Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.047
Filtrar
1.
Recurso na Internet em Português | LIS - Localizador de Informação em Saúde | ID: lis-48013

RESUMO

A estação mais quente do ano também é conhecida pela intensa propagação de vírus transmitidos pelo mosquito Aedes aegypti, como dengue, zika e chikungunya


Assuntos
Aedes , Dengue , Zika virus
2.
Theor Biol Med Model ; 18(1): 3, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413478

RESUMO

BACKGROUND: Understanding the dynamical behavior of dengue transmission is essential in designing control strategies. Mathematical models have become an important tool in describing the dynamics of a vector borne disease. Classical compartmental models are well-known method used to identify the dynamical behavior of spread of a vector borne disease. Due to use of fixed model parameters, the results of classical compartmental models do not match realistic nature. The aim of this study is to introduce time in varying model parameters, modify the classical compartmental model by improving its predictability power. RESULTS: In this study, per-capita vector density has been chosen as the time in varying model parameter. The dengue incidences, rainfall and temperature data in urban Colombo are analyzed using Fourier mathematical analysis tool. Further, periodic pattern of the reported dengue incidences and meteorological data and correlation of dengue incidences with meteorological data are identified to determine climate data-driven per-capita vector density parameter function. By considering that the vector dynamics occurs in faster time scale compares to host dynamics, a two dimensional data-driven compartmental model is derived with aid of classical compartmental models. Moreover, a function for per-capita vector density is introduced to capture the seasonal pattern of the disease according to the effect of climate factors in urban Colombo. CONCLUSIONS: The two dimensional data-driven compartmental model can be used to predict weekly dengue incidences upto 4 weeks. Accuracy of the model is evaluated using relative error function and the model can be used to predict more than 75% accurate data.

3.
Mil Med ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33428750

RESUMO

INTRODUCTION: Dengue fever, caused by any of the four dengue viruses (DENV1-4), is endemic in more than 100 countries around the world. Each year, up to 400 million people get infected with dengue virus. It is one of the most important arthropod-borne viral diseases. Dengue's global presence poses a medical threat to deploying military personnel and their dependents. An accurate diagnosis followed by attentive supportive care can improve outcomes in patients with severe dengue disease. Dengue diagnostic tests based on PCR and ELISA platforms have been developed and cleared by the U.S. FDA. However, these diagnostic assays are laborious and usually require highly trained personnel and specialized equipment, which presents a significant challenge when conducting operations in austere and resource-constrained areas. InBios International, Inc. (Seattle, WA) has developed two rapid and instrument-free immunochromatographic test prototype devices (multiplex and traditional formats) for dengue diagnosis. MATERIALS AND METHODS: To determine the performance of the InBios immunochromatographic tests, 183 clinical samples were tested on both prototype devices. Both assays were performed without any instruments and the results were read in 20 minutes. RESULTS: The traditional format had better overall performance (sensitivity: 97.4%; specificity: 90%) than the multiplex format (sensitivity: 86.9%; specificity: 63.3%). The traditional format was superior in serotype-specific detection with 100% overall sensitivity for DENV1, DENV3, and DENV4 and 93.3% sensitivity for DENV2 compared to the multiplex format (91.7%, 78.3%, 83.3%, and 96.3% for DENV1, 2, 3, and 4, respectively). The traditional format was easier to read than the multiplex format. The multiplex format was simpler and faster to set up than the traditional format. CONCLUSIONS: The InBios traditional format had a better overall performance and readability profile than the multiplex format, while the multiplex format was easier to set up. Both formats were highly sensitive and specific, were easy to perform, and did not require sophisticated equipment. They are ideal for use in resource-limited settings where dengue is endemic. Based on our overall assessment, the traditional format should be considered for further development and used in the upcoming multicenter clinical trial toward FDA clearance.

