Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.582
Filtrar
1.
Neurochem Res ; 49(12): 3383-3395, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39302597

RESUMO

Population aging is a global reality driven by increased life expectancy. This demographic phenomenon is intrinsically linked to the epidemic of cognitive disorders such as dementia and Alzheimer's disease, posing challenges for elderly and their families. In this context, the search for new therapeutic strategies to prevent or minimize cognitive impairments becomes urgent, as these deficits are primarily associated with oxidative damage and increased neuroinflammation. Ferulic acid (FA), a natural and potent antioxidant compound, is proposed to be nanoencapsulated to target the central nervous system effectively with lower doses and an extended duration of action. Here, we evaluated the effects of the nanoencapsulated FA on d-galactose (d-Gal)- induced memory impairments. Male Wistar adult rats were treated with ferulic acid-loaded nanocapsules (FA-Nc) or non-encapsulated ferulic acid (D-FA) for 8 weeks concurrently with d-Gal (150 mg/kg s.c.) injection. As expected, our findings showed that d-Gal injection impaired memory processes and increased anxiety behavior, whereas FA-Nc treatment ameliorated these behavioral impairments associated with the aging process induced by d-Gal. At the molecular level, nanoencapsulated ferulic acid (FA-Nc) ameliorated the decrease in ACh and glutamate induced by d-galactose (d-Gal), and also increased GABA levels in the dorsal hippocampus, indicating its therapeutic superiority. Additional studies are needed to elucidate the mechanisms underlying our current promising outcomes. Nanoscience applied to pharmacology can reduce drug dosage, thereby minimizing adverse effects while enhancing therapeutic response, particularly in neurodegenerative diseases associated with aging. Therefore, the strategy of brain-targeted drug delivery through nanoencapsulation can be effective in mitigating aging-related factors that may lead to cognitive deficits.


Assuntos
Envelhecimento , Ansiedade , Ácidos Cumáricos , Galactose , Ácido Glutâmico , Transtornos da Memória , Ratos Wistar , Ácido gama-Aminobutírico , Animais , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Masculino , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ácido Glutâmico/metabolismo , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Nanoestruturas , Nanocápsulas
2.
Neurotox Res ; 42(5): 39, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190189

RESUMO

There is a public health concern about the use of methylphenidate (MPH) since the higher prescription for young individuals and non-clinical purposes is addressed to the limited understanding of its neurochemical and psychiatric consequences. This study aimed to evaluate the impact of early and chronic MPH treatment on the striatum focusing on amino acid profile, glutamatergic excitotoxicity, redox status, neuroinflammation and glial cell responses. Male Wistar rats were treated with MPH (2.0 mg/kg) or saline solution from the 15th to the 44th postnatal day. Biochemical and histological analyses were conducted after the last administration. MPH altered the amino acid profile in the striatum, increasing glutamate and ornithine levels, while decreasing the levels of serine, phenylalanine, and branched-chain amino acids (leucine, valine, and isoleucine). Glutamate uptake and Na+,K+-ATPase activity were decreased in the striatum of MPH-treated rats as well as increased ATP levels, as indicator of glutamatergic excitotoxicity. Moreover, MPH caused lipid peroxidation and nitrative stress, increased TNF alpha expression, and induced high levels of astrocytes, and led to a decrease in BDNF levels. In summary, our results suggest that chronic early-age treatment with MPH induces parallel activation of damage-associated pathways in the striatum and increases its vulnerability during the juvenile period. In addition, data presented here contribute to shedding light on the mechanisms underlying MPH-induced striatal damage and its potential implications for neurodevelopmental disorders.


Assuntos
Aminoácidos , Astrócitos , Estimulantes do Sistema Nervoso Central , Corpo Estriado , Ácido Glutâmico , Metilfenidato , Ratos Wistar , Animais , Masculino , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Metilfenidato/toxicidade , Metilfenidato/farmacologia , Ácido Glutâmico/metabolismo , Ratos , Estimulantes do Sistema Nervoso Central/toxicidade , Estimulantes do Sistema Nervoso Central/farmacologia , Aminoácidos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
3.
Commun Biol ; 7(1): 1032, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174690

RESUMO

Glutamate is involved in fundamental functions, including neuronal plasticity and memory. Astrocytes are integral elements involved in synaptic function, and the GLT-1 transporter possesses a critical role in glutamate uptake. Here, we study the role of GLT-1, specifically located in astrocytes, in the consolidation, expression, reconsolidation and persistence of spatial object recognition memory in rats. Administration of dihydrokainic acid (DHK), a selective GLT-1 inhibitor, into the dorsal hippocampus around a weak training which only induces short-term memory, promotes long-term memory formation. This promotion is prevented by hippocampal administration of protein-synthesis translation inhibitor, blockade of Activity-regulated cytoskeleton-associated protein (Arc) translation or Brain-Derived Neurotrophic Factor (BDNF) action, which are plasticity related proteins necessary for memory consolidation. However, DHK around a strong training, which induces long-term memory, does not affect memory consolidation. Administration of DHK before the test session impairs the expression of long-term memory, and this effect is dependent of Arc translation. Furthermore, DHK impairs reconsolidation if applied before a reactivation session, and this effect is independent of Arc translation. These findings reveal specific consequences on spatial memory stages developed under hippocampal GLT-1 blockade, shedding light on the intricate molecular mechanisms, governed in part for the action of glia.


Assuntos
Astrócitos , Fator Neurotrófico Derivado do Encéfalo , Proteínas do Citoesqueleto , Ácido Glutâmico , Hipocampo , Memória Espacial , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Memória Espacial/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Ratos , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Ácido Glutâmico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Ratos Wistar , Ácido Caínico/farmacologia , Ácido Caínico/análogos & derivados , Consolidação da Memória/efeitos dos fármacos
4.
Am J Physiol Regul Integr Comp Physiol ; 327(4): R423-R441, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39102465

RESUMO

There is evidence that astrocytes modulate synaptic transmission in the nucleus tractus solitarius (NTS) interacting with glutamatergic and purinergic mechanisms. Here, using in situ working heart-brainstem preparations, we evaluated the involvement of astrocyte and glutamatergic/purinergic neurotransmission in the processing of autonomic and respiratory pathways in the NTS of control and rats exposed to sustained hypoxia (SH). Baseline autonomic and respiratory activities and the responses to chemoreflex activation (KCN) were evaluated before and after microinjections of fluorocitrate (FCt, an astrocyte metabolic inhibitor), kynurenic acid, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS) (nonselective antagonists of glutamatergic and purinergic receptors) into the rostral aspect of the caudal commissural NTS. FCt had no effects on the baseline parameters evaluated but reduced the bradycardic response to chemoreflex activation in SH rats. FCt combined with kynurenic acid and PPADS in control rats reduced the baseline duration of expiration, which was attenuated after SH. FCt produced a large increase in PN frequency discharge in control rats, which was reduced after SH, indicating a reduction in the astrocyte modulation after SH. The data show that 1) the bradycardic component of the peripheral chemoreflex is reduced in SH rats after astrocytes inhibition, 2) the inhibition of astrocytes in the presence of double antagonists in the NTS affects the modulation of baseline duration of expiration in control but not in SH rats, and 3) the autonomic and respiratory responses to chemoreflex activation are mediated by glutamatergic and purinergic receptors in the rostral aspect of the caudal commissural NTS.NEW & NOTEWORTHY Our findings indicate that the neurotransmission of autonomic and respiratory components of the peripheral chemoreflex in the nucleus tractus solitarius (NTS) is mediated by glutamatergic and purinergic mechanisms and reveal a selective involvement of NTS astrocytes in controlling the chemoreflex parasympathetic response in rats exposed to sustained hypoxia (SH) and the baseline duration of expiration mainly in control rats, indicating a selective role for astrocytes modulation in the NTS of control and SH rats.


