Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.006
Filtrar
1.
Wiley Interdiscip Rev RNA ; 15(2): e1844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576085

RESUMO

RNA-based therapeutics offer a flexible and reversible approach for treating genetic disorders, such as antisense oligonucleotides, RNA interference, aptamers, mRNA vaccines, and RNA editing. In recent years, significant advancements have been made in RNA base editing to correct disease-relevant point mutations. These achievements have significantly influenced the fields of biotechnology, biomedical research and therapeutics development. In this article, we provide a comprehensive overview of the design and performance of contemporary RNA base editors, including A-to-I, C-to-U, A-to-m6A, and U-to-Ψ. We compare recent innovative developments and highlight their applications in disease-relevant contexts. Lastly, we discuss the limitations and future prospects of utilizing RNA base editing for therapeutic purposes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Development.


Assuntos
Sistemas CRISPR-Cas , RNA , RNA/genética , Edição de Genes , Oligonucleotídeos Antissenso , Interferência de RNA
2.
Sci Rep ; 14(1): 6506, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499569

RESUMO

Pathogenic variants in WDR45 on chromosome Xp11 cause neurodegenerative disorder beta-propeller protein-associated neurodegeneration (BPAN). Currently, there is no effective therapy for BPAN. Here we report a 17-year-old female patient with BPAN and show that antisense oligonucleotide (ASO) was effective in vitro. The patient had developmental delay and later showed extrapyramidal signs since the age of 15 years. MRI findings showed iron deposition in the globus pallidus and substantia nigra on T2 MRI. Whole genome sequencing and RNA sequencing revealed generation of pseudoexon due to inclusion of intronic sequences triggered by an intronic variant that is remote from the exon-intron junction: WDR45 (OMIM #300526) chrX(GRCh37):g.48935143G > C, (NM_007075.4:c.235 + 159C > G). We recapitulated the exonization of intron sequences by a mini-gene assay and further sought antisense oligonucleotide that induce pseudoexon skipping using our recently developed, a dual fluorescent splicing reporter system that encodes two fluorescent proteins, mCherry, a transfection marker designed to facilitate evaluation of exon skipping and split eGFP, a splicing reaction marker. The results showed that the 24-base ASO was the strongest inducer of pseudoexon skipping. Our data presented here have provided supportive evidence for in vivo preclinical studies.


Assuntos
Oligonucleotídeos Antissenso , Splicing de RNA , Feminino , Humanos , Adolescente , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Mutação , Éxons/genética , Proteínas de Transporte/genética
3.
Biomed Pharmacother ; 173: 116390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460362

RESUMO

Antisense oligonucleotides (ASONs)-based therapeutics offers tremendous promise for the treatment of diverse diseases. However, there is still a need to develop ASONs with enhanced stability against enzymes, improved drug delivery, and enhanced biological potency. In this study, we propose a novel anisamide (AA)-conjugated hairpin oligonucleotide prodrug loading with chemotherapeutic agent (doxorubicin, DOX) (AA-loop-ASON/DOX) for oncotherapy. Results indicated that the introduction of a hairpin conformation and AA ligand in prodrug significantly improved the stability against enzymatic hydrolysis, as well as the cellar uptake of ASONs and DOX. The incorporation of disulfide bonds could trigger mechanical opening, resulting in the release of ASON and DOX in response to the intracellular glutathione (GSH) in tumors. Moreover, the composite of DOX-loading ASONs prodrug exhibited a robust and selective inhibition of tumor cell proliferation. This paper introduces a novel design concept for nucleic acid-based therapeutics, aiming to enhance the delivery of drug and improve biological effectiveness.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/química , Oligonucleotídeos Antissenso/farmacologia , Doxorrubicina , Sistemas de Liberação de Medicamentos , Micelas , Neoplasias/tratamento farmacológico
4.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542364