4.
BMJ Case Rep ; 14(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431469

RESUMO

Bilateral sight threatening macular and optic nerve inflammation may occur with dengue fever, necessitating the use of systemic steroids. We report a case of bilateral dengue maculopathy in an elderly woman managed with targeted intravitreal steroid therapy. A 63-year-old woman presented with acute-onset painless diminution of vision in both eyes following a dengue fever episode. She had bilateral foveal inflammatory lesions, macular oedema, small vessel occlusions at the macula and scattered retinal haemorrhages and cotton-wool spots. Following systemic evaluation, intravitreal triamcinolone acetonide injection was performed in both eyes at an interval of 3 days. The foveal lesion and macular oedema resolved quickly in both eyes with a normal foveal architecture at the end of 6-week follow-up. The visual acuity improved considerably in both eyes. Inflammatory retinopathy in dengue fever may be managed with a targeted intravitreal steroid injection approach.

5.
Virol Sin ; 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400094

RESUMO

Dengue virus is an arthropod-borne pathogen that is transmitted to humans primarily by Aedes spp. mosquitos, causing the acute infectious disease, dengue fever (DF). Until 2019, no dengue outbreak had been reported in Hainan Province for over 20 years. However, in early September of 2019, an increasing number of infected cases appeared and the DF outbreak lasted for over one month in Haikou City, Hainan Province. In our study, we collected 97 plasma samples from DF patients at three hospitals, as well as 1585 mosquito larvae samples from puddles in different areas of Haikou. There were 49 (50.5%) plasma samples found to be strongly positive and 9 (9.3%) plasma samples were weakly positive against the NS1 antigen. We discovered DENV both in the patient's plasma samples and mosquito larvae samples, and isolated the virus from C6/36 cells inoculated with the acute phase serum of patients. Phylogenetic analysis revealed that the new strains were the most closely related to the epidemic strain in the southern regions of China, belonging to lineage IV, genotype I, DENV-1. Compared to the seven closest strains from neighboring countries and provinces, a total of 18 amino acid mutations occurred in the coding sequences (CDS) of the new isolated strain, DENV1 HMU-HKU-2. Our data shows that dengue virus is re-emerged in Hainan, and pose new threats for public health. Thus regular molecular epidemiological surveillance is necessary for control and prevention of DENV transmission.

6.
Math Biosci ; : 108531, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460675

RESUMO

Human movement is a key factor in infectious diseases spread such as dengue. Here, we explore a mathematical modeling approach based on a system of ordinary differential equations to study the effect of human movement on characteristics of dengue dynamics such as the existence of endemic equilibria, and the start, duration, and amplitude of the outbreak. The model considers that every day is divided into two periods: high-activity and low-activity. Periodic human movement between patches occurs in discrete times. Based on numerical simulations, we show unexpected scenarios such as the disease extinction in regions where the local basic reproductive number is greater than 1. In the same way, we obtain scenarios where outbreaks appear despite the fact that the local basic reproductive numbers in these regions are less than 1 and the outbreak size depends on the length of high-activity and low-activity periods.

7.
Clin Infect Dis ; 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33462580

RESUMO

BACKGROUND: Dengue is the most significant mosquito-borne viral disease; there are no specific therapeutics. The antiparasitic drug ivermectin efficiently inhibits the replication of all 4 dengue virus serotypes in vitro. METHODS: We conducted 2 consecutive randomized, double-blind, placebo-controlled trials in adult dengue patients to evaluate safety and virological and clinical efficacies of ivermectin. After a phase 2 trial with 2 or 3 days of 1 daily dose of 400 µg/kg ivermectin, we continued with a phase 3, placebo-controlled trial with 3 days of 400 µg/kg ivermectin. RESULTS: The phase 2 trial showed a trend in reduction of plasma nonstructural protein 1 (NS1) clearance time in the 3-day ivermectin group compared with placebo. Combining phase 2 and 3 trials, 203 patients were included in the intention to treat analysis (100 and 103 patients receiving ivermectin and placebo, respectively). Dengue hemorrhagic fever occurred in 24 (24.0%) of ivermectin-treated patients and 32 (31.1%) patients receiving placebo (P = .260). The median (95% confidence interval [CI]) clearance time of NS1 antigenemia was shorter in the ivermectin group (71.5 [95% CI 59.9-84.0] hours vs 95.8 [95% CI 83.9-120.0] hours, P = .014). At discharge, 72.0% and 47.6% of patients in the ivermectin and placebo groups, respectively had undetectable plasma NS1 (P = .001). There were no differences in the viremia clearance time and incidence of adverse events between the 2 groups. CONCLUSIONS: A 3-day 1 daily dose of 400 µg/kg oral ivermectin was safe and accelerated NS1 antigenemia clearance in dengue patients. However, clinical efficacy of ivermectin was not observed at this dosage regimen.

8.
PLoS Comput Biol ; 17(1): e1008627, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33465065

RESUMO

Heterogeneous exposure to mosquitoes determines an individual's contribution to vector-borne pathogen transmission. Particularly for dengue virus (DENV), there is a major difficulty in quantifying human-vector contacts due to the unknown coupled effect of key heterogeneities. To test the hypothesis that the reduction of human out-of-home mobility due to dengue illness will significantly influence population-level dynamics and the structure of DENV transmission chains, we extended an existing modeling framework to include social structure, disease-driven mobility reductions, and heterogeneous transmissibility from different infectious groups. Compared to a baseline model, naïve to human pre-symptomatic infectiousness and disease-driven mobility changes, a model including both parameters predicted an increase of 37% in the probability of a DENV outbreak occurring; a model including mobility change alone predicted a 15.5% increase compared to the baseline model. At the individual level, models including mobility change led to a reduction of the importance of out-of-home onward transmission (R, the fraction of secondary cases predicted to be generated by an individual) by symptomatic individuals (up to -62%) at the expense of an increase in the relevance of their home (up to +40%). An individual's positive contribution to R could be predicted by a GAM including a non-linear interaction between an individual's biting suitability and the number of mosquitoes in their home (>10 mosquitoes and 0.6 individual attractiveness significantly increased R). We conclude that the complex fabric of social relationships and differential behavioral response to dengue illness cause the fraction of symptomatic DENV infections to concentrate transmission in specific locations, whereas asymptomatic carriers (including individuals in their pre-symptomatic period) move the virus throughout the landscape. Our findings point to the difficulty of focusing vector control interventions reactively on the home of symptomatic individuals, as this approach will fail to contain virus propagation by visitors to their house and asymptomatic carriers.

9.
PLoS Negl Trop Dis ; 15(1): e0008992, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33465086

RESUMO

BACKGROUND: Dengue Fever (DF) is a viral disease primarily transmitted by Aedes (Ae.) aegypti mosquitoes. Outbreaks in Eastern Ethiopia were reported during 2014-2016. In May 2017, we investigated the first suspected DF outbreak from Kabridahar Town, Somali region (Eastern Ethiopia) to describe its magnitude, assess risk factors, and implement control measures. METHODS: Suspected DF cases were defined as acute febrile illness plus ≥2 symptoms (headache, fever, retro-orbital pain, myalgia, arthralgia, rash, or hemorrhage) in Kabridahar District residents. All reported cases were identified through medical record review and active searches. Severe dengue was defined as DF with severe organ impairment, severe hemorrhage, or severe plasma leakage. We conducted a neighborhood-matched case-control study using a subset of suspected cases and conveniently-selected asymptomatic community controls and interviewed participants to collect demographic and risk factor data. We tested sera by RT-PCR to detect dengue virus (DENV) and identify serotypes. Entomologists conducted mosquito surveys at community households to identify species and estimate larval density using the house index (HI), container index (CI) and Breteau index (BI), with BI≥20 indicating high density. RESULTS: We identified 101 total cases from May 12-31, 2017, including five with severe dengue (one death). The attack rate (AR) was 17/10,000. Of 21 tested samples, 15 (72%) were DENV serotype 2 (DENV 2). In the case-control study with 50 cases and 100 controls, a lack of formal education (AOR [Adjusted Odds Ratio] = 4.2, 95% CI [Confidence Interval] 1.6-11.2) and open water containers near the home (AOR = 3.0, 95% CI 1.2-7.5) were risk factors, while long-lasting insecticide treated-net (LLITN) usage (AOR = 0.21, 95% CI 0.05-0.79) was protective. HI and BI were 66/136 (49%) and 147 per 100 homes (147%) respectively, with 151/167 (90%) adult mosquitoes identified as Ae. aegypti. CONCLUSION: The epidemiologic, entomologic, and laboratory investigation confirmed a DF outbreak. Mosquito indices were far above safe thresholds, indicating inadequate vector control. We recommended improved vector surveillance and control programs, including best practices in preserving water and disposal of open containers to reduce Aedes mosquito density.

10.
PLoS Negl Trop Dis ; 15(1): e0008993, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33465094

RESUMO

Geographic pattern of dengue fever is changing due to the global environmental and climate changes in the 21st century. Evidence of community's knowledge, mosquito bite patterns and protective behavior practices in non-endemic regions is limited. This study examined the knowledge of dengue, mosquito bite patterns, protective behavior practices and their associated factors in Hong Kong, a non-endemic subtropical city. A population-based random telephone survey (n = 590) was conducted three weeks after the government announcement of a local dengue outbreak in August 2018. Sociodemographic status, awareness, knowledge, protective measures, bite patterns of mosquito were collected. Results indicated high level of community awareness of the local outbreak (95.2%), symptom identification (84.0%) and adoption of at least one mosquito protective measures (nearly 80%). About 40% of respondents reported that they were bitten by mosquitoes during the study period, a high mosquito season in Hong Kong. Mosquito bites were prevalent near grassy area (63.4%), at home (42.6%) and at public transportation waiting spots (39.6%). Younger people (< 25 years old), female, those who lived on lower floors (≤the 6th) and near grassy area were at higher risk of mosquito bites at home. Respondents perceived higher threat of dengue to society were more likely to practice mosquito prevention. While residential factors affected their indoor prevention, other socio-demographic factors affected the outdoor prevention. Practicing prevention behaviors were associated with self-reported mosquito bite at home. Furthermore, the general prevention uptake rate unchanged after the announcement of local dengue outbreak. Although the uptake rate of protective measures during August was high, 40% participants reported they were bitten. Also public locations are more common area for bites. which suggested stronger mosquito prevention and control on public environments and more personal protective behaviors should be advocated.

11.
Acta Trop ; : 105829, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33465350

RESUMO

The aim of this study is to investigate the feasibility and outcomes of using Gravid Oviposition Sticky (GOS) trap and dengue NS1 antigen tests for indoor and outdoor dengue/Aedes surveillance in the field. A one-year community-based study was carried out at Sungai Buloh Hospital Quarters, Selangor, Malaysia. GOS traps were first placed outdoors in three apartment blocks (Anggerik, Bunga Raya and Mawar). Beginning 29th week of the study, indoor traps were set in two apartment units on every floor in Anggerik. All female Aedes mosquitoes caught were tested for the presence of dengue NS1 antigen. Dengue seroprevalence and knowledge, attitude and practices on dengue prevention of the community and their reception to the surveillance approach were also assessed. Dengue-positive mosquitoes were detected at least 1 week before a dengue onset. More mosquitoes were caught indoors than outdoors in block Anggerik, but the total number of mosquitoes caught in all 3 blocks were similar. There was a significant difference in distribution of Ae. aegypti and Ae. albopictus between the 3 blocks. 66.1% and 3.4% of the community were positive for dengue IgG and IgM, respectively. Most respondents think that this surveillance method is Good (89%) and support its use nationwide. Dengue case ratio in the study apartment blocks decreased from year 2018 to 2019. This study demonstrated the practicality of performing proactive dengue/Aedes surveillance inside apartment units using the GOS traps. This surveillance method can be performed with immediate result output in the field.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33466497

RESUMO

Bhutan experienced its largest and first nation-wide dengue epidemic in 2019. The cases in 2019 were greater than the total number of cases in all the previous years. This study aimed to characterize the spatiotemporal patterns and effective reproduction number of this explosive epidemic. Weekly notified dengue cases were extracted from the National Early Warning, Alert, Response and Surveillance (NEWARS) database to describe the spatial and temporal patterns of the epidemic. The time-varying, temperature-adjusted cohort effective reproduction number was estimated over the course of the epidemic. The dengue epidemic occurred between 29 April and 8 December 2019 over 32 weeks, and included 5935 cases. During the epidemic, dengue expanded from six to 44 subdistricts. The effective reproduction number was <3 for most of the epidemic period, except for a ≈1 month period of explosive growth, coinciding with the monsoon season and school vacations, when the effective reproduction number peaked >30 and after which the effective reproduction number declined steadily. Interventions were only initiated 6 weeks after the end of the period of explosive growth. This finding highlights the need to reinforce the national preparedness plan for outbreak response, and to enable the early detection of cases and timely response.

13.
Preprint | bioRxiv | ID: ppbiorxiv-426295

RESUMO

Special Infectious Agent Unit in King Fahd Medical Research Center at King Abdulaziz University, Jeddah, Saudi Arabia, has pursed the anti-viral project field to optimize the group of medicinal plants for human-infectious diseases. We have begun virtually in this field since COVID-19 pandemic, besides our divergence in the infectious agents. In this study and based on the previous review, Hypericum perforatum (St. Johns Wort) and Echinacea (gaia HERBS(R)) were tested in vitro using Vero E6 cells for their anti-viral effects against the newly identified Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) through its infectious cycle from 0 to 48 hours post infection. The hypericin (0.9 mg) of H. perforatum and the different parts (roots, seeds, aerial) of two types of Echinacea species (Echinacea purpurea and Echinacea angustifolia) were examined their efficacy in certain concentration and under light-dependent anti-viral activities to measure the inhibition of the SARS-CoV-2 mRNA expression of RNA-dependent RNA polymerase (RdRP) gene and the viral load with quantitative real-time polymerase chain reaction (qRT-PCR), and to assess the neutralization of the SARS-CoV-2 spike receptor binding on cell culture assay. Interestingly, the mixture (H.E.) of 100 mg/mL of H. perforatum and Echinacea was tested too on SARS-CoV-2 and showed crucial anti-viral activity competing H. perforatum then Echinacea effects as anti-viral treatment. Therefore, the results of gaia HERBS(R) products, H. perforatum and Echinacea species, applied in this study showed significant anti-viral and virucidal effects in the following order of potency: H. perforatum, H.E., and Echinacea on SARS-CoV-2 infectious cycle; and will definitely required a set up of clinical trial with specific therapeutic protocol based on the outcome of this study. Author SummaryAfter an outbreak of Rift Valley Fever in the Southern region of Saudi Arabia, particularly in May 2003, Special Infectious Agents Unit (SIAU) was established and founded by Prof. Esam Ibraheem Azhar. This unit contains a full range of facilities including Biosafety Level 3, allows him and his research groups to ambulate and culture risk group 3 viruses in Saudi Arabia & Gulf States for the first time. Since that time, SIAU and our international collaboration have been extended to implement a standard protocols in the infectious agents diagnostics procedure through different mode of collaboration including exchange of expertise, joint research program and more recently a technology transfer agreements with number of international institute sharing same interests. Furthermore, we have been engaged in number of researches related to Hajj & Umrah plus number of national services with the Ministry of Health (MOH) through which, we utilize our Mobile biosafety level 3 Lab to enhance the diagnostics of MERS CoV in the Holly sites during Hajj since 2014. In our SIAU and with a powerful team, we have excellent researches made valuable contributions through in vivo and in vitro animal and human studies, and several human viral pathogens which are a threat to global health security due to millions of pilgrims visiting Saudi Arabia every year from 182 countries: with particular areas of interests in: Alkhurma Viral Hemorrhagic Fever, Dengue Hemorrhagic Fever Viruses, Rift Valley Fever Virus, MERS-CoV and more recently the new global infectious diseases threat, Sever Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2).

14.
Artigo em Inglês | MEDLINE | ID: mdl-33439764

RESUMO

Dengue fever, caused by the dengue virus (DENV), is one of the most important reemerging viral diseases transmitted by arthropods worldwide. DENV is maintained in nature in two transmission cycles: urban and sylvatic. The latter has only been recorded in Africa and Asia and involves nonhuman primates as natural hosts, although it has been suggested that other mammals may play a secondary role as potential reservoir host, including bats. The objective of this article is to review the current state of knowledge about DENV-positive bats in the Americas and to determine what ecological and human impact variables could favor DENV infection in bats. We performed a search of published studies on natural and experimental DENV infection in bats. From 1952 to 2019, 14 studies have been carried out (71.4% in the last decade) examining DENV infection in bats in seven countries of the Americas. DENV infection was examined in 1884 bats of 63 species and DENV was detected in 19 of these species. Clench's model estimated that more than 75 species could be carriers of DENV; therefore, considering that at least 350 species of bats are distributed in the Americas, to detect 95% of the DENV-bearing species, it would be necessary to examine about 10,206 bats of ∼287 species that have not been analyzed until 2019. The species with the highest number of positive cases were Molossus sinaloae and Artibeus jamaicensis. Species, colony size, mean annual temperature, mean annual precipitation, human population size, and bat collection site (site inhabited by humans, vegetation cover, and caves) contributed to explain the variation in DENV detection in bats in the Americas. These results provide evidence on the exposure of bats to DENV in different geographic areas of the Americas and a bat sylvatic transmission cycle is very likely to be occurring, where bats may be either accidental hosts, dead-end hosts, or potential reservoir hosts for DENV.

15.
Proc Natl Acad Sci U S A ; 118(3)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33441483

RESUMO

Flaviviruses, including dengue and Zika, are widespread human pathogens; however, no broadly active therapeutics exist to fight infection. Recently, remodeling of endoplasmic reticulum (ER) proteostasis by pharmacologic regulators, such as compound 147, was shown to correct pathologic ER imbalances associated with protein misfolding diseases. Here, we establish an additional activity of compound 147 as an effective host-centered antiviral agent against flaviviruses. Compound 147 reduces infection by attenuating the infectivity of secreted virions without causing toxicity in host cells. Compound 147 is a preferential activator of the ATF6 pathway of the ER unfolded protein response, which requires targeting of cysteine residues primarily on protein disulfide isomerases (PDIs). We find that the antiviral activity of 147 is independent of ATF6 induction but does require modification of reactive thiols on protein targets. Targeting PDIs and additional non-PDI targets using RNAi and other small-molecule inhibitors was unable to recapitulate the antiviral effects, suggesting a unique polypharmacology may mediate the activity. Importantly, 147 can impair infection of multiple strains of dengue and Zika virus, indicating that it is suitable as a broad-spectrum antiviral agent.

16.
PLoS One ; 16(1): e0244937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33406122

RESUMO

BACKGROUND: The impact of SARS-CoV-2 in regions endemic for both Dengue and Chikungunya is still not fully understood. Considering that symptoms/clinical features displayed during Dengue, Chikungunya and SARS-CoV-2 acute infections are similar, undiagnosed cases of SARS-CoV-2 in co-endemic areas may be more prevalent than expected. This study was conducted to assess the prevalence of covert cases of SARS-CoV-2 among samples from patients with clinical symptoms compatible with either Dengue or Chikungunya viral infection in the state of Espírito Santo, Brazil. METHODS: Presence of immunoglobulin G (IgG) antibody specific to SARS-CoV-2 nucleoprotein was detected using a chemiluminescent microparticle immunoassay in samples from 7,370 patients, without previous history of COVID-19 diagnosis, suspected of having either Dengue (n = 1,700) or Chikungunya (n = 7,349) from December 1st, 2019 to June 30th, 2020. FINDINGS: Covert cases of SARS-CoV-2 were detected in 210 (2.85%) out of the 7,370 serum samples tested. The earliest undiagnosed missed case of COVID-19 dated back to a sample collected on December 18, 2019, also positive for Dengue Virus. Cross-reactivity with either Dengue virus or other common coronaviruses were not observed. INTERPRETATION: Our findings demonstrate that concomitant Dengue or Chikungunya outbreaks may difficult the diagnosis of SARS-CoV-2 infections. To our knowledge, this is the first study to demonstrate, with a robust sample size (n = 7,370) and using highly specific and sensitive chemiluminescent microparticle immunoassay method, that covert SARS-CoV-2 infections are more frequent than previously expected in Dengue and Chikungunya hyperendemic regions. Moreover, our results suggest that SAR-CoV-2 cases were occurring prior to February, 2020, and that these undiagnosed missed cases may have contributed to the fast expansion of SARS-CoV-2 outbreak in Brazil. Data presented here demonstrate that in arboviral endemic regions, SARS-CoV-2 infection must be always considered, regardless of the existence of a previous positive diagnosis for Dengue or Chikungunya.


Assuntos
/epidemiologia , Febre de Chikungunya/epidemiologia , Dengue/epidemiologia , Adulto , Anticorpos Antivirais/sangue , Brasil/epidemiologia , Vírus Chikungunya/patogenicidade , Coinfecção/epidemiologia , Vírus da Dengue/patogenicidade , Erros de Diagnóstico/tendências , Surtos de Doenças , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Prevalência , /patogenicidade
17.
Parasit Vectors ; 14(1): 41, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430945

RESUMO

BACKGROUND: Despite the licensure of the world's first dengue vaccine and the current development of additional vaccine candidates, successful Aedes control remains critical to the reduction of dengue virus transmission. To date, there is still limited literature that attempts to explain the spatio-temporal population dynamics of Aedes mosquitoes within a single city, which hinders the development of more effective citywide vector control strategies. Narrowing this knowledge gap requires consistent and longitudinal measurement of Aedes abundance across the city as well as examination of relationships between variables on a much finer scale. METHODS: We utilized a high-resolution longitudinal dataset generated from Singapore's islandwide Gravitrap surveillance system over a 2-year period and built a Bayesian hierarchical model to explain the spatio-temporal dynamics of Aedes aegypti and Aedes albopictus in relation to a wide range of environmental and anthropogenic variables. We also created a baseline during our model assessment to serve as a benchmark to be compared with the model's out-of-sample prediction/forecast accuracy as measured by the mean absolute error. RESULTS: For both Aedes species, building age and nearby managed vegetation cover were found to have a significant positive association with the mean mosquito abundance, with the former being the strongest predictor. We also observed substantial evidence of a nonlinear effect of weekly maximum temperature on the Aedes abundance. Our models generally yielded modest but statistically significant reductions in the out-of-sample prediction/forecast error relative to the baseline. CONCLUSIONS: Our findings suggest that public residential estates with older buildings and more nearby managed vegetation should be prioritized for vector control inspections and community advocacy to reduce the abundance of Aedes mosquitoes and the risk of dengue transmission.

18.
Parasit Vectors ; 14(1): 4, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397448

RESUMO

BACKGROUND: In a recent study using DNA barcoding, we identified the plants fed upon by four Afro-tropical mosquito species that vector dengue, malaria, and Rift Valley fever. Herein, we have expanded on this study by investigating the role of three of the plants, Pithecellobium dulce (Fabaceae), Leonotis nepetifolia (Lamiaceae), and Opuntia ficus-indica (Cactaceae), on the survival, fecundity, and egg viability of the dengue vector Aedes aegypti. METHODS: We tested these effects using females that received (i) an initial three rations of blood meals and (ii) no blood meal at all. Two controls were included: age-matched females fed on glucose solution with or without an initial blood meal and those fed exclusively on blood meals. Data were collected daily over a 30-day period. The amino acid contents of Ae. aegypti guts and their respective diets were detected by coupled liquid chromatography-mass spectrometry. RESULTS: Females fed on P. dulce and an exclusively blood meal diet had a shorter survival than those fed on glucose. On the other hand, females fed on L. nepetifolia survived longer than those fed exclusively on blood meals, whereas those fed on O. ficus-indica had the shortest survival time. With an initial blood meal, females fed on L. nepetifolia laid 1.6-fold more eggs while those fed on the other diets laid fewer eggs compared to those fed exclusively on blood meals. Hatching rates of the eggs laid varied with the diet. Mass spectroscopic analysis of gut contents of mosquitoes exposed to the different diets showed qualitative and quantitative differences in their amino acid levels. CONCLUSION: Our findings highlight the central role of plant nutrients in the reproductive fitness of dengue vectors, which may impact their disease transmission potential.

19.
Med Sci Monit Basic Res ; 27: e929207, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33397841

RESUMO

As of November 25, 2020, over 60 million people have been infected worldwide by COVID-19, causing almost 1.43 million deaths. Puzzling low incidence numbers and milder, non-fatal disease have been observed in Thailand and its Southeast (SE) Asian neighbors. Elusive genetic mechanisms might be operative, as a multitude of genetic factors are widely shared between the SE Asian populations, such as the more than 60 different thalassemia syndromes (principally dominated by the HbE trait). In this study, we have plotted COVID-19 infection and death rates in SE Asian (SEA) countries against heterozygote HbE and thalassemia carrier prevalence. COVID-19 infection and death incidence numbers appear inversely correlated with the prevalence of HbE and thalassemia heterozygote populations. We posit that the evolutionary protective effect of the HbE and other thalassemic variants against malaria and the dengue virus may extend its advantage to resistance to COVID-19 infection, as HbE heterozygote population prevalence appears to be positively correlated with immunity to COVID-19. Host immune system modulations induce antiviral interferon responses and alter structural protein integrity, thereby inhibiting cellular access and viral replication. These changes are possibly engendered by HbE carrier miRNAs. Proving this hypothesis is important, as it may shed light on the mechanism of viral resistance and lead to novel antiviral treatments. This development can thus guide decision-making and action to prevent COVID-19 infection.


Assuntos
/genética , Resistência à Doença/genética , Suscetibilidade a Doenças , Hemoglobina E/genética , Antivirais/uso terapêutico , Grupo com Ancestrais do Continente Asiático , /imunologia , Dengue/genética , Heterozigoto , Humanos , Sistema Imunitário , Interferons , Malária/genética , Pandemias , Prevalência , Tailândia/epidemiologia , Talassemia/epidemiologia , Talassemia/genética
20.
Sci Rep ; 11(1): 511, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436908

RESUMO

Dengue is an arboviral infection with high rates of morbidity and mortality throughout the tropics and sub-tropics. This work studied the status of pentraxin (CRP/SAP) protein, ferritin, TNF-α and IL-1ß levels in Dengue patients of different pathophysiological manifestations. Accordingly, clinically confirmed Dengue cases (n = 97) were enrolled and subsequently blood parameters were studied by Haematology cell counter and Biochemistry Autoanalyser. CRP, SAP, ferritin, TNF-α and IL-1ß ELISA were done in all the samples by using standard ELISA kits. Statistical Analysis was done in all the experiments. The levels of CRP (p < 0.0001), SAP (p < 0.0001), ferritin (p < 0.0001), TNF-α (p < 0.0001) and IL-1ß (p < 0.0001) were high in patients with Severe Dengue as compared to Dengue without warning signs. High levels of SGOT, SGPT and decreased platelet counts were found in severe patients as compared to Healthy donor. CRP/SAP as well as TNF-α/IL-1ß were independently associated with both dengue severity and overall disease manifestation. Statistically significant increased CRP, SAP, ferritin, TNF-α and IL-1ß titres were correlated in patients with severe clinical manifestations as compared to mild disease forms of dengue. Elevated levels of pentraxin, TNF-α/IL-1ß in blood during dengue infection could act as an early predictor in Severe Dengue infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA