activated DNA sequence (GAS) in the cells, suggesting no critical roles for the metal chelation or antioxidant activity in the protective potential of flavonoids against manganese in microglia. In summary, results of the study identified Mn as a specific elicitor of the interferon-dependent pathways that can be mitigated by dietary polyphenols.


Assuntos
Interferons , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Interferons/metabolismo , Manganês/toxicidade , Flavonoides/farmacologia , Microglia/metabolismo , Transdução de Sinais , Interferon gama/farmacologia , Interferon gama/metabolismo , Fator de Transcrição STAT1/metabolismo
16.
BMC Pregnancy Childbirth ; 23(1): 323, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149573

RESUMO

BACKGROUND: Viral infections during pregnancy can have deleterious effects on mothers and their offspring. Monocytes participate in the maternal host defense against invading viruses; however, whether pregnancy alters monocyte responses is still under investigation. Herein, we undertook a comprehensive in vitro study of peripheral monocytes to characterize the differences in phenotype and interferon release driven by viral ligands between pregnant and non-pregnant women. METHODS: Peripheral blood was collected from third-trimester pregnant (n = 20) or non-pregnant (n = 20, controls) women. Peripheral blood mononuclear cells were isolated and exposed to R848 (TLR7/TLR8 agonist), Gardiquimod (TLR7 agonist), Poly(I:C) (HMW) VacciGrade™ (TLR3 agonist), Poly(I:C) (HMW) LyoVec™ (RIG-I/MDA-5 agonist), or ODN2216 (TLR9 agonist) for 24 h. Cells and supernatants were collected for monocyte phenotyping and immunoassays to detect specific interferons, respectively. RESULTS: The proportions of classical (CD14hiCD16-), intermediate (CD14hiCD16+), non-classical (CD14loCD16+), and CD14loCD16- monocytes were differentially affected between pregnant and non-pregnant women in response to TLR3 stimulation. The proportions of pregnancy-derived monocytes expressing adhesion molecules (Basigin and PSGL-1) or the chemokine receptors CCR5 and CCR2 were diminished in response to TLR7/TLR8 stimulation, while the proportions of CCR5- monocytes were increased. Such differences were found to be primarily driven by TLR8 signaling, rather than TLR7. Moreover, the proportions of monocytes expressing the chemokine receptor CXCR1 were increased during pregnancy in response to poly(I:C) stimulation through TLR3, but not RIG-I/MDA-5. By contrast, pregnancy-specific changes in the monocyte response to TLR9 stimulation were not observed. Notably, the soluble interferon response to viral stimulation by mononuclear cells was not diminished in pregnancy. CONCLUSIONS: Our data provide insight into the differential responsiveness of pregnancy-derived monocytes to ssRNA and dsRNA, mainly driven by TLR8 and membrane-bound TLR3, which may help to explain the increased susceptibility of pregnant women to adverse outcomes resulting from viral infection as observed during recent and historic pandemics.


Assuntos
Leucócitos Mononucleares , Monócitos , Gravidez , Humanos , Feminino , Receptores de Lipopolissacarídeos , Receptor Toll-Like 9/agonistas , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Receptor 3 Toll-Like , Receptores de IgG , Interferons
17.
Microbiol Spectr ; 11(3): e0450822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036376

RESUMO

Viruses have developed many different strategies to counteract immune responses, and Vaccinia virus (VACV) is one of a kind in this aspect. To ensure an efficient infection, VACV undergoes a complex morphogenetic process resulting in the production of two types of infective virions: intracellular mature virus (MV) and extracellular enveloped virus (EV), whose spread depends on different dissemination mechanisms. MVs disseminate after cell lysis, whereas EVs are released or propelled in actin tails from living cells. Here, we show that ISG15 participates in the control of VACV dissemination. Infection of Isg15-/- mouse embryonic fibroblasts with VACV International Health Department-J (IHD-J) strain resulted in decreased EV production, concomitant with reduced induction of actin tails and the abolition of comet-shaped plaque formation, compared to Isg15+/+ cells. Transmission electron microscopy revealed the accumulation of intracellular virus particles and a decrease in extracellular virus particles in the absence of interferon-stimulated gene 15 (ISG15), a finding consistent with altered virus egress. Immunoblot and quantitative proteomic analysis of sucrose gradient-purified virions from both genotypes reported differences in protein levels and composition of viral proteins present on virions, suggesting an ISG15-mediated control of viral proteome. Lastly, the generation of a recombinant IHD-J expressing V5-tagged ISG15 (IHD-J-ISG15) allowed us to identify several viral proteins as potential ISG15 targets, highlighting the proteins A34 and A36, which are essential for EV formation. Altogether, our results indicate that ISG15 is an important host factor in the regulation of VACV dissemination. IMPORTANCE Viral infections are a constant battle between the virus and the host. While the host's only goal is victory, the main purpose of the virus is to spread and conquer new territories at the expense of the host's resources. Along millions of years of incessant encounters, poxviruses have developed a unique strategy consisting in the production two specialized "troops": intracellular mature virions (MVs) and extracellular virions (EVs). MVs mediate transmission between hosts, and EVs ensure advance on the battlefield mediating the long-range dissemination. The mechanism by which the virus "decides" to shed from the primary site of infection and its significant impact in viral transmission is not yet fully established. Here, we demonstrate that this process is finely regulated by ISG15/ISGylation, an interferon-induced ubiquitin-like protein with broad antiviral activity. Studying the mechanism that viruses use during infection could result in new ways of understanding our perpetual war against disease and how we might win the next great battle.


Assuntos
Interferons , Vírus Vaccinia , Animais , Camundongos , Vírus Vaccinia/genética , Actinas/metabolismo , Proteômica , Fibroblastos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética
18.
mBio ; 14(3): e0017223, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37052473

RESUMO

Replication complexes (RCs), formed by positive-strand (+) RNA viruses through rearrangements of host endomembranes, protect their replicating RNA from host innate immune defenses. We have shown that two evolutionarily conserved defense systems, autophagy and interferon (IFN), target viral RCs and inhibit viral replication collaboratively. However, the mechanism by which autophagy proteins target viral RCs and the role of IFN-inducible GTPases in the disruption of RCs remains poorly understood. Here, using murine norovirus (MNV) as a model (+) RNA virus, we show that the guanylate binding protein 1 (GBP1) is the human GTPase responsible for inhibiting RCs. Furthermore, we found that ATG16L1 mediates the LC3 targeting of MNV RC by binding to WIPI2B and CAPRIN1, and that IFN gamma-mediated control of MNV replication was dependent on CAPRIN1. Collectively, this study identifies a novel mechanism for the autophagy machinery-mediated recognition and inhibition of viral RCs, a hallmark of (+) RNA virus replication. IMPORTANCE Replication complexes provide a microenvironment important for (+) RNA virus replication and shield it from host immune response. Previously we have shown that interferon gamma (IFNG) disrupts the RC of MNV via evolutionarily conserved autophagy proteins and IFN-inducible GTPases. Elucidating the mechanism of targeting of viral RC by ATG16L1 and IFN-induced GTPase will pave the way for development of therapeutics targeting the viral replication complexes. Here, we have identified GBP1 as the sole GBP targeting viral RC and uncovered the novel role of CAPRIN1 in recruiting ATG16L1 to the viral RC.


Assuntos
Interferon gama , Interferons , Humanos , Animais , Camundongos , GTP Fosfo-Hidrolases/metabolismo , Replicação Viral , RNA , Proteínas de Ciclo Celular
19.
Immun Inflamm Dis ; 11(3): e797, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988256

RESUMO

BACKGROUND: The association of Apolipoprotein A-I (APOAI) with T cell subsets and interferon-ү (IFN-γ) in patients with coronary artery disease (CAD) has been not reported. Thus, this study aimed to investigate the association of APOAI with T cell subsets and IFN-γ in CAD. METHODS: This study included a total of 107 patients with CAD including acute coronary syndrome and chronic coronary syndrome. T cell subsets, and CD3-CD56+ natural killer cells were quantified by flow cytometric analysis. The serum concentrations of IFN-ү were measured by enzyme-linked immunosorbent assay. Lipid profiles, C-reactive protein (CRP), and fibrinogen were measured in the clinical laboratory. Clinical data was obtained duration hospitalization. RESULTS: The CD4+ T cells were higher in patients of the low-APOAI group ( .05). The high-density lipoprotein cholesterol (HDL-C) was also inversely associated with CD4+ T cells (p < .05), and positively associated with CD8+ T cells (p < .05). Lastly, APOA1 and HDL-C did not correlated with fibrinogen and CRP (p > .05). CONCLUSION: The present study demonstrated the correlation of APOAI with T cell subsets and IFN-γ in CAD. These results provided novel information for the regulatory action between APOAI and T cell subsets and inflammatory immunity in CAD.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/complicações , Interferons , Apolipoproteína A-I , Subpopulações de Linfócitos T , Interferon gama
20.
Vopr Virusol ; 68(1): 26-36, 2023 03 11.
Artigo em Russo | MEDLINE | ID: mdl-36961233

RESUMO

INTRODUCTION: The development of drugs against SARS-CoV-2 continues to be crucial for reducing the spread of infection and associated mortality. The aim of the work is to study the neutralization of the SARS-CoV-2 virus with interferon gamma preparations in vitro. MATERIALS AND METHODS: The activity of recombinant human interferon gamma for intramuscular and subcutaneous administration of 500,000 IU and for intranasal administration of 100,000 IU against the SARS-CoV-2 virus in vitro was studied. The methodological approach of this study is based on the phenomenon of a decrease in the number of plaques formed under the action of a potential antiviral drug. RESULTS: The antiviral activity of recombinant interferon gamma has been experimentally confirmed, both in preventive and therapeutic application schemes. The smallest number of plaques was observed with the preventive scheme of application of the tested object at concentrations of 1000 and 333 IU/ml. The semi-maximal effective concentration (EC50) with the prophylactic regimen was 24 IU/ml. DISCUSSION: The preventive scheme of application of the tested object turned out to be more effective than therapeutic one, which is probably explained by the launch of the expression of various interferon-stimulated genes that affect to a greater extent the steps of virus entry into the cell and its reproduction. CONCLUSION: Further study of the effect of drugs based on recombinant interferon gamma on the reproduction of the SARS-CoV-2 virus for clinical use for prevention and treatment is highly relevant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Interferon gama/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Interferons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...