RESUMO

Retinitis pigmentosa 11 is an untreatable, dominantly inherited retinal disease caused by heterozygous mutations in pre-mRNA processing factor 31 PRPF31. The expression level of PRPF31 is linked to incomplete penetrance in affected families; mutation carriers with higher PRPF31 expression can remain asymptomatic. The current study explores an antisense oligonucleotide exon skipping strategy to treat RP11 caused by truncating mutations within PRPF31 exon 12 since it does not appear to encode any domains essential for PRPF31 protein function. Cells derived from a patient carrying a PRPF31 1205C>A nonsense mutation were investigated; PRPF31 transcripts encoded by the 1205C>A allele were undetectable due to nonsense-mediated mRNA decay, resulting in a 46% reduction in PRPF31 mRNA, relative to healthy donor cells. Antisense oligonucleotide-induced skipping of exon 12 rescued the open reading frame with consequent 1.7-fold PRPF31 mRNA upregulation in the RP11 patient fibroblasts. The level of PRPF31 upregulation met the predicted therapeutic threshold of expression inferred in a non-penetrant carrier family member harbouring the same mutation. This study demonstrated increased PRPF31 expression and retention of the nuclear translocation capability for the induced PRPF31 isoform. Future studies should evaluate the function of the induced PRPF31 protein on pre-mRNA splicing in retinal cells to validate the therapeutic approach for amenable RP11-causing mutations.


Assuntos
Oligonucleotídeos Antissenso , Precursores de RNA , Retinite Pigmentosa , Humanos , Precursores de RNA/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Fases de Leitura Aberta , Mutação , Códon sem Sentido , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Linhagem
5.
J Colloid Interface Sci ; 664: 338-348, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479270

RESUMO

Combination therapies demand co-delivery platforms with efficient entrapment of distinct payloads and specific delivery to cells and possibly organelles. Herein, we introduce the combination of two therapeutic modalities, gene and photodynamic therapy, in a purely peptidic platform. The simultaneous formation and cargo loading of the multi-micellar platform is governed by self-assembly at the nanoscale. The multi-micellar architecture of the nanocarrier and the positive charge of its constituent micelles offer controlled dual loading capacity with distinct locations for a hydrophobic photosensitizer (PS) and negatively charged antisense oligonucleotides (ASOs). Moreover, the nuclear localization signal (NLS) sequence built-in the peptide targets PS + ASO-loaded nanocarriers to the nucleus. Breast cancer cells treated with nanocarriers demonstrated photo-triggered enhancement of radical oxygen species (ROS) associated with increased cell death. Besides, delivery of ASO payloads resulted in up to 90 % knockdown of Bcl-2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. Simultaneous delivery of PS and ASO elicited synergistic apoptosis to an extent that could not be reached by singly loaded nanocarriers or the free form of the drugs. Both, the distinct location of loaded compounds that prevents them from interfering with each other, and the highly efficient cellular delivery support the great potential of this versatile peptide platform in combination therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Neoplasias/tratamento farmacológico , Apoptose , Micelas , Linhagem Celular Tumoral
6.
J Exp Clin Cancer Res ; 43(1): 70, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443968

RESUMO

BACKGROUND: The combination of radiotherapy and immunotherapy (immunoradiotherapy) has been increasingly used for treating a wide range of cancers. However, some tumors are resistant to immunoradiotherapy. We have previously shown that MER proto-oncogene tyrosine kinase (MerTK) expressed on macrophages mediates resistance to immunoradiotherapy. We therefore sought to develop therapeutics that can mitigate the negative impact of MerTK. We designed and developed a MerTK specific antisense oligonucleotide (ASO) and characterized its effects on eliciting an anti-tumor immune response in mice. METHODS: 344SQR cells were injected into the right legs on day 0 and the left legs on day 4 of 8-12 weeks old female 129sv/ev mice to establish primary and secondary tumors, respectively. Radiation at a dose of 12 Gy was given to the primary tumors on days 8, 9, and 10. Mice received either anti-PD-1, anti-CTLA-4 or/and MerTK ASO starting from day 1 post tumor implantation. The composition of the tumor microenvironment and the level of MerTK on macrophages in the tumor were evaluted by flow cytometry. The expression of immune-related genes was investigated with NanoString. Lastly, the impact of MerTK ASO on the structure of the eye was histologically evaluated. RESULTS: Remarkably, the addition of MerTK ASO to XRT+anti-PD1 and XRT+anti-CTLA4 profoundly slowed the growth of both primary and secondary tumors and significantly extended survival. The ASO significantly reduced the expression of MerTK in tumor-associated macrophages (TAMs), reprograming their phenotype from M2 to M1. In addition, MerTK ASO increased the percentage of Granzyme B+ CD8+ T cells in the secondary tumors when combined with XRT+anti-CTLA4. NanoString results demonstrated that the MerTK ASO favorably modulated immune-related genes for promoting antitumor immune response in secondary tumors. Importantly, histological analysis of eye tissues demonstrated that unlike small molecules, the MerTK ASO did not produce any detectable pathology in the eyes. CONCLUSIONS: The MerTK ASO can significantly downregulate the expression of MerTK on TAMs, thereby promoting antitumor immune response. The combination of MerTK ASO with immunoradiotherapy can safely and significantly slow tumor growth and improve survival.


Assuntos
Oligonucleotídeos Antissenso , Radioimunoterapia , Feminino , Animais , Camundongos , Oligonucleotídeos Antissenso/farmacologia , Linfócitos T CD8-Positivos , c-Mer Tirosina Quinase/genética , Proto-Oncogenes , Resultado do Tratamento
7.
ACS Infect Dis ; 10(3): 971-987, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38385613

RESUMO

Oligonucleotides offer a unique opportunity for sequence specific regulation of gene expression in bacteria. A fundamental question to address is the choice of oligonucleotide, given the large number of options available. Different modifications varying in RNA binding affinities and cellular uptake are available but no comprehensive comparisons have been performed. Herein, the efficiency of blocking expression of ß-galactosidase (ß-Gal) in E. coli was evaluated utilizing different antisense oligomers (ASOs). Fluorescein (FAM)-labeled oligomers were used to understand their differences in bacterial uptake. Flow cytometry analysis revealed significant differences in uptake, with high fluorescence seen in cells treated with FAM-labeled peptidic nucleic acid (PNA), phosphorodiamidate morpholino oligonucleotide (PMO) and phosphorothioate (PS) oligomers, and low fluorescence observed in cells treated with phosphodiester (PO) oligomers. Thermal denaturation (Tm) of oligomer:RNA duplexes and isothermal titration calorimetry (ITC) studies reveal that ASO binding to target RNA demonstrates a good correlation between Tm and Kd values. There was no correlation between Kd values and reduction of ß-Gal activity in bacterial cells. However, cell-free translation assays demonstrated a direct relationship between Kd values and inhibition of gene expression by antisense oligomers, with tight binding oligomers such as LNA being the most efficient. Membrane active compounds such as polymyxin B and A22 further improved the cellular uptake of FAM-PNA and FAM-PS oligomers in wild-type E. coli cells. PNA and PMO were most effective in cellular uptake and reducing ß-Gal activity as compared to oligomers with PS or those with PO linkages. Overall, cell uptake of the oligomers is shown as the key determinant in predicting their differences in bacterial antisense inhibition, and the RNA affinity is the key determinant in inhibition of gene expression in cell free systems.


Assuntos
Escherichia coli , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Oligonucleotídeos , Morfolinos , RNA/química , RNA/metabolismo , Expressão Gênica
8.
Curr Opin Endocrinol Diabetes Obes ; 31(2): 70-77, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334488

RESUMO

PURPOSE OF REVIEW: The aim of this review is to present the clinical indications of apolipoprotein C-III (apoC3) inhibition in the therapeutic arsenal for the treatment of lipid disorders and associated risks and to compare the most advanced modalities of apoC3 inhibition currently available or in development, specifically APOC3 antisense oligonucleotides (ASO) and small interfering RNA (siRNA). RECENT FINDINGS: ApoC3 inhibition significantly decreases triglyceride levels by mechanisms coupling both lipoprotein lipase (LPL) upregulation and LPL-independent mechanisms. The main apoC3 inhibitors in advanced clinical development are the GalNAc-ASO olezarsen and the GalNAc-siRNA plozasiran. Clinical studies conducted with volanesorsen, the olezarsen precursor, showed a favorable effect on hepatic steatosis (nonalcoholic fatty liver disease, NAFLD). Olezarsen does not appear to be associated with the main side effects attributed to volanesorsen including thrombocytopenia. Plozasiran is in advanced clinical development and requires subcutaneous injection every 3 months and present to-date an efficacy and safety profile comparable to that of the monthly ASO. SUMMARY: Inhibition of apoC3 is effective across all the spectrum of hypertriglyceridemia, might have a favorable effect on hepatic steatosis (NAFLD) and the effect of apoC3 inhibition on cardiovascular risk is not limited to its effect on plasma triglycerides. APOC3 GalNAc-conjugated ASO and siRNA are both effective in decreasing plasma apoC3 and triglyceride levels.


Assuntos
Dislipidemias , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Apolipoproteína C-III/genética , Oligonucleotídeos Antissenso/uso terapêutico , Triglicerídeos , Dislipidemias/genética , Dislipidemias/terapia
9.
J Am Chem Soc ; 146(6): 3974-3983, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299512

RESUMO

Biologics, including proteins and antisense oligonucleotides (ASOs), face significant challenges when it comes to achieving intracellular delivery within specific organs or cells through systemic administrations. In this study, we present a novel approach for delivering proteins and ASOs to liver cells, both in vitro and in vivo, using conjugates that tether N-acetylated galactosamine (GalNAc)-functionalized, cell-penetrating polydisulfides (PDSs). The method involves the thiol-bearing cargo-mediated ring-opening polymerization of GalNAc-functionalized lipoamide monomers through the so-called aggregation-induced polymerization, leading to the formation of site-specific protein/ASO-PDS conjugates with narrow dispersity. The hepatocyte-selective intracellular delivery of the conjugates arises from a combination of factors, including first GalNAc binding with ASGPR receptors on liver cells, leading to cell immobilization, and the subsequent thiol-disulfide exchange occurring on the cell surface, promoting internalization. Our findings emphasize the critical role of the close proximity of the PDS backbone to the cell surface, as it governs the success of thiol-disulfide exchange and, consequently, cell penetration. These conjugates hold tremendous potential in overcoming the various biological barriers encountered during systemic and cell-specific delivery of biomacromolecular cargos, opening up new avenues for the diagnosis and treatment of a range of liver-targeting diseases.


Assuntos
Produtos Biológicos , Galactosamina , Galactosamina/química , Hepatócitos/metabolismo , Oligonucleotídeos Antissenso/química , Dissulfetos/metabolismo , Compostos de Sulfidrila/metabolismo , Produtos Biológicos/metabolismo
10.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338338

RESUMO

Liver damage caused by various factors results in fibrosis and inflammation, leading to cirrhosis and cancer. Fibrosis results in the accumulation of extracellular matrix components. The role of STAT proteins in mediating liver inflammation and fibrosis has been well documented; however, approved therapies targeting STAT3 inhibition against liver disease are lacking. This study investigated the anti-fibrotic and anti-inflammatory effects of STAT3 decoy oligodeoxynucleotides (ODN) in hepatocytes and liver fibrosis mouse models. STAT3 decoy ODN were delivered into cells using liposomes and hydrodynamic tail vein injection into 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice in which liver injury was induced. STAT3 target gene expression changes were verified using qPCR and Western blotting. Liver tissue fibrosis and bile duct proliferation were assessed in animal experiments using staining techniques, and macrophage and inflammatory cytokine distribution was verified using immunohistochemistry. STAT3 decoy ODN reduced fibrosis and inflammatory factors in liver cancer cell lines and DDC-induced liver injury mouse model. These results suggest that STAT3 decoy ODN may effectively treat liver fibrosis and must be clinically investigated.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatite , Neoplasias Hepáticas , Camundongos , Animais , Oligodesoxirribonucleotídeos/farmacologia , Oligodesoxirribonucleotídeos/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Linhagem Celular , Oligonucleotídeos Antissenso/metabolismo , Hepatite/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo
11.
J Lipid Res ; 65(3): 100514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309418