Assuntos
Astrócitos , Ácido Glutâmico , Hipóxia , Receptores Purinérgicos , Núcleo Solitário , Transmissão Sináptica , Animais , Núcleo Solitário/metabolismo , Núcleo Solitário/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Hipóxia/fisiopatologia , Hipóxia/metabolismo , Masculino , Ácido Glutâmico/metabolismo , Receptores Purinérgicos/metabolismo , Ratos , Ratos Wistar , Ácido Cinurênico/farmacologia , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Citratos/farmacologia , Fatores de Tempo
5.
Braz Oral Res ; 38: e071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109768

RESUMO

This is a nonclinical, controlled, and triple-blind study to investigate the effects of codeine-associated geraniol on the modulation of orofacial nociception and its potential central nervous system depressing effect in an animal model. The orofacial antinociceptive activity of geraniol in combination with codeine was assessed through the following tests: (i) formalin-induced pain, (ii) glutamate-induced pain, and (iii) capsaicin-induced pain. Six animals were equally distributed into six groups and received the following treatments, given intraperitoneally (i.p.) 30 minutes before the experiments: a) geraniol/codeine 50/30 mg/kg; b) geraniol/codeine 50/15 mg/kg; c) geraniol/codeine 50/7.5 mg/kg; d) geraniol 50 mg/kg; e) codeine 30 mg/kg (positive control); or f) 0.9% sodium chloride (negative control). We performed pain behavior analysis after the injection of formalin (20 µL, 20%), glutamate (20 µL, 25 µM), and capsaicin (20 µL, 2.5 µg) into the paranasal region. Rubbing time of the paranasal region by the hind or front paw was used as a parameter. In the neurogenic phase of the formalin test, the geraniol/codeine at 50/7.5 mg/kg was able to promote the maximum antinociceptive effect, reducing nociception by 71.9% (p < 0.0001). In the inflammatory phase of the formalin test, geraniol/codeine at 50/30 mg/kg significantly reduced orofacial nociception (p < 0.005). In the glutamate test, geraniol/codeine at 50/30 mg/kg reduced the rubbing time by 54.2% and reduced nociception in the capsaicin test by 66.7% (p < 0.005). Geraniol alone or in combination does not promote nonspecific depressing effects on the central nervous system. Based on our findings, we suggest the possible synergy between geraniol and codeine in the modulation of orofacial pain.


Assuntos
Monoterpenos Acíclicos , Analgésicos , Capsaicina , Codeína , Dor Facial , Medição da Dor , Terpenos , Animais , Codeína/farmacologia , Dor Facial/induzido quimicamente , Dor Facial/tratamento farmacológico , Monoterpenos Acíclicos/farmacologia , Masculino , Medição da Dor/efeitos dos fármacos , Capsaicina/farmacologia , Terpenos/farmacologia , Analgésicos/farmacologia , Camundongos , Fatores de Tempo , Modelos Animais de Doenças , Reprodutibilidade dos Testes , Formaldeído , Ácido Glutâmico , Resultado do Tratamento , Nociceptividade/efeitos dos fármacos , Análise de Variância , Estatísticas não Paramétricas , Comportamento Animal/efeitos dos fármacos
6.
Arch Med Res ; 55(6): 103039, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981341

RESUMO

Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.


Assuntos
Envelhecimento , Disfunção Cognitiva , Ácido Glutâmico , Doenças Neurodegenerativas , Transmissão Sináptica , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Ácido Glutâmico/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia
7.
J Neurosci Res ; 102(6): e25360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847288

