Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
1.
Chemosphere ; 351: 141139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185422

RESUMO

Pyrene was designated as a remediation target in this study, and low contamination of lead (Pb) was set to induce heavy metal stress. Pseudomonas veronii and its extracellular polymeric substances (EPSs) were chosen for biofortification, with the aim of elucidating the structural, metabolic, and functional responses of soil microbial communities. Community analysis of soil microorganisms using high-throughput sequencing showed that the co-addition of P. veronii and EPSs resulted in an increase in relative abundance of phyla associated with pyrene degradation, and formed a symbiotic system dominated by Firmicutes and Proteobacteria, which involved in pyrene metabolism. Co-occurrence network analysis revealed that the module containing P. veronii was the only one exhibiting a positive correlation between bacterial abundance and pyrene removal, indicating the potential of bioaugmentation in enriching functional taxa. Biofortification also enhanced the abundance of functional gene linked to EPS production (biofilm formation-Pseudomonas aeruginosa) and pyrene degradation. Furthermore, 17 potential functional bacteria were screened out using random forest algorithm. Lead contamination further promoted the growth of Proteobacteria, intensified cooperative associations among bacteria, and increased the abundance of bacteria with positive correlation with pyrene degradation. The results offer novel perspectives on alterations in microbial communities resulting from the synergistic impact of heavy metal stress and biofortification.


Assuntos
Metais Pesados , Microbiota , Pseudomonas , Poluentes do Solo , Matriz Extracelular de Substâncias Poliméricas/química , Chumbo/metabolismo , Biodegradação Ambiental , Poluentes do Solo/análise , Pirenos/metabolismo , Bactérias/metabolismo , Metais Pesados/metabolismo , Solo/química , Microbiologia do Solo
2.
Int J Biol Macromol ; 255: 128050, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992946

RESUMO

The outer membrane lipase (oml) gene, encoding a novel autotransporter-dependent lipase from Pseudomonas guariconensis, was cloned and sequenced. The oml gene has an open reading frame of 1866 bp. It encodes the 621 amino acid autotransporter-dependent GDSL lipase (OML), which has the highest sequence similarity (64.08 %) with the EstA of Pseudomonas aeruginosa (PDB:3kvn.1. A). OML was expressed and purified, which showed a purified band of approximately 70 kDa. The purified enzyme showed maximum activity at pH 9 and 40 °C. Substrate specificity studies and kinetic study by Lineweaver-Burk plot of purified OML showed Km of 1.27 mM and Vmax of 333.33 U/mL with p-nitrophenyl palmitate. The purified enzyme showed good stability in the presence of hexane, methanol, and ethanol, while the presence of the metal ion Mg2+ showed maximum lipase activity. Bioinformatics analysis supported the in vitro findings by predicting enzyme substrate specificity towards long-chain fatty acids and fatty acids with shorter chain lengths. The stability of the interaction of the protein-ligand complex (OML-ricinoleic acid) was confirmed using MDS and castor oil bioconversion using purified OML was confirmed using High-Performance Liquid Chromatography (HPLC).


Assuntos
Lipase , Sistemas de Secreção Tipo V , Lipase/química , Pseudomonas/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Estabilidade Enzimática , Temperatura
3.
Fish Shellfish Immunol ; 142: 109170, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852511