RESUMO

Human genetic evidence suggests a protective role of loss-of-function variants in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) for liver fibrotic diseases. Although there is limited preclinical experimental data on Hsd17b13 antisense oligonucleotide (ASO) or siRNA in a fibrosis model, several ASO and siRNA approaches are being tested clinically as potential therapies for nonalcoholic steatohepatitis (NASH). The aim of this study was to assess the therapeutic potential of Hsd17b13 ASO in a preclinical advanced NASH-like hepatic fibrosis in vivo model. In vitro testing on primary hepatocytes demonstrated that Hsd17b13 ASO exhibited strong efficacy and specificity for knockdown of the Hsd17b13 gene. In choline-deficient, L-amino acid-defined, HFD (CDAHFD)-induced steatotic and fibrotic mice, therapeutic administration of Hsd17b13 ASO resulted in a significant and dose-dependent reduction of hepatic Hsd17b13 gene expression. The CDAHFD group exhibited considerably elevated liver enzyme levels, hepatic steatosis score, hepatic fibrosis, and increased fibrotic and inflammatory gene expression, indicating an advanced NASH-like hepatic fibrosis phenotype. Although Hsd17b13 ASO therapy significantly affected hepatic steatosis, it had no effect on hepatic fibrosis. Our findings demonstrate, for the first time, that Hsd17b13 ASO effectively suppressed Hsd17b13 gene expression both in vitro and in vivo, and had a modulatory effect on hepatic steatosis in mice, but did not affect fibrosis in the CDAHFD mouse model of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Modelos Animais de Doenças , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/metabolismo
12.
Curr Atheroscler Rep ; 26(4): 111-118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311667

RESUMO

PURPOSE OF REVIEW: Lipoprotein(a) is an important causal risk factor for cardiovascular disease but currently no available medication effectively reduces lipoprotein(a). This review discusses recent findings regarding lipoprotein(a) as a causal risk factor and therapeutic target in cardiovascular disease, it reviews current clinical recommendations, and summarizes new lipoprotein(a) lowering drugs. RECENT FINDINGS: Epidemiological and genetic studies have established lipoprotein(a) as a causal risk factor for cardiovascular disease and mortality. Guidelines worldwide now recommend lipoprotein(a) to be measured once in a lifetime, to offer patients with high lipoprotein(a) lifestyle advise and initiate other cardiovascular medications. Clinical trials including antisense oligonucleotides, small interfering RNAs, and an oral lipoprotein(a) inhibitor have shown great effect on lowering lipoprotein(a) with reductions up to 106%, without any major adverse effects. Recent clinical phase 1 and 2 trials show encouraging results and ongoing phase 3 trials will hopefully result in the introduction of specific lipoprotein(a) lowering drugs to lower the risk of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Lipoproteína(a) , Humanos , Lipoproteína(a)/genética , Fatores de Risco , Doenças Cardiovasculares/etiologia , Oligonucleotídeos Antissenso/uso terapêutico , Fatores de Risco de Doenças Cardíacas
13.
Nat Commun ; 15(1): 1880, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424098

RESUMO

Drugs that target pre-mRNA splicing hold great therapeutic potential, but the quantitative understanding of how these drugs work is limited. Here we introduce mechanistically interpretable quantitative models for the sequence-specific and concentration-dependent behavior of splice-modifying drugs. Using massively parallel splicing assays, RNA-seq experiments, and precision dose-response curves, we obtain quantitative models for two small-molecule drugs, risdiplam and branaplam, developed for treating spinal muscular atrophy. The results quantitatively characterize the specificities of risdiplam and branaplam for 5' splice site sequences, suggest that branaplam recognizes 5' splice sites via two distinct interaction modes, and contradict the prevailing two-site hypothesis for risdiplam activity at SMN2 exon 7. The results also show that anomalous single-drug cooperativity, as well as multi-drug synergy, are widespread among small-molecule drugs and antisense-oligonucleotide drugs that promote exon inclusion. Our quantitative models thus clarify the mechanisms of existing treatments and provide a basis for the rational development of new therapies.