RESUMO

Childhood obesity increases the risk of health and cognitive disorders in adulthood. Consuming high-fat diets (HFD) during critical neurodevelopmental periods, like childhood, impairs cognition and memory in humans and animals, affecting the function and connectivity of brain structures related to emotional memory. However, the underlying mechanisms of such phenomena need to be better understood. This study aimed to investigate the neurochemical profile of the amygdala and hippocampus, brain structures involved in emotional memory, during the acquisition of conditioned odor aversion in male rats that consumed a HFD from weaning to adulthood. The rats gained weight, experienced metabolic changes, and reduced insulin sensitivity and glucose tolerance. Rats showed enhanced odor aversion memory, contrary to the expected cognitive impairments. This memory enhancement was accompanied by increased noradrenergic and glutamatergic neurotransmission in the amygdala and hippocampus. Importantly, this upregulation was specific to stimuli exposure, as basal neurotransmitter levels remained unaltered by the HFD. Our results suggest that HFD modifies cognitive function by altering neurochemical signaling, in this case, upregulating neurotransmitter levels rendering a stronger memory trace, demonstrating that metabolic dysfunctions do not only trigger exclusively detrimental plasticity processes but also render enhanced plastic effects depending on the type of information.


Assuntos
Tonsila do Cerebelo , Dieta Hiperlipídica , Ácido Glutâmico , Hipocampo , Transmissão Sináptica , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Tonsila do Cerebelo/metabolismo , Transmissão Sináptica/fisiologia , Ratos , Ácido Glutâmico/metabolismo , Norepinefrina/metabolismo , Ratos Wistar , Cognição/fisiologia , Aprendizagem da Esquiva/fisiologia
8.
Sci Rep ; 14(1): 14271, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902321

RESUMO

Understanding the neural, metabolic, and psychological mechanisms underlying human altruism and decision-making is a complex and important topic both for science and society. Here, we investigated whether transcranial Direct Current Stimulation (tDCS) applied to two prefrontal cortex regions, the ventromedial prefrontal cortex (vmPFC, anode) and the right dorsolateral prefrontal cortex (DLPFC, cathode) can induce changes in self-reported emotions and to modulate local metabolite concentrations. We employed in vivo quantitative MR Spectroscopy in healthy adult participants and quantified changes in GABA and Glx (glutamate + glutamine) before and after five sessions of tDCS delivered at 2 mA for 20 min (active group) and 1 min (sham group) while participants were engaged in a charitable donation task. In the active group, we observed increased levels of GABA in vmPFC. Glx levels decreased in both prefrontal regions and self-reported happiness increased significantly over time in the active group. Self-reported guiltiness in both active and sham groups tended to decrease. The results indicate that self-reported happiness can be modulated, possibly due to changes in Glx concentrations following repeated stimulation. Therefore, local changes may induce remote changes in the reward network through interactions with other metabolites, previously thought to be unreachable with noninvasive stimulation techniques.


Assuntos
Emoções , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico , Humanos , Masculino , Feminino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Adulto , Emoções/fisiologia , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico/metabolismo , Altruísmo , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Córtex Pré-Frontal Dorsolateral/metabolismo , Córtex Pré-Frontal Dorsolateral/fisiologia
9.
Eur J Sport Sci ; 24(6): 721-731, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874966

RESUMO

It has been assumed that exercise intensity variation throughout a cycling time trial (TT) occurs in alignment of various metabolic changes to prevent premature task failure. However, this assumption is based on target metabolite responses, which limits our understanding of the complex interconnection of metabolic responses during exercise. The current study characterized the metabolomic profile, an untargeted metabolic analysis, after specific phases of a cycling 4-km TT. Eleven male cyclists performed three separated TTs in a crossover counterbalanced design, which were interrupted at the end of the fast-start (FS, 600 ± 205 m), even-pace (EP, 3600 ± 190 m), or end-spurt (ES, 4000 m) phases. Blood samples were taken before any exercise and 5 min after exercise cessation, and the metabolomic profile characterization was performed using Nuclear Magnetic Resonance metabolomics. Power output (PO) was also continually recorded. There were higher PO values during the FS and ES compared to the EP (all p < 0.05), which were accompanied by distinct metabolomic profiles. FS showed high metabolite expression in TCA cycle and its related pathways (e.g., glutamate, citric acid, and valine metabolism); whereas, the EP elicited changes associated with antioxidant effects and oxygen delivery adjustment. Finally, ES was related to pathways involved in NAD turnover and serotonin metabolism. These findings suggest that the specific phases of a cycling TT are accompanied by distinct metabolomic profiles, providing novel insights regarding the relevance of specific metabolic pathways on the process of exercise intensity regulation.


Assuntos
Ciclismo , Estudos Cross-Over , Metaboloma , Humanos , Masculino , Metaboloma/fisiologia , Adulto , Ciclismo/fisiologia , Ciclo do Ácido Cítrico , Serotonina/sangue , NAD/sangue , NAD/metabolismo , Adulto Jovem , Ácido Glutâmico/sangue , Ácido Glutâmico/metabolismo , Metabolômica , Valina/sangue , Ácido Cítrico/sangue
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124638, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38880076

RESUMO

This work aimed to set inline Raman spectroscopy models to monitor biochemically (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, and ammonium) all upstream stages of a virus-like particle-making process. Linear (Partial least squares, PLS; Principal components regression, PCR) and nonlinear (Artificial neural networks, ANN; supported vector machine, SVM) modeling approaches were assessed. The nonlinear models, ANN and SVM, were the more suitable models with the lowest absolute errors. The mean absolute error of the best models within the assessed parameter ranges for viable cell density (0.01-8.83 × 106 cells/mL), cell viability (1.3-100.0 %), glucose (5.22-10.93 g/L), lactate (18.6-152.7 mg/L), glutamine (158-1761 mg/L), glutamate (807.6-2159.7 mg/L), and ammonium (62.8-117.8 mg/L) were 1.55 ± 1.37 × 106 cells/mL (ANN), 5.01 ± 4.93 % (ANN), 0.27 ± 0.22 g/L (SVM), 4.7 ± 2.6 mg/L (SVM), 51 ± 49 mg/L (ANN), 57 ± 39 mg/L (SVM) and 2.0 ± 1.8 mg/L (ANN), respectively. The errors achieved, and best-fitted models were like those for the same bioprocess using offline data and others, which utilized inline spectra for mammalian cell lines as a host.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Análise dos Mínimos Quadrados , Glucose/análise , Redes Neurais de Computação , Sobrevivência Celular/efeitos dos fármacos , Ácido Glutâmico/análise , Máquina de Vetores de Suporte , Análise de Componente Principal , Glutamina/análise , Ácido Láctico/análise , Compostos de Amônio/análise
11.
Biol Res ; 57(1): 19, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689353

RESUMO

BACKGROUND: Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS: Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS: Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.


Assuntos
Astrócitos , Sinalização do Cálcio , Óxido Nítrico , Animais , Ratos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Conexina 43/metabolismo , Ácido Glutâmico/metabolismo , Óxido Nítrico/metabolismo , Ratos Wistar
12.
J Neurosci Res ; 102(4): e25331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651314

RESUMO

Circadian rhythms synchronize to light through the retinohypothalamic tract (RHT), which is a bundle of axons coming from melanopsin retinal ganglion cells, whose synaptic terminals release glutamate to the ventral suprachiasmatic nucleus (SCN). Activation of AMPA-kainate and NMDA postsynaptic receptors elicits the increase in intracellular calcium required for triggering the signaling cascade that ends in phase shifts. During aging, there is a decline in the synchronization of circadian rhythms to light. With electrophysiological (whole-cell patch-clamp) and immunohistochemical assays, in this work, we studied pre- and postsynaptic properties between the RHT and ventral SCN neurons in young adult (P90-120) and old (P540-650) C57BL/6J mice. Incremental stimulation intensities (applied on the optic chiasm) induced much lesser AMPA-kainate postsynaptic responses in old animals, implying a lower recruitment of RHT fibers. Conversely, a higher proportion of old SCN neurons exhibited synaptic facilitation, and variance-mean analysis indicated an increase in the probability of release in RHT terminals. Moreover, both spontaneous and miniature postsynaptic events displayed larger amplitudes in neurons from aged mice, whereas analysis of the NMDA and AMPA-kainate components (evoked by RHT electrical stimulation) disclosed no difference between the two ages studied. Immunohistochemistry revealed a bigger size in the puncta of vGluT2, GluN2B, and GluN2A of elderly animals, and the number of immunopositive particles was increased, but that of PSD-95 was reduced. All these synaptic adaptations could be part of compensatory mechanisms in the glutamatergic signaling to ameliorate the loss of RHT terminals in old animals.