RESUMO

Pseudomonas plecoglossicida infection is a highly contagious epidemic in aquaculture, causing significant mortality among teleost. Our previous research has demonstrated that Lactobacillus plantarum E2 is beneficial for large yellow croaker in resisting infections caused by P. plecoglossicida. However, the relevant mechanisms remain largely unclear. In the present study, we used zebrafish (Danio rerio) to further explore the function of L. plantarum E2 and its mechanisms for resisting P. plecoglossicida infection. E2 supplementation diet significantly improved the growth rates and α-amylase and trypsin activities of the liver in zebrafish. After challenge with P. plecoglossicida strain PQLYC4, the survival rates of zebrafish were improved, and immune-related genes expression (IL-1ß, TNF-α, IL-8, Ig-Z, TLR-22 and IL-12α) were down-regulated. Histological analysis showed that E2 group had a longer intestinal villus and thicker intestinal walls after 30 days of feeding and healthier intestinal structure after challenge with P. plecoglossicida strain PQLYC4. Furthermore, co-incubation of zebrafish embryo fibroblast (ZF-4 cells) with L. plantarum E2 reduced apoptosis of ZF-4 cells after exposed to P. plecoglossicida. Intestinal microbiota analysis showed that E2 strain significantly increased the relative abundance of Lactobacillus and Pseudomonas, and PCoA analysis revealed a noticeable divergence in the intestinal microbial communities after E2 supplement. Together, our results suggested that E2 strain may promote zebrafish survival against P. plecoglossicida infection by regulating the intestinal microbiota and alleviating inflammatory response and apoptosis, thus exhibiting the potential as a probiotic.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Infecções por Pseudomonas , Animais , Peixe-Zebra , Lactobacillus plantarum/química , Pseudomonas , Inflamação/veterinária , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/veterinária , Apoptose
4.
Chem Biodivers ; 20(11): e202300931, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776535

RESUMO

Bacteria are associated with many infections that affect humans and present antibiotic resistance mechanisms, causing problems in health organisations and increased mortality rates. Therefore, it is necessary to find new antibacterial agents that can be used in the treatment of these microorganisms. Geopropolis is a natural product from stingless bees, formed by a mixture of plant resins, salivary secretions, wax and soil particles, the chemical composition of this natural product is diverse. Thus, this study aimed to evaluate antibacterial activity, antibiotic modulation and the toxicity of geopropolis extracts from the stingless bees, Melipona subnitida (Ducke, 1910) and Scaptotrigona depilis (Moure, 1942) against standard and multi-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacteria. Geopropolis samples were collected in a meliponary located in Camaragibe, Pernambuco, Brazil. To determine the Minimum Inhibitory Concentration (MIC) and antibiotic modulation we performed broth microdilution tests. Mortality tests were used to verify extract toxicity in the model Drosophila melanogaster. The microbiological tests showing that the M. subnitida extracts had better inhibitory effects compared to S. depilis, presenting direct antibacterial activity against standard and multi-resistant strains. The extracts potentialized antibiotic effects, suggesting possible synergy and did not present toxicity in the model used. The information obtained in this study highlights extracts as promising antibacterial agents and is the first study to evaluate bacterial activity in these extracts, in addition to verifying their modulating effects and determining toxicity in the model used.


Assuntos
Himenópteros , Staphylococcus aureus Resistente à Meticilina , Própole , Abelhas , Humanos , Animais , Drosophila melanogaster , Própole/química , Antibacterianos/farmacologia , Pseudomonas , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
5.
Biodegradation ; 34(4): 383-403, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37055700

RESUMO

Plastic accumulation has become a serious environmental threat. Mitigation of plastic is important to save the ecosystem of our planet. With current research being focused on microbial degradation of plastics, microbes with the potential to degrade polyethylene were isolated in this study. In vitro studies were performed to define the correlation between the degrading capability of the isolates and laccase, a common oxidase enzyme. Instrumental analyses were used to evaluate morphological and chemical modifications in polyethylene, which demonstrated a steady onset of the degradation process in case of both isolates, Pseudomonas aeruginosa O1-P and Bacillus cereus O2-B. To understand the efficiency of laccase in degrading other common polymers, in silico approach was employed, for which 3D structures of laccase in both the isolates were constructed via homology modeling and molecular docking was performed, revealing that the enzyme laccase can be exploited to degrade a wide range of polymers.


Assuntos
Polímeros , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Bacillus cereus/metabolismo , Lacase/metabolismo , Ecossistema , Simulação de Acoplamento Molecular , Plásticos/análise , Plásticos/metabolismo , Polietileno/química , Polietileno/metabolismo , Biodegradação Ambiental
6.
World J Microbiol Biotechnol ; 39(5): 135, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961587

RESUMO

The environmental contamination of heavy metals has grown over the last several decades along with global industrialization and now constitutes a serious threat to human health. In this research, high cadmium (Cd) and nickel (Ni) resistant bacteria that were chosen for heavy metal biosorption were isolated from the Industries Factory in Sari, Mazandaran, Iran. Pseudomonas aeruginosa was recognized as the isolated bacterium based on its morphological, physiological, biochemical, antibiotic resistance testing, and 16S rRNA sequences. The bacteria had the highest concentrations of resistance to Cd (up to 1600 ppm) and Ni, according to the Minimum Inhibition Concentration (MIC) test (up to 2000 ppm). Single-factor studies in single and binary systems were used to examine the effects of temperature, contact duration, pH value, starting Cd and Ni concentration, and biomass dose on the Cd and Ni adsorption by P. aeruginosa. The Cd and Ni biosorption in binary solutions was optimized using the response surface methodology (RSM) based on Central Composite Design (CCD). The investigation revealed that at pH 7.0, 45 °C, and 1.5 gL-1 biomass dose, the greatest biosorption efficiency for Cd and Ni was 92.43 percent and 88.45 percent, respectively. According to the adsorption of Cd and Ni in urban water, under these similarly extreme conditions, Cd adsorption drops to 54% and Ni to 60%. Analysis Potential functional groups involving interactions between cells and metal ions were identified using Fourier transform infrared spectroscopy (FTIR). Different compounds and heavy metal ions were found to have been adsorbed to the surface of the biosorbent by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS). It was determined that P. aeruginosa had a high rate of Cd and Ni adsorption and that variations in pH level had a greater impact than other parameters. The findings imply that P. aeruginosa biomass may be an effective, economical, and environmentally friendly method for removing Cd and Ni from contaminated settings. It also has a reasonable capacity for biosorption in both a natural environment and a laboratory environment.


Assuntos
Cádmio , Metais Pesados , Humanos , Níquel , Pseudomonas , RNA Ribossômico 16S/genética , Metais Pesados/farmacologia , Metais Pesados/análise , Biomassa , Pseudomonas aeruginosa/genética , Adsorção , Íons , Concentração de Íons de Hidrogênio , Cinética
7.
Artigo em Inglês | MEDLINE | ID: mdl-36748583

RESUMO

A Gram-stain-negative, aerobic, rod-shaped, non-endospore-forming bacterium, designated as strain MRCP1333T, was isolated from a faecal sample from a hospital patient in Japan. MRCP1333T grew at temperatures of 15-40 °C (optimum 25-35 °C), with 1.0-3.0 % (w/v, 171-513 mM) NaCl [optimum 1-2 % (w/v), 171-342 mM], and at pH 6.0-9.5 (optimum pH 7.0-8.0). The results of phylogenetic analysis based on the sequences of the 16S rRNA gene and the 53 genes encoding the bacterial ribosome protein subunits indicated that MRCP1333T represented a member of the Pseudomonas aeruginosa group, most closely related to Pseudomonas alcaligenes. Whole-genome comparisons, using average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity, confirmed that MRCP1333T represented a distinct species in the P. aeruginosa group. Phenotypic characterization tests demonstrated utilization by this strain of citrate, glycerol, and d-malic acid, the ability to reduce nitrite to nitrogen and the ability of this strain to grow in the presence of minocycline and tetrazolium blue, distinguishing this strain from P. alcaligenes and other closely related species of the P. aeruginosa group. The major fatty acids of MRCP1333T were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c; 38.4 %), summed feature 3 (C16 : 1ω7c/C16 : 1ω6c; 21.1 %) and C16 : 0 (20.6 %). The DNA G+C content of MRCP1333T was 66.5 mol%. Genetic and phenotypic evidence indicated that MRCP1333T should be classified as representing a novel species, for which the name Pseudomonas paralcaligenes sp. nov. is proposed. The type strain is MRCP1333T (=LMG 32254T,=JCM 34250T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Humanos , Ácidos Graxos/química , Fosfolipídeos/química , Pseudomonas , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana
8.
Environ Res ; 220: 115205, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592812

RESUMO

While an increasing number of studies have evaluated tobacco microbiomes, comparative microbiome analyses across diverse tobacco products are non-existent. Moreover, to our knowledge, no previous studies have characterized the metabolically-active (live) fraction of tobacco bacterial communities and compared them across products. To address these knowledge gaps, we compared bacterial communities across four commercial products (cigarettes, little cigars, cigarillos and hookah) and one research cigarette product. After total DNA extraction (n = 414) from all samples, the V3V4 region of the 16S rRNA gene was sequenced on the Illumina HiSeq platform. To identify metabolically-active bacterial communities within these products, we applied a coupled 5-bromo-2'-deoxyuridine labeling and sequencing approach to a subset of samples (n = 56). Each tobacco product was characterized by its signature microbiome, along with a shared microbiome across all tobacco products consisting of Pseudomonas aeruginosa, P. putida, P. alcaligenes, Bacillus subtilis, and Klebsiella pneumoniae. Comparing across products (using Linear discriminant analysis Effect Size (LEfSe)), a significantly higher (p < 0.05) relative abundance of Klebsiella and Acinetobacter was observed in commercial cigarettes, while a higher relative abundance of Pseudomonas and Pantoea was observed in research cigarettes. Methylorubrum and Paenibacillus were higher in hookah, and Brevibacillus, Lactobacillus, Bacillus, Lysinibacillus, and Staphylococcus were higher in little cigars and cigarillos. Across all products, the majority of the metabolically-active bacterial communities belonged to the genus Pseudomonas, followed by several genera within the Firmicutes phylum (Bacillus, Terribacillus, and Oceanobacillus). Identification of some metabolically-active pathogens such as Bacillus cereus and Haemophilus parainfluenzae in commercial products is of concern because of the potential for these microorganisms to be transferred to users' respiratory tracts via mainstream smoke. Future work is warranted to evaluate the potential impact of these tobacco bacterial communities on users' oral and lung microbiomes, which play such an important role on the spectrum from health to disease.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Microbiota , Produtos do Tabaco , Fumar , RNA Ribossômico 16S/genética , Produtos do Tabaco/análise , Bactérias/genética , Microbiota/genética , Pseudomonas
9.
Chemosphere ; 310: 136826, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243087

RESUMO

This study aimed to carry out the bioaugmentation of crude oil/motor oil contaminated soil. The mixture of novel strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4 were used in this bioaugmentation studies. The four different bioaugmentation systems (BS 1-4) were carried out in this experiment labelled as BS 1 (Crude oil contaminated soil), BS 2 (BS 1 + bacterial consortia), BS 3 (Motor oil sludge contaminated soil), and BS 4 (BS 3 + bacterial consortia). The total petroleum hydrocarbon (TPH) was investigated for monitor the effectiveness of bioaugmentation process. The highest TPH removal rate was recorded on BS 4 (9091 mg Kg -1) was about 67% followed by 52% on BS 2 (8584 mg Kg -1) respectively. The percentage of biodegradation efficiency (BE) of residual crude and motor oil contaminated soil were evaluated by GCMS analysis and the results showed that 65% (BS 2) and 83% (BS 4) respectively. Further the bioaugmented soil was subjected to the plant cultivation (Lablab purpureus) and the results revealed that the L. purpureus was rapidly grown in the systems BS 4 and BS 2 than the system BS 1 and BS 2 which was due to the lesser biodegradation of the crude oil contents. In resultant, it can be concluded that the soil was suitable for the cultivation of plant. Overall, this study revealed that the selected bacterial consortia were effectively degraded the hydrocarbon and act as a potential bioremediator in the hydrocarbon polluted soil in a short period.


Assuntos
Petróleo , Poluentes do Solo , Petróleo/metabolismo , Solo/química , Pseudomonas/metabolismo , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo
11.
Microbiol Res ; 265: 127217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206648

RESUMO

Soil salinization is a major stress affecting crop production on a global scale. Application of stress tolerant plant growth promoting rhizobacteria (PGPR) in saline soil can be an ideal practice for improving soil fertility. Rhizospheric microbiota of stress tolerant Eichhornia crassipes was screened for saline tolerant phosphate solubilizing bacteria, and the two isolates showing maximum solubilization index at 1 M NaCl were subjected to further analyses. The isolates were identified as Pantoea dispersa and Pseudomonas aeruginosa. Among the two isolates, P. dispersa PSB1 showed better phosphorus (P) solubilization potential under saline stress (335 ± 30 mg/L) than P. aeruginosa PSB5 (200 ± 24 mg/L). The mechanisms of P-solubilization, such as the production of organic acids and phosphatase were found to be influenced negatively by saline stress. The adaptive mechanisms of the isolates to overcome salt stress were analyzed by protein profiling which revealed salt stress induced modulations in protein expression involved in amino acid biosynthesis, carbon metabolisms, chemotaxis, and stress responses. Survival mechanisms such as protein RecA, LexA repressor and iron-sulfur cluster synthesis were upregulated in both the organisms under saline stress. P. dispersa PSB1 showed improved defense mechanisms such as the production of osmotolerants, redox enzymes, and quorum quenchers under saline stress, which may explain its better P solubilization potential than the P. aeruginosa PSB5. This study emphasizes the need for molecular approaches like proteome analysis of PGPR for identifying novel traits like stress tolerance and plant growth promotion before developing them as biofertilizers and biocontrol formulations.


Assuntos
Eichhornia , Pantoea , Aminoácidos/metabolismo , Carbono/metabolismo , Eichhornia/metabolismo , Ferro/metabolismo , Pantoea/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Proteoma/metabolismo , Proteômica , Pseudomonas/metabolismo , Rizosfera , Cloreto de Sódio/metabolismo , Solo/química , Microbiologia do Solo , Enxofre/metabolismo
12.
Antimicrob Resist Infect Control ; 11(1): 95, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836272

RESUMO

BACKGROUND: Microbial etiology for community-acquired pneumonia (CAP) is evolving with pathogens known for high CAP mortality e.g., Pseudomonas species. Chronic obstructive pulmonary disease (COPD) patients are at risk for hospitalization for CAP. Understanding regional patterns and risk factors for multidrug-resistant (MDR) Pseudomonas acquisition has implications for antimicrobial stewardship. OBJECTIVES: To evaluate the regional epidemiology of MDR Pseudomonas CAP and its association with COPD. METHODS: We queried the electronic medical records of the University of Alabama at Birmingham Healthcare System to identify patients hospitalized for CAP with Pseudomonas positive respiratory samples between 01/01/2013-12/31/2019. Log binomial regression models were used to examine associations between COPD diagnosis and risk of Pseudomonas/MDR Pseudomonas CAP. RESULTS: Cohort consisted of 913 culture positive CAP cases aged 59-year (IQR:48-68), 61% (560) male, 60% (547) white, 65% (580) current/past smokers, and 42% (384) COPD. Prevalence of Pseudomonas CAP in culture positive CAP was 18% (167), MDR Pseudomonas CAP in Pseudomonas CAP was 22% (36), and yearly incidence of MDR Pseudomonas CAP was stable (p = 0.169). COPD was associated with Pseudomonas CAP (RR 1.39; 95% CI 1.01, 1.91; p = 0.041) but not with MDR Pseudomonas CAP (0.71; 95% CI 0.35, 1.45; p = 0.349). Stroke (RR 2.64; 95% CI 1.51, 4.61; p = 0.0006) and use of supplemental oxygen (RR 2.31; 95% CI 1.30, 4.12; p = 0.005) were associated with MDR Pseudomonas CAP. CONCLUSION: Incidence of MDR Pseudomonas CAP was stable over time. COPD was associated with Pseudomonas CAP but not with MDR Pseudomonas CAP. Larger cohort studies are needed to confirm findings.


Assuntos
Infecções Comunitárias Adquiridas/epidemiologia , Pneumonia , Infecções por Pseudomonas/epidemiologia , Pseudomonas/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/complicações , Idoso , Alabama/epidemiologia , Estudos de Coortes , Infecções Comunitárias Adquiridas/etiologia , Resistência a Múltiplos Medicamentos , Feminino , Hospitalização , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Pneumonia/etiologia , Pseudomonas/patogenicidade , Infecções por Pseudomonas/microbiologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Fatores de Risco
13.
Immunity ; 55(5): 824-826, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545032

RESUMO

The mechanisms of how infectious diseases contribute to allergy remain unanswered. In this issue of Immunity, Agaronyan et al. (2022) show that Pseudomonas aeruginosa drives immune deviation through induction of type 2 immune responses, resulting in niche remodeling that incites allergic responses to innocuous antigens.


Assuntos
Hipersensibilidade , Infecções por Pseudomonas , Humanos , Pseudomonas , Pseudomonas aeruginosa , Virulência
14.
Appl Biochem Biotechnol ; 194(1): 124-147, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993770

RESUMO

Alginate lyases are epitomized as prospective therapeutic mediators for treating Pseudomonas aeruginosa infections, particularly in the cystic fibrosis airway through alginate degradation thereby improving the efficacy of anti-pseudomonal antibiotics. Investigation of metal-binding residues is significant for expounding the ion specificity of an enzyme and will provide a broad understanding of the potential roles of metal ions in enzyme function and stability. However, experimental analysis of metal ion-binding sites in proteins is time consuming and expensive. Concerning the clinical importance of this therapeutic enzyme, the present study was focused on the prediction and characterization of metal ion-binding sites of different alginate lyases reported in the literature through a computational approach using a Metal Ion-Binding Site Prediction and Docking Server. 3D structures of different alginate lyase from different organisms were retrieved, and these retrieved proteins were docked with twelve different metal ions such as Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+, Cd2+, Fe2+, Ni2+, Hg2+, Co2+, and Cu+. The binding affinity and interacting amino acids for alginate lyases produced by different microorganisms were compared and analysed. Further analysis on active site residues of reported alginate lyase and subsequent experiments will reveal the function of different metal ions in enhancing or inhibiting the catalysis of alginate lyase and will help in exploiting the enzyme as an efficient therapeutic agent as well as for industrial applications.


Assuntos
Proteínas de Bactérias/química , Metais/química , Simulação de Acoplamento Molecular , Polissacarídeo-Liases/química , Pseudomonas/enzimologia , Sphingomonas/enzimologia , Sítios de Ligação
15.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884433

RESUMO

Pseudomonas is characterized by its great capacity to colonize different ecological niches, but also by its antimicrobial resistance and pathogenicity, causing human, animal, or plant diseases. Raw and undercooked food is a potential carrier of foodborne disease. The aim of this study was to determine the occurrence of Pseudomonas spp. among raw vegetables, analysing their antimicrobial resistance, virulence, and molecular typing. A total of 163 Pseudomonas spp. isolates (12 different species) were recovered from 77 of the 145 analysed samples (53.1%) and were classified into 139 different pulsed-field gel electrophoresis patterns. Low antimicrobial resistance levels, but one multidrug-resistant isolate, were found. Among the 37 recovered P. aeruginosa strains, 28 sequence-types and nine serotypes were detected. Eleven OprD patterns and an insertion sequence (ISPa1635) truncating the oprD gene of one imipenem-resistant strain were found. Ten virulotypes were observed, including four exoU-positive and thirty-one exoS-positive strains. The lasR gene was absent in three ST155 strains and was truncated by different insertion sequences (ISPre2, IS1411, and ISPst7) in other three strains. High biofilm, motility, pigment, elastase, and rhamnolipid production were detected. Our study demonstrated a low occurrence of P. aeruginosa (18%) and low antimicrobial resistance, but a high number of virulence-related traits in these P. aeruginosa strains, highlighting their pathological importance.


Assuntos
Farmacorresistência Bacteriana Múltipla , Pseudomonas/classificação , Verduras/microbiologia , Fatores de Virulência/genética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Tipagem Molecular , Fenótipo , Filogenia , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/patogenicidade
16.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34762579

RESUMO

Strain TUM18999T was isolated from the skin of a patient with burn wounds in Japan. The strain was successfully cultured at 20-42 °C (optimum, 30-35 °C) in 1.0-4.0% NaCl (w/v) and at pH 5.5-9.5, optimum pH 5.5-8.5. The phylogenetic tree reconstructed using 16S rRNA, gyrB, rpoB and rpoD gene sequences indicated that strain TUM18999T is closely related to Pseudomonas otitidis MCC10330T. Although the partial 16S rRNA gene sequence (1412 bp) of TUM18999T exhibits high similarity to those of Pseudomonas alcaligenes NBRC 14159T (99.08 %) and Pseudomonas otitidis MCC10330T (98.51 %), multi-locus sequence analysis using 16S rRNA, gyrB, rpoB and rpoD genes reveals a clear distinction between TUM18999T and other Pseudomonas species. In addition, an average nucleotide identity >90 % was not observed in the P. aeruginosa group. Moreover, TUM18999T and P. otitidis can be distinguished based on the minimum inhibitory concentration for carbapenem. Meanwhile, the cellular fatty acids are enriched with C18 : 1 ω7c/C18 : 1 ω6c (34.35 %), C16 : 1 ω7c/C16 : 1 ω6c (24.22 %), C16 : 0 (19.79 %) and C12 : 0 (8.25 %). Based on this evidence, strain TUM18999T can be defined as representing a novel Pseudomonas species, with the proposed name Pseudomonas tohonis sp. nov. The type strain is TUM18999T (GTC 22698T=NCTC 14580T).


Assuntos
Queimaduras , Filogenia , Pseudomonas/classificação , Pele/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Queimaduras/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Humanos , Japão , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Nucleic Acids Res ; 49(18): 10770-10784, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520554

RESUMO

H-NS family proteins, bacterial xenogeneic silencers, play central roles in genome organization and in the regulation of foreign genes. It is thought that gene repression is directly dependent on the DNA binding modes of H-NS family proteins. These proteins form lateral protofilaments along DNA. Under specific environmental conditions they switch to bridging two DNA duplexes. This switching is a direct effect of environmental conditions on electrostatic interactions between the oppositely charged DNA binding and N-terminal domains of H-NS proteins. The Pseudomonas lytic phage LUZ24 encodes the protein gp4, which modulates the DNA binding and function of the H-NS family protein MvaT of Pseudomonas aeruginosa. However, the mechanism by which gp4 affects MvaT activity remains elusive. In this study, we show that gp4 specifically interferes with the formation and stability of the bridged MvaT-DNA complex. Structural investigations suggest that gp4 acts as an 'electrostatic zipper' between the oppositely charged domains of MvaT protomers, and stabilizes a structure resembling their 'half-open' conformation, resulting in relief of gene silencing and adverse effects on P. aeruginosa growth. The ability to control H-NS conformation and thereby its impact on global gene regulation and growth might open new avenues to fight Pseudomonas multidrug resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fagos de Pseudomonas/fisiologia , Transativadores/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Modelos Moleculares , Ligação Proteica , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/virologia , Transativadores/química , Proteínas Virais/química
18.
Appl Opt ; 60(19): 5588-5598, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263849

RESUMO

A novel, to the best of our knowledge, surface plasmon resonance (SPR) sensor, employing a silicon-barium titanate structure for Pseudomonas bacterial detection, is designed. Three bacterial attachments operate as a protective layer for the detection process with refractive indices (RI) of 1.437, 1.49368, and 1.5265. Performance analysis shows a sensitivity (S) of 155, 168, and 370°/RIU at RI of 1.5265 for Structures 1, 2, and 3, respectively. Additionally, the proposed sensor (Structure 3) accomplishes a magnified figure of merit (FOM) of 86.43 and quality factor of 86.65 at the RI of 1.5265. Finally, the proposed sensor's performance is compared with that of the existing sensors, thus demonstrating a heightened S and FOM.


Assuntos
Compostos de Bário/química , Técnicas Biossensoriais/métodos , Infecções por Pseudomonas/diagnóstico , Pseudomonas/citologia , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Titânio/química , Sensibilidade e Especificidade
19.
NPJ Biofilms Microbiomes ; 7(1): 50, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140515

RESUMO

Understanding the dynamic environmental microniches of biofilms will permit us to detect, manage and exploit these communities. The components and architecture of biofilms have been interrogated in depth; however, little is known about the environmental microniches present. This is primarily because of the absence of tools with the required measurement sensitivity and resolution to detect these changes. We describe the application of ratiometric fluorescent pH-sensitive nanosensors, as a tool, to observe physiological pH changes in biofilms in real time. Nanosensors comprised two pH-sensitive fluorophores covalently encapsulated with a reference pH-insensitive fluorophore in an inert polyacrylamide nanoparticle matrix. The nanosensors were used to analyse the real-time three-dimensional pH variation for two model biofilm formers: (i) opportunistic pathogen Pseudomonas aeruginosa and (ii) oral pathogen Streptococcus mutans. The detection of sugar metabolism in real time by nanosensors provides a potential application to identify therapeutic solutions to improve oral health.


Assuntos
Biofilmes , Técnicas Biossensoriais , Concentração de Íons de Hidrogênio , Nanotecnologia , Resinas Acrílicas/química , Biofilmes/crescimento & desenvolvimento , Corantes Fluorescentes/química , Glucose/metabolismo , Nanopartículas/química , Permeabilidade , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo , Imagem com Lapso de Tempo
20.
Folia Microbiol (Praha) ; 66(4): 569-578, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33821405

RESUMO

In our previous study, all Pseudomonas strains THP6, THP41, and OHP5 were identified as fluoride-resistant bacteria isolated from Dindigul district, Tamilnadu, India. The selected strains exhibiting a high level of fluoride resistance was determined in Luria broth (LB) medium and LB agar plates. In a further effort, fluoride-resistant organisms were tested for hemolytic activity and showed ß-hemolysis on blood agar plates. The virulence factors such as gyrB, toxA, algD and lasB, plcH, rhlC and biofilm response genes (pslA, pelA, ppyR) were detected by PCR analysis. The putative genus-specific and species-specific PCR also confirmed that the selected fluoride-resistant strains were belonging to Pseudomonas aeruginosa species. Fluoride-resistance gene crcB was amplified by gene-specific primers. The crcB gene was cloned in TA vector and transformed into E. coli DH5α. Comparative and blast analysis of THP6, THP41, and OHP5 strains crcB gene sequences were high homology with P. aeruginosa fluoride efflux transporter crcB and P. aeruginosa putative fluoride ion transporter crcB. The recombinants were efficiently growing in the NaF containing LB agar plates. The fluoride tolerance of these strains was also associated with resistance to multiple antibiotics. These results can lead to the use of the fluoride resistance gene of P. aeruginosa for the development of a biosensor for fluoride detection.


Assuntos
Farmacorresistência Bacteriana , Fluoretos , Pseudomonas , Fatores de Virulência , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Fluoretos/análise , Fluoretos/farmacologia , Índia , Pseudomonas/classificação , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/patogenicidade , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Fatores de Virulência/genética , Água/química , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...