Assuntos
Atrofia Muscular Espinal , Pirimidinas , Splicing de RNA , Humanos , Splicing de RNA/genética , Compostos Azo , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Sítios de Splice de RNA , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética
14.
Mol Ther ; 32(4): 935-951, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38327047

RESUMO

Angelman syndrome (AS), an early-onset neurodevelopmental disorder characterized by abnormal gait, intellectual disabilities, and seizures, occurs when the maternal allele of the UBE3A gene is disrupted, since the paternal allele is silenced in neurons by the UBE3A antisense (UBE3A-AS) transcript. Given the importance of early treatment, we hypothesized that prenatal delivery of an antisense oligonucleotide (ASO) would downregulate the murine Ube3a-AS, resulting in increased UBE3A protein and functional rescue. Using a mouse model with a Ube3a-YFP allele that reports on-target ASO activity, we found that in utero, intracranial (IC) injection of the ASO resulted in dose-dependent activation of paternal Ube3a, with broad biodistribution. Accordingly, in utero injection of the ASO in a mouse model of AS also resulted in successful restoration of UBE3A and phenotypic improvements in treated mice on the accelerating rotarod and fear conditioning. Strikingly, even intra-amniotic (IA) injection resulted in systemic biodistribution and high levels of UBE3A reactivation throughout the brain. These findings offer a novel strategy for early treatment of AS using an ASO, with two potential routes of administration in the prenatal window. Beyond AS, successful delivery of a therapeutic ASO into neurons has implications for a clinically feasible prenatal treatment for numerous neurodevelopmental disorders.


Assuntos
Síndrome de Angelman , Animais , Camundongos , Síndrome de Angelman/terapia , Síndrome de Angelman/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Distribuição Tecidual , Encéfalo/metabolismo , Fenótipo , Ubiquitina-Proteína Ligases/genética , Modelos Animais de Doenças
15.
J Clin Invest ; 134(4)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357922

RESUMO

Chronic and elevated levels of the antiviral cytokine IFN-α in the brain are neurotoxic. This is best observed in patients with genetic cerebral interferonopathies such as Aicardi-Goutières syndrome. Cerebral interferonopathies typically manifest in early childhood and lead to debilitating disease and premature death. There is no cure for these diseases with existing treatments largely aimed at managing symptoms. Thus, an effective therapeutic strategy is urgently needed. Here, we investigated the effect of antisense oligonucleotides targeting the murine IFN-α receptor (Ifnar1 ASOs) in a transgenic mouse model of cerebral interferonopathy. Intracerebroventricular injection of Ifnar1 ASOs into transgenic mice with brain-targeted chronic IFN-α production resulted in a blunted cerebral interferon signature, reduced neuroinflammation, restoration of blood-brain barrier integrity, absence of tissue destruction, and lessened neuronal damage. Remarkably, Ifnar1 ASO treatment was also effective when given after the onset of neuropathological changes, as it reversed such disease-related features. We conclude that ASOs targeting the IFN-α receptor halt and reverse progression of IFN-α-mediated neuroinflammation and neurotoxicity, opening what we believe to be a new and promising approach for the treatment of patients with cerebral interferonopathies.


Assuntos
Interferon Tipo I , Doenças do Sistema Nervoso , Pré-Escolar , Humanos , Camundongos , Animais , Doenças Neuroinflamatórias , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Interferon-alfa/genética , Camundongos Transgênicos
16.
Mol Cancer ; 23(1): 40, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383439

RESUMO

Finding effective therapeutic targets to treat NRAS-mutated melanoma remains a challenge. Long non-coding RNAs (lncRNAs) recently emerged as essential regulators of tumorigenesis. Using a discovery approach combining experimental models and unbiased computational analysis complemented by validation in patient biospecimens, we identified a nuclear-enriched lncRNA (AC004540.4) that is upregulated in NRAS/MAPK-dependent melanoma, and that we named T-RECS. Considering potential innovative treatment strategies, we designed antisense oligonucleotides (ASOs) to target T-RECS. T-RECS ASOs reduced the growth of melanoma cells and induced apoptotic cell death, while having minimal impact on normal primary melanocytes. Mechanistically, treatment with T-RECS ASOs downregulated the activity of pro-survival kinases and reduced the protein stability of hnRNPA2/B1, a pro-oncogenic regulator of MAPK signaling. Using patient- and cell line- derived tumor xenograft mouse models, we demonstrated that systemic treatment with T-RECS ASOs significantly suppressed the growth of melanoma tumors, with no noticeable toxicity. ASO-mediated T-RECS inhibition represents a promising RNA-targeting approach to improve the outcome of MAPK pathway-activated melanoma.


Assuntos
Melanoma , RNA Longo não Codificante , Humanos , Camundongos , Animais , Melanoma/patologia , RNA Longo não Codificante/genética , Apoptose/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
17.
Exp Eye Res ; 241: 109833, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369231

RESUMO

Retinal dystrophies are a common health problem worldwide that are currently incurable due to the inability of retinal cells to regenerate. Inherited retinal diseases (IRDs) are a diverse group of disorders characterized by progressive vision loss caused by photoreceptor cell dysfunction. The eye has always been an attractive organ for the development of novel therapies due to its independent access to the systemic pathway. Moreover, anti-sense oligonucleotides (ASOs), which facilitate manipulation of unwanted mRNAs via degradation or splicing, are undergoing rapid development and have been clinically deployed for the treatment of several diseases. The primary aim of this study was to establish a reliable in vitro model utilizing induced photoreceptor-like cells (PRCs) for assessing the efficacy and safety of ASOs targeting the BEST1 gene. Despite advances in gene therapy, effective treatments for a broad range of IRDs remain limited. An additional aim was to develop an in vitro model for evaluating RNA-based therapeutics, specifically ASOs, for the treatment in IRDs. Firstly, a cell culture model was established by induction of PRCs from dermal fibroblasts via direct programming. The induced PRCs were characterized at both the transcriptomic and protein level. Then, a common single nucleotide polymorphism (SNP) was identified in the BEST1 gene (rs1800007) for targeting with ASOs. ASOs were designed using the GapmeR strategy to target multiple alleles of this SNP, which is potentially suitable for a large proportion of the population. The efficacy and possible off-target effects of these ASOs were also analyzed in the induced PRC model. The findings show that the selected ASOs achieved allele-specific mRNA degradation with virtually no off-target effects on the global transcriptome profile, indicating their potential as safe and effective therapeutic agents. The presented in vitro model is a valuable platform for testing personalized IRD treatments and should inspire further research on RNA-based therapeutics. To the best of our knowledge this study is the first to test RNA-based therapeutics involving the use of ASOs in an induced PRC model. Based on the present findings, it will be possible to establish an ex vivo disease model using dermal fibroblast samples from affected individuals. In other words, the disease model and the ASOs that were successfully designed in this study can serve as a useful platform for the testing of personalized treatments for IRDs.


Assuntos
Oligonucleotídeos Antissenso , Doenças Retinianas , Humanos , Alelos , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/terapia , Bestrofinas/genética
18.
Pharmacol Res ; 201: 107083, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309383

RESUMO

Liver and heart disease are major causes of death worldwide. It is known that metabolic alteration causing type 2 diabetes (T2D) and Nonalcoholic fatty liver (NAFLD) coupled with a derangement in lipid homeostasis, may exacerbate hepatic and cardiovascular diseases. Some pharmacological treatments can mitigate organ dysfunctions but the important side effects limit their efficacy leading often to deterioration of the tissues. It needs to develop new personalized treatment approaches and recent progresses of engineered RNA molecules are becoming increasingly viable as alternative treatments. This review outlines the current use of antisense oligonucleotides (ASOs), RNA interference (RNAi) and RNA genome editing as treatment for rare metabolic disorders. However, the potential for small non-coding RNAs to serve as therapeutic agents for liver and heart diseases is yet to be fully explored. Although miRNAs are recognized as biomarkers for many diseases, they are also capable of serving as drugs for medical intervention; several clinical trials are testing miRNAs as therapeutics for type 2 diabetes, nonalcoholic fatty liver as well as cardiac diseases. Recent advances in RNA-based therapeutics may potentially facilitate a novel application of miRNAs as agents and as druggable targets. In this work, we sought to summarize the advancement and advantages of miRNA selective therapy when compared to conventional drugs. In particular, we sought to emphasise druggable miRNAs, over ASOs or other RNA therapeutics or conventional drugs. Finally, we sought to address research questions related to efficacy, side-effects, and range of use of RNA therapeutics. Additionally, we covered hurdles and examined recent advances in the use of miRNA-based RNA therapy in metabolic disorders such as diabetes, liver, and heart diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiopatias , Doenças Metabólicas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/genética , Oligonucleotídeos Antissenso/uso terapêutico
19.
Nucleic Acid Ther ; 34(1): 26-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386285

RESUMO

Antisense oligonucleotides (AONs) are promising therapeutic candidates, especially for neurological diseases. Intracerebroventricular (ICV) injection is the predominant route of administration in mouse studies, while in clinical trials, intrathecal (IT) administration is mostly used. There is little knowledge on the differences in distribution of these injection methods within the same species over time. In this study, we compared the distribution of splice-switching AONs targeting exon 15 of amyloid precursor protein pre-mRNA injected via the ICV and IT route in mice. The AON was labeled with radioactive indium-111 and mice were imaged using single-photon emission computed tomography (SPECT) 0, 4, 24, 48, 72, and 96 h after injection. In vivo SPECT imaging showed 111In-AON activity diffused throughout the central nervous system (CNS) in the first hours after injection. The 111In-AON activity in the CNS persisted over the course of 4 days, while signal in the kidneys rapidly decreased. Postmortem counting in different organs and tissues showed very similar distribution of 111In-AON activity throughout the body, while the signal in the different brain regions was higher with ICV injection. Overall, IT and ICV injection have very similar distribution patterns in the mouse, but ICV injection is much more effective in reaching the brain.


Assuntos
Encéfalo , Oligonucleotídeos Antissenso , Animais , Camundongos , Distribuição Tecidual , Encéfalo/diagnóstico por imagem , Éxons , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Injeções Espinhais
20.
Prog Mol Biol Transl Sci ; 203: 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359993

RESUMO

RNA therapeutics is a biological term regarding the usage of RNA-based molecules for medical purposes. Thanks to the success of mRNA-vaccine production against COVID-19, RNA therapeutics has gained more and more attention and investigation from worldwide scientists. It is considered as one of the promising alternatives for conventional drugs. In this first chapter, we presented an overview of the history and perspectives of RNA therapeutics' development. This chapter also explained the underlying mechanisms of different RNA-based molecules, including antisense oligonucleotide, interfering RNA (iRNA), aptamer, and mRNA, from degrading mRNA to inactivating targeted protein. Although there are many advantages of RNA therapeutics, its challenges in designing RNA chemical structure and the delivery vehicle need to be discussed. We described advanced technologies in the development of drug delivery systems that are positively correlated to the efficacy of the drug. Our aim is to provide a general background of RNA therapeutics to the audience before introducing plenty of more detailed parts, including clinical applications in certain diseases in the following chapters of the "RNA therapeutics" book.


Assuntos
Sistemas de Liberação de Medicamentos , Oligonucleotídeos Antissenso , Humanos , RNA Interferente Pequeno , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...