Assuntos
Envelhecimento , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático , Transmissão Sináptica , Animais , Camundongos , Núcleo Supraquiasmático/fisiologia , Núcleo Supraquiasmático/metabolismo , Transmissão Sináptica/fisiologia , Envelhecimento/fisiologia , Ácido Glutâmico/metabolismo , Masculino , Potenciais Pós-Sinápticos Excitadores/fisiologia , Vias Visuais/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo
13.
Neuroreport ; 35(8): 542-550, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597273

RESUMO

Wnt signaling plays an important role in adult brain function, and its dysregulation has been implicated in the loss of neuronal homeostasis. Despite the existence of many studies on the participation of the Wnt pathway in adult neurons, its regulation in astrocytes has been scarcely explored. Several reports point to the presence of Wnt ligands in astrocytes and their possible impact on neuronal plasticity or neuronal death. We aimed to analyze the effect of the neurotransmitter glutamate and the inflammatory cytokine TNFα on the mRNA and protein levels of the canonical Wnt agonist Wnt7a and the antagonist Dkk1 in cultured astrocytes. Primary astrocyte cultures from rat cerebral cortices were exposed to glutamate or TNFα. Wnt7a and Dkk1 expression was analyzed by RT-qPCR and its protein abundance and distribution was assessed by immunofluorescence. We found high basal expression and protein levels of Wnt7a and Dkk1 in unstimulated astrocytes and overproduction of Dkk1 mRNA induced by the two stimuli. These results reveal the astrocytic source of the canonical Wnt ligands Wnt7a and Dkk1, whose levels are differentially regulated by glutamate and TNFα. Astrocytes are a significant source of Wnt ligands, the production of which can be differentially regulated under excitatory or proinflammatory conditions, thereby impacting neuronal function.


Assuntos
Astrócitos , Ácido Glutâmico , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas Proto-Oncogênicas , Fator de Necrose Tumoral alfa , Proteínas Wnt , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Animais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ácido Glutâmico/metabolismo , Proteínas Wnt/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Ratos , RNA Mensageiro/metabolismo , Ratos Wistar , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/citologia
14.
Eur J Pharmacol ; 971: 176489, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492875

RESUMO

Substance abuse disorder is a chronic condition for which pharmacological treatment options remain limited. L-type calcium channels (LTCC) have been implicated in drug-related plasticity and behavior. Specifically, dopaminergic neurons in the mesocorticolimbic pathway express Cav1.2 and Cav1.3 channels, which may regulate dopaminergic activity associated with reward behavior. Therefore, this study aimed to investigate the hypothesis that pre-administration of the LTCC blocker, isradipine can mitigate the effects of cocaine by modulating central glutamatergic transmission. For that, we administered isradipine at varying concentrations (1, 7.5, and 15 µg/µL) via intracerebroventricular injection in male Swiss mice. This pretreatment was carried out prior to subjecting animals to behavioral assessments to evaluate cocaine-induced locomotor sensitization and conditioned place preference (CPP). The results revealed that isradipine administered at a concentration of 1 µg/µL effectively attenuated both the sensitization and CPP induced by cocaine (15 mg/kg, via i. p.). Moreover, mice treated with 1 µg/µL of isradipine showed decreased presynaptic levels of glutamate and calcium in the cortex and hippocampus as compared to control mice following cocaine exposure. Notably, the gene expression of ionotropic glutamate receptors, AMPA, and NMDA, remained unchanged, as did the expression of Cav1.2 and Cav1.3 channels. Importantly, these findings suggest that LTCC blockage may inhibit behavioral responses to cocaine, most likely by decreasing glutamatergic input in areas related to addiction.


Assuntos
Bloqueadores dos Canais de Cálcio , Cocaína , Camundongos , Masculino , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Isradipino/farmacologia , Ácido Glutâmico , Cocaína/farmacologia , Dopamina/metabolismo
15.
In Vitro Cell Dev Biol Anim ; 60(4): 420-431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546817

RESUMO

Astrocytes play key roles regulating brain homeostasis and accumulating evidence has suggested that glia are the first cells that undergo functional changes with aging, which can lead to a decline in brain function. In this context, in vitro models are relevant tools for studying aged astrocytes and, here, we investigated functional and molecular changes in cultured astrocytes obtained from neonatal or adult animals submitted to an in vitro model of aging by an additional period of cultivation of cells after confluence. In vitro aging induced different metabolic effects regarding glucose and glutamate uptake, as well as glutamine synthetase activity, in astrocytes obtained from adult animals compared to those obtained from neonatal animals. In vitro aging also modulated glutathione-related antioxidant defenses and increased reactive oxygen species and cytokine release especially in astrocytes from adult animals. Interestingly, in vitro aged astrocytes from adult animals exposed to pro-oxidant, inflammatory, and antioxidant stimuli showed enhanced oxidative and inflammatory responses. Moreover, these functional changes were correlated with the expression of the senescence marker p21, cytoskeleton markers, glutamate transporters, inflammatory mediators, and signaling pathways such as nuclear factor κB (NFκB)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1). Alterations in these genes are remarkably associated with a potential neurotoxic astrocyte phenotype. Therefore, considering the experimental limitations due to the need for long-term maintenance of the animals for studying aging, astrocyte cultures obtained from adult animals further aged in vitro can provide an improved experimental model for understanding the mechanisms associated with aging-related astrocyte dysfunction.


Assuntos
Animais Recém-Nascidos , Astrócitos , Ratos Wistar , Animais , Astrócitos/metabolismo , Células Cultivadas , Envelhecimento , Espécies Reativas de Oxigênio/metabolismo , Ratos , Estresse Oxidativo , Antioxidantes/metabolismo , Ácido Glutâmico/metabolismo , Senescência Celular , Glucose/metabolismo , Glutamato-Amônia Ligase/metabolismo , NF-kappa B/metabolismo
16.
ACS Chem Neurosci ; 15(6): 1276-1285, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38454572

RESUMO

Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult. Glial glutamate transporters carry out more than 90% of the brain glutamate uptake activity and are responsible for glutamate recycling through the GABA/Glutamate/Glutamine shuttle. The aryl hydrocarbon receptor is a ligand-dependent transcription factor that integrates environmental clues through its ability to heterodimerize with different transcription factors. Taking into consideration the fundamental role of glial glutamate transporters in glutamatergic synapses and that these transporters are regulated at the transcriptional, translational, and localization levels in an activity-dependent fashion, in this contribution, we explored the involvement of the aryl hydrocarbon receptor, as a model of environmental integrator, in the regulation of the glial sodium-dependent glutamate/aspartate transporter. Using the model of chick cerebellar Bergmann glia cells, we report herein that the aryl hydrocarbon receptors exert a time-dependent decrease in the transporter mRNA levels and a diminution of its uptake activity. The nuclear factor kappa light chain enhancer of the activated B cell signaling pathway is involved in this regulation. Our results favor the notion of an environmentally dependent regulation of glutamate removal in glial cells and therefore strengthen the notion of the involvement of glial cells in xenobiotic neurotoxic effects.


Assuntos
Ácido Aspártico , Receptores de Hidrocarboneto Arílico , Ácido Aspártico/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Sódio/metabolismo , Neuroglia/metabolismo , Ácido Glutâmico/metabolismo , Células Cultivadas
17.
Neurochem Res ; 49(5): 1373-1386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512424

RESUMO

Interleukin 3 (IL-3) is a well-known pleiotropic cytokine that regulates the proliferation and differentiation of hematopoietic progenitor cells, triggering classical signaling pathways such as JAK/STAT, Ras/MAPK, and PI3K/Akt to carry out its functions. Interestingly, the IL-3 receptor is also expressed in non-hematopoietic cells, playing a crucial role in cell survival. Our previous research demonstrated the expression of the IL-3 receptor in neuron cells and its protective role in neurodegeneration. Glutamate, a principal neurotransmitter in the central nervous system, can induce cellular stress and lead to neurotoxicity when its extracellular concentrations surpass normal levels. This excessive glutamate presence is frequently observed in various neurological diseases. In this study, we uncover the protective role of IL-3 as an inhibitor of glutamate-induced cell death, analyzing the cytokine's signaling pathways during its protective effect. Specifically, we examined the relevance of JAK/STAT, Ras/MAPK, and PI3 K signaling pathways in the molecular mechanism triggered by IL-3. Our results show that the inhibition of JAK, ERK, and PI3 K signaling pathways, using pharmacological inhibitors, effectively blocked IL-3's protective role against glutamate-induced cell death. Additionally, our findings suggest that Bcl-2 and Bax proteins may be involved in the molecular mechanism triggered by IL-3. Our investigation into IL-3's ability to protect neuronal cells from glutamate-induced damage offers a promising therapeutic avenue with potential clinical implications for several neurological diseases characterized by glutamate neurotoxicity.


Assuntos
Interleucina-3 , Neuroblastoma , Humanos , Ácido Glutâmico/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Interleucina-3 , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
J Neurochem ; 168(3): 238-250, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38332572

RESUMO

Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.


Assuntos
Antipsicóticos , Clozapina , Animais , Humanos , Clozapina/farmacologia , Haloperidol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Maleato de Dizocilpina/farmacologia , Proteoma/metabolismo , N-Metilaspartato , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteômica , Antipsicóticos/farmacologia , Encéfalo/metabolismo
19.
Obes Surg ; 34(4): 1102-1112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363496

RESUMO

INTRODUCTION: Bariatric surgery is an effective intervention to reduce obesity and improve associated comorbidities. However, its effects on cognitive function are still the subject of debate. Given that the bioavailability of circulating metabolites can influence brain metabolism and cognitive performance, we aimed to assess the effects of bariatric surgery on plasma metabolic profiles and cognitive performance. METHODS: We recruited 26 women undergoing gastric bypass surgery. We conducted anthropometric assessments and collected plasma samples for metabolomic analysis. A set of 4 cognitive tests were used to evaluate cognitive performance. Participants were reevaluated 1 year post-surgery. RESULTS: After surgery, attention capacity and executive function were improved, while immediate memory had deteriorated. Regarding metabolic profile, reduction of beta-tocopherol and increase of serine, glutamic acid, butanoic acid, and glycolic acid were observed. To better understand the relationship between cognitive function and metabolites, a cluster analysis was conducted to identify more homogeneous subgroups based on the cognitive performance. We identified cluster 1, which did not show changes in cognitive performance after surgery, and cluster 2, which showed improved attention and executive function, but reduced performance in the immediate memory test. Thus, cluster 2 was more homogeneous group that replicated the results of non-clustered subjects. Analysis of the metabolic profile of cluster 2 confirmed serine, glutamic acid, and glycolic acid as potential metabolites associated with cognitive performance. CONCLUSIONS: Metabolites identified in this study have potential for biomarkers and alternative therapeutic target to prevent obesity-related cognitive decline. KEY POINTS: • Attention capacity and executive function were improved 12 months post bariatric surgery. • Immediate memory was worsened 12 months post bariatric surgery. • Serine, glutamic acid, and glycolic acid are potential metabolites linked to the alteration of cognitive performance.


Assuntos
Cirurgia Bariátrica , Glicolatos , Obesidade Mórbida , Humanos , Feminino , Obesidade Mórbida/cirurgia , Ácido Glutâmico , Resultado do Tratamento , Cirurgia Bariátrica/métodos , Obesidade/cirurgia , Cognição , Serina
20.
Cell Calcium ; 119: 102856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408411

RESUMO

NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Doenças Neurodegenerativas/metabolismo , Ácido Glutâmico/metabolismo , Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA