Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.360
Filtrar
1.
Lipids Health Dis ; 23(1): 214, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982376

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), mainly including α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), possess antioxidant properties and play a crucial role in growth and development. However, the combined effects of ALA, EPA, and DHA at different concentrations have rarely been reported. This work explored the effects of EPA, ALA, and DHA on the viability and antioxidant capacity of mouse hepatocytes, with the objective of enhancing the antioxidant capacity. Within the appropriate concentration range, cell viability and the activity of glutathione S-transferase, superoxide dismutase, and catalase were increased, while the oxidation products of malondialdehyde and the level of intracellular reactive oxygen species were obviously reduced. Thus, oxidative stress was relieved, and cellular antioxidant levels were improved. Finally, response surface optimization was carried out for EPA, ALA, and DHA, and the model was established. The antioxidant capacity of the cells was highest at EPA, ALA, and DHA concentrations of 145.46, 405.05, and 551.52 µM, respectively. These findings lay the foundation for further exploration of the interactive mechanisms of n-3 PUFAs in the body, as well as their applications in nutraceutical food.


Assuntos
Antioxidantes , Sobrevivência Celular , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3 , Hepatócitos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase , Animais , Camundongos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Malondialdeído/metabolismo , Ácido alfa-Linolênico/farmacologia , Glutationa Transferase/metabolismo
2.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2178-2194, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044583

RESUMO

This study aims to explore the functions and mechanisms of testicular descent in Apodemus agrarius, and analyze the changes in genes and metabolite levels in this process. Illumina NovaSeq and liquid chromatography-mass spectrometry were used for the transcriptomic analysis and metabolomic analysis, respectively, of the normal and descending testis of A. agrarius. Gene ontology (GO) enrichment of the transcriptomic results revealed 240 differentially expressed genes (DEGs), such as Spesp1, Izumo1, Hyal5, and Fabp9. Kyoto encyclopedia of genes and genomes (KEGG) enrichment showed 52 DEGs, including Pcyt1, Pla2g4e, Gpd1l, and Lypla3. The qRT-PCR results were consistent with the transcriptomic results in terms of the expression patterns of six randomly selected genes in the normal and descending testis. The metabolomic results revealed 28 differential metabolites associated with the testicular function, including 3-dehydroquinic acid, α-linolenic acid, dihydroxyacetone phosphate, and fructose 1,6-bisphosphate. The conjoint analysis showcased that glycerophospholipid metabolism, α-linolenic acid metabolism, and arachidonic acid metabolism may be the key metabolic pathways regulating testicular descent in A. agrarius. This study will help to understand the mechanism of testicular descent and lay a theoretical foundation for exploring the mechanisms of the population changes of A. agrarius and developing laboratory animal resources.


Assuntos
Metabolômica , Murinae , Testículo , Transcriptoma , Masculino , Animais , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Murinae/genética , Murinae/metabolismo , Perfilação da Expressão Gênica , Ácido alfa-Linolênico/metabolismo , Ácido Araquidônico/metabolismo , Ontologia Genética , Glicerofosfolipídeos/metabolismo
3.
Br Poult Sci ; 65(4): 484-493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994721

RESUMO

1. This study was conducted to assess the effects of different dietary omega 6:3 ratios fed to male and female Japanese quail breeders on incubation performance, chick quality and progeny performance.2. A completely randomised design was used, with five diets containing different ratios of vegetable oils rich in linoleic acid (LA from soybean oil) or α-linolenic acid (ALA from linseed oil) with LA/ALA ratios of 13.75:1, 10.69:1, 7.63:1, 4.57:1 and 1.48:1 with 12 cage replicates containing six birds each.3. There was a quadratic effect of the LA/ALA ratio on total hatchability (p < 0.011), fertile hatchability (p = 0.046) and total mortality (p = 0.046). There was no effect on fertility (p > 0.05). The LA/ALA ratios of 1.48 and 13.75 fed to both hens and cockerels or hens resulted in greater fertility, as measured by the number of days after copulation during which fertile eggs were laid and the number of points of hydrolysis on the perivitelline membrane. A decreasing linear effect (p < 0.0001) was observed on chick length and an increasing linear effect on body weight at 1 day of age. There were no effects on progeny performance.4. The LA/ALA ratio affected yolk mineral matter (p = 0.009), crude protein (p = 0.091), chick mineral matter (p < 0.038) and ether extract (p < 0.0001) contents. Maternal diet affected the fatty acid profile of egg yolk and chick liver, indicating that dietary contents were transferred to eggs and chicks.5. Fertile egg production increased with lower LA/ALA ratios. Therefore, linseed oil can be used together with soybean oil to formulate diets for female Japanese quail obtain LA/ALA ratios between 4:1 and 10:1.


Assuntos
Ração Animal , Coturnix , Dieta , Ácido Linoleico , Reprodução , Ácido alfa-Linolênico , Animais , Coturnix/fisiologia , Feminino , Dieta/veterinária , Ração Animal/análise , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/análise , Masculino , Reprodução/efeitos dos fármacos , Ácido Linoleico/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Distribuição Aleatória , Óleo de Semente do Linho/administração & dosagem , Fertilidade/efeitos dos fármacos , Suplementos Nutricionais/análise
4.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064946

RESUMO

Chlorella sorokiniana, isolated from a pond adjacent to a cement plant, was cultured using flue gas collected directly from kiln emissions using 20 L and 25000 L photobioreactors. Lipids, proteins, and polysaccharides were analyzed to understand their overall composition for potential applications. The lipid content ranged from 17.97% to 21.54% of the dry biomass, with carotenoid concentrations between 8.4 and 9.2 mg/g. Lutein accounted for 55% of the total carotenoids. LC/MS analysis led to the identification of 71 intact triacylglycerols, 8 lysophosphatidylcholines, 10 phosphatidylcholines, 9 monogalactosyldiacylglycerols, 12 digalactosyldiacylglycerols, and 1 sulfoquinovosyl diacylglycerol. Palmitic acid, oleic acid, linoleic acid, and α-linolenic acid were the main fatty acids. Polyunsaturated fatty acid covers ≥ 56% of total fatty acids. Protein isolates and polysaccharides were also extracted. Protein purity was determined to be ≥75% by amino acid analysis, with all essential amino acids present. Monomer analysis of polysaccharides suggested that they are composed of mainly D-(+)-mannose, D-(+)-galactose, and D-(+)-glucose. The results demonstrate that there is no adverse effect on the metabolite profile of C. sorokiniana biomass cultured using flue gas as the primary carbon source, revealing the possibility of utilizing such algal biomass in industrial applications such as animal feed, sources of cosmeceuticals, and as biofuel.


Assuntos
Biomassa , Carbono , Chlorella , Ácidos Graxos , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/química , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Carbono/química , Polissacarídeos/química , Polissacarídeos/análise , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/metabolismo , Gases/química , Ácido Linoleico/análise , Ácido Linoleico/metabolismo , Lipídeos/análise , Lipídeos/química , Galactolipídeos/análise , Galactolipídeos/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Ácido Oleico/análise
5.
Methods Mol Biol ; 2816: 117-128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977593

RESUMO

In Alzheimer's disease, the synaptic loss is prominent due to the accumulation of Amyloid ßeta (Aß) protein in synapses, which affect neurotransmission, and thus ultimately causes neuronal loss. Tau, a microtubule-associated protein, is a vital protein of intracellular neurofibrillary tangles (NFTs) in AD. Along with the accumulation of aberrant proteins, glial cells, mainly astrocytes and microglia, play a major role in impairing neuronal network. Microglia have the ability to phagocytose Tau and rerelease in exosomes, which causes further spreading of Tau. Reduction in exosome synthesis can reduce spreading of Tau. Modulating microglia to clear the extracellular Tau seeds by its imported degradation would resolve the disease condition in Alzheimer's disease. In this study, we have shown the ability of α-linolenic acid (ALA) to inhibit the Tau aggregation and modulate their internalization property in microglial cells.


Assuntos
Microglia , Ácido alfa-Linolênico , Proteínas tau , Proteínas tau/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Exossomos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-39038779

RESUMO

n-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), including eicosapentaenoic acid (EPA), are essential multifunctional nutrients in animals. Microorganisms such as microalgae are known to be n-3 LC-PUFA producers in aquatic environments. Various aquatic invertebrates, including Harpacticoida copepods, and a few terrestrial invertebrates, such as the nematode Caenorhabditis elegans, possess n-3 LC-PUFA biosynthetic enzymes. However, the capacity for n-3 LC-PUFA biosynthesis and the underlying molecular mechanisms in terrestrial insects are largely unclear. In this study, we investigated the fatty acid biosynthetic pathway in the silkworm Bombyx mori and found that EPA was present in silkworms throughout their development. Stable isotope tracing revealed that dietary α-linolenic acid (ALA) was metabolized to EPA in silkworm larvae. These results indicated that silkworms synthesize EPA from ALA. Given that EPA is enriched in the central nervous system, we propose that EPA confers optimal neuronal functions, similar to docosahexaenoic acid, in the mammalian nervous system.


Assuntos
Bombyx , Ácido Eicosapentaenoico , Ácido alfa-Linolênico , Animais , Bombyx/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/biossíntese , Ácido alfa-Linolênico/metabolismo , Larva/metabolismo , Dieta
7.
Food Chem ; 459: 140337, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38996640

RESUMO

Oleogels containing bioactive substances such as citral (CT) are used as functional food ingredients. However, little information is available on the influence of different oleogel network structure caused by CT addition and fatty acid distribution on its digestion behavior. Coconut oil, palm oil, high oleic peanut oil, safflower seed oil, and perilla seed oil were used in this study. The results showed that perilla seed oil-CT-based oleogels had the highest oil-holding capacity (99.03 ± 0.3), whereas CT addition higher than 10 wt% could lead to the morphology collapse of oleogels. Physical and thermodynamic analyses revealed that CT could reduce oleogel hardness and higher unsaturated fatty acid content is more likely to form oleogel with stable and tight crystalline network. Moreover, the dense structure of oleogels hinders the contact between oleogels and lipase, thus weakening triglyceride digestion. These findings provide valuable insights into the design of oleogels loading with CT.


Assuntos
Monoterpenos Acíclicos , Digestão , Ácidos Graxos , Compostos Orgânicos , Óleos de Plantas , Monoterpenos Acíclicos/química , Óleos de Plantas/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Compostos Orgânicos/química , Monoterpenos/química , Modelos Biológicos , Humanos , Óleo de Palmeira/química , Óleo de Coco/química , Ácido alfa-Linolênico
8.
J Food Sci ; 89(8): 4856-4870, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923424

RESUMO

Liquid state fermentation is now a commonly used route to obtain triterpenoids from Antrodia cinnamomea, and linolenic acid can significantly promote triterpenoids synthesis, whereas its action mechanism has not been studied. Here, we comprehensively performed an investigation on the mechanism of linolenic acid to promote triterpenoids production in liquid-state fermentation of A. cinnamomea. Results showed that the addition of linolenic acid increased the unsaturated fatty acid index, fluidity, and permeability in the cell membrane of A. cinnamomea mycelia, favored the absorption of nutrients in the medium by the mycelium, enhanced the material exchange inside and outside, and thus promoted mycelial growth and triterpenoids synthesis. Moreover, 767 significantly differentially expressed genes were detected by adding linolenic acid, including 212 upregulated genes and 555 downregulated genes. The upregulated genes were mainly enriched in metabolism, glycolytic pathway, TCA cycle, and pyruvate metabolism. It was seen that the addition of linolenic acid improved the cell metabolic activity and promoted the synthesis of secondary metabolites, proving that the addition of linolenic acid improved the metabolic viability of cells and promoted secondary metabolite synthesis.


Assuntos
Antrodia , Fermentação , Micélio , Triterpenos , Ácido alfa-Linolênico , Triterpenos/metabolismo , Ácido alfa-Linolênico/metabolismo , Micélio/metabolismo , Micélio/crescimento & desenvolvimento , Antrodia/metabolismo
9.
J Pharmacol Sci ; 155(4): 148-151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880549

RESUMO

We examined the inhibitory effects of α-linolenic acid (ALA) on the contractions of pig coronary arteries. ALA concentration-dependently inhibited the contractions elicited by U46619 and prostaglandin F2α without affecting those elicited by 80 mM KCl, histamine, acetylcholine, and serotonin. ALA rightward shifted the concentration-response curve of U46619, and Schild plot analysis revealed that ALA competitively antagonized U46619. Furthermore, ALA inhibited the increase in intracellular Ca2+ concentration caused by TP receptor stimulation but not that caused by FP receptor stimulation. These results suggest that ALA behaves as a selective antagonist of TP receptors in coronary arteries.


Assuntos
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Cálcio , Vasos Coronários , Receptores de Tromboxanos , Ácido alfa-Linolênico , Animais , Vasos Coronários/efeitos dos fármacos , Ácido alfa-Linolênico/farmacologia , Suínos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Cálcio/metabolismo , Receptores de Tromboxanos/antagonistas & inibidores , Receptores de Tromboxanos/metabolismo , Relação Dose-Resposta a Droga , Masculino , Dinoprosta/farmacologia , Contração Muscular/efeitos dos fármacos
10.
Microbiol Res ; 285: 127773, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833830

RESUMO

Salmonella is an important foodborne pathogen. Given the ban on the use of antibiotics during the egg-laying period in China, finding safe and effective alternatives to antibiotics to reduce Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) infections in chickens is essential for the prevention and control of this pathogen and the protection of human health. Numerous studies have shown that unsaturated fatty acids have a positive effect on intestinal inflammation and resistance to infection by intestinal pathogens. Here we investigated the protective effect of α-linolenic acid (ALA) against S. Typhimurium infection in chickens and further explored its mechanism of action. We added different proportions of ALA to the feed and observed the effect of ALA on S. Typhimurium colonization using metagenomic sequencing technology and physiological index measurements. The role of gut flora on S. Typhimurium colonization was subsequently verified by fecal microbiota transplantation (FMT). We found that ALA protects chickens from S. Typhimurium infection by reducing intestinal inflammation through remodeling the gut microbiota, up-regulating the expression of ileocecal barrier-related genes, and maintaining the integrity of the intestinal epithelium. Our data suggest that supplementation of feed with ALA may be an effective strategy to alleviate S. Typhimurium infection in chickens.


Assuntos
Ceco , Galinhas , Suplementos Nutricionais , Microbioma Gastrointestinal , Mucosa Intestinal , Doenças das Aves Domésticas , Salmonelose Animal , Salmonella typhimurium , Ácido alfa-Linolênico , Animais , Galinhas/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/administração & dosagem , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Mucosa Intestinal/microbiologia , Ceco/microbiologia , Ração Animal , Transplante de Microbiota Fecal
11.
J Nutr Biochem ; 131: 109689, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38876393

RESUMO

Females have higher docosahexaenoic acid (DHA) levels than males, proposed to be a result of higher DHA synthesis rates from α-linolenic acid (ALA). However, DHA synthesis rates are reported to be low, and have not been directly compared between sexes. Here, we apply a new compound specific isotope analysis model to determine n-3 PUFA synthesis rates in male and female mice and assess its potential translation to human populations. Male and female C57BL/6N mice were allocated to one of three 12-week dietary interventions with added ALA, eicosapentaenoic acid (EPA) or DHA. The diets included low carbon-13 (δ13C)-n-3 PUFA for four weeks, followed by high δ13C-n-3 PUFA for eight weeks (n=4 per diet, time point, sex). Following the diet switch, blood and tissues were collected at multiple time points, and fatty acid levels and δ13C were determined and fit to one-phase exponential decay modeling. Hepatic DHA synthesis rates were not different (P>.05) between sexes. However, n-3 docosapentaenoic acid (DPAn-3) synthesis from dietary EPA was 66% higher (P<.05) in males compared to females, suggesting higher synthesis downstream of DPAn-3 in females. Estimates of percent conversion of dietary ALA to serum DHA was 0.2%, in line with previous rodent and human estimates, but severely underestimates percent dietary ALA conversion to whole body DHA of 9.5%. Taken together, our data indicates that reports of low human DHA synthesis rates may be inaccurate, with synthesis being much higher than previously believed. Future animal studies and translation of this model to humans are needed for greater understanding of n-3 PUFA synthesis and metabolism, and whether the higher-than-expected ALA-derived DHA can offset dietary DHA recommendations set by health agencies.


Assuntos
Ácidos Docosa-Hexaenoicos , Camundongos Endogâmicos C57BL , Ácido alfa-Linolênico , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/sangue , Animais , Feminino , Masculino , Ácido alfa-Linolênico/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/sangue , Camundongos , Isótopos de Carbono , Fígado/metabolismo , Dieta , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/sangue
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732139

RESUMO

The plant-derived α-linolenic acid (ALA) is an essential n-3 acid highly susceptible to oxidation, present in oils of flaxseeds, walnuts, canola, perilla, soy, and chia. After ingestion, it can be incorporated in to body lipid pools (particularly triglycerides and phospholipid membranes), and then endogenously metabolized through desaturation, elongation, and peroxisome oxidation to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with a very limited efficiency (particularly for DHA), beta-oxidized as an energy source, or directly metabolized to C18-oxilipins. At this moment, data in the literature about the effects of ALA supplementation on metabolic syndrome (MetS) in humans are inconsistent, indicating no effects or some positive effects on all MetS components (abdominal obesity, dyslipidemia, impaired insulin sensitivity and glucoregulation, blood pressure, and liver steatosis). The major effects of ALA on MetS seem to be through its conversion to more potent EPA and DHA, the impact on the n-3/n-6 ratio, and the consecutive effects on the formation of oxylipins and endocannabinoids, inflammation, insulin sensitivity, and insulin secretion, as well as adipocyte and hepatocytes function. It is important to distinguish the direct effects of ALA from the effects of EPA and DHA metabolites. This review summarizes the most recent findings on this topic and discusses the possible mechanisms.


Assuntos
Síndrome Metabólica , Ácido alfa-Linolênico , Síndrome Metabólica/metabolismo , Humanos , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Animais , Ácidos Graxos Insaturados/metabolismo , Suplementos Nutricionais , Resistência à Insulina
13.
Atherosclerosis ; 395: 117562, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714425

RESUMO

BACKGROUND AND AIMS: Lipoprotein(a) [Lp(a)] is a causal, genetically determined cardiovascular risk factor. Limited evidence suggests that dietary unsaturated fat may increase serum Lp(a) concentration by 10-15 %. Linoleic acid may increase Lp(a) concentration through its endogenous conversion to arachidonic acid, a process regulated by the fatty acid desaturase (FADS) gene cluster. We aimed to compare the Lp(a) and other lipoprotein trait-modulating effects of dietary alpha-linolenic (ALA) and linoleic acids (LA). Additionally, we examined whether FADS1 rs174550 genotype modifies Lp(a) responses. METHODS: A genotype-based randomized trial was performed in 118 men homozygous for FADS1 rs174550 SNP (TT or CC). After a 4-week run-in period, the participants were randomized to 8-week intervention diets enriched with either Camelina sativa oil (ALA diet) or sunflower oil (LA diet) 30-50 mL/day based on their BMI. Serum lipid profile was measured at baseline and at the end of the intervention. RESULTS: ALA diet lowered serum Lp(a) concentration by 7.3 % (p = 0.003) and LA diet by 9.5 % (p < 0.001) (p = 0.089 for between-diet difference). Both diets led to greater absolute decreases in individuals with higher baseline Lp(a) concentration (p < 0.001). Concentrations of LDL cholesterol (LDL-C), non-HDL-C, remnant-C, and apolipoprotein B were lowered more by the ALA diet (p < 0.01). Lipid or lipoprotein responses were not modified by the FADS1 rs174550 genotype. CONCLUSIONS: A considerable increase in either dietary ALA or LA from vegetable oils has a similar Lp(a)-lowering effect, whereas ALA may lower other major atherogenic lipids and lipoproteins to a greater extent than LA. Genetic differences in endogenous PUFA conversion may not influence serum Lp(a) concentration.


Assuntos
Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases , Lipoproteína(a) , Ácido alfa-Linolênico , Humanos , Lipoproteína(a)/sangue , Masculino , Pessoa de Meia-Idade , Ácido alfa-Linolênico/administração & dosagem , Ácidos Graxos Dessaturases/genética , Adulto , Polimorfismo de Nucleotídeo Único , Aterosclerose/prevenção & controle , Aterosclerose/sangue , Aterosclerose/genética , Ácido Linoleico/sangue , Ácido Linoleico/administração & dosagem , Genótipo , Ácidos Linoleicos/sangue , Óleos de Plantas/administração & dosagem , Lipoproteínas/sangue , Óleo de Girassol
14.
Int J Biol Macromol ; 271(Pt 2): 132548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782323

RESUMO

A new approach of fabricating α-linolenic acid emulsions with enhanced oxidative stability in vitro digestion was established, using covalent octenyl succinic anhydride starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes as emulsifiers. The physicochemical characteristics and surface morphology of emulsions were mainly characterized by rheological measurements, laser scanning microscope (CLSM) and cryo-scanning electron microscopy (Cryo-SEM). Results indicated that emulsions had dense interfacial layers and strong network structures. As a result, the stability and antioxidant ability of emulsions were improved significantly. In addition, the oxidative stability of emulsions in vitro gastrointestinal digestion was explored. Results showed that emulsions could maintain better oxidative stability owing to antioxidant activity of covalent OSAS-SP-EGCG complexes under gastrointestinal conditions. In particular, lipid hydroperoxide and malondialdehyde contents of emulsions prepared by 1:4 complexes were lower than 0.35 mmol/L and 20.5 nmol/mL, respectively, approximately half those of emulsions stabilized by OSAS (0.65 mmol/L and 39.5 nmol/mL). It was indicated that covalent OSAS-SP-EGCG complexes could effectively inhibit α-linolenic acid oxidation in emulsions during vitro gastrointestinal digestion. This work will provide a theoretical basis for the development of α-linolenic acid emulsions, which will help to broaden application of α-linolenic acid in food industry.


Assuntos
Antioxidantes , Digestão , Emulsões , Oxirredução , Amido , Ácido alfa-Linolênico , Amido/química , Amido/análogos & derivados , Emulsões/química , Ácido alfa-Linolênico/química , Antioxidantes/química , Antioxidantes/farmacologia , Proteínas de Soja/química , Trato Gastrointestinal/metabolismo , Catequina/química , Catequina/análogos & derivados , Reologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-38763083

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) must be consumed from the diet or synthesized from polyunsaturated fatty acid (PUFA) precursors, such as α-linolenic acid (ALA, 18:3n-3). Elongase 2 (encoded by Elovl2 gene) catalyzes two elongation reactions in the PUFA biosynthesis pathway and may be important in regulating the observed sex differences in n-3 PUFA levels. Our aim was to determine how targeted knockout of liver Elovl2 affects tissue and blood n-3 PUFA levels in male and female C57BL/6J mice. Twenty-eight-day old male and female liver Elovl2-KO and control mice were placed onto one of two dietary protocols for a total of 8 weeks (4-8 mice per genotype, per diet, per sex): 1) an 8-week 2 % ALA in total fat diet or 2) a 4-week 2 % ALA diet followed by a 4-week 2 % ALA + 2 % DHA diet. Following this 8-week feeding period, 12-week-old mice were sacrificed and serum, red blood cells (RBC), liver, heart and brain were collected and fatty acid levels measured. Significant interaction effects (p < 0.05, sex x genotype) for serum, RBC, liver and heart DHA levels were identified. In serum and liver, DHA levels were significantly different (p < 0.01) between all groups with male controls > female controls > female KO > male KO in serum and female controls > male controls > female KO > male KO in liver. In RBCs and the heart, female controls = male controls > female KO > male KO (p < 0.001). The addition of DHA to diet removed the interaction effects on DHA levels in the serum, liver and heart, yielding a significant sex effect in serum, liver (female > male, p < 0.01) and brain (male > female, p < 0.05) and genotype effect in serum and heart (control > KO, p < 0.05). Ablation of liver Elovl2 results in significantly lower blood and tissue DHA in a sex-dependent manner, suggesting a role for Elovl2 on sex differences in n-3 PUFA levels.


Assuntos
Acetiltransferases , Ácidos Docosa-Hexaenoicos , Elongases de Ácidos Graxos , Fígado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido alfa-Linolênico , Animais , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Masculino , Feminino , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/sangue , Fígado/metabolismo , Camundongos , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Acetiltransferases/genética , Acetiltransferases/metabolismo , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/metabolismo , Caracteres Sexuais , Fatores Sexuais
16.
Sci Rep ; 14(1): 10592, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719900

RESUMO

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Assuntos
Antibacterianos , Cromatografia Gasosa-Espectrometria de Massas , Hexanos , Compostos Fitoquímicos , Verduras , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/análise , Verduras/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Hexanos/química , Apiaceae/química , Testes de Sensibilidade Microbiana , Derivados de Alilbenzenos , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ácidos Graxos Insaturados/análise , Staphylococcus aureus/efeitos dos fármacos , Dioxolanos
17.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776363

RESUMO

Both n-6 and n-3 fatty acids (FA) have numerous significant physiological roles for mammals. The interplay between these families of FA is of interest in companion animal nutrition due to the influence of the n-6:n-3 FA ratio on the modulation of the inflammatory response in disease management and treatment. As both human and animal diets have shifted to greater consumption of vegetable oils rich in n-6 FA, the supplementation of n-3 FA to canine, feline, and equine diets has been advocated for. Although fish oils are commonly added to supply the long-chain n-3 FA eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), a heavy reliance on this ingredient by the human, pet food, and equine supplement industries is not environmentally sustainable. Instead, sustainable sourcing of plant-based oils rich in n-3 α-linolenic acid (ALA), such as flaxseed and camelina oils, emerges as a viable option to support an optimal n-6:n-3 FA ratio. Moreover, ALA may offer health benefits that extend beyond its role as a precursor for endogenous EPA and DHA production. The following review underlines the metabolism and recommendations of n-6 and n-3 FA for dogs, cats, and horses and the ratio between them in promoting optimal health and inflammation management. Additionally, insights into both marine and plant-based n-3 FA sources will be discussed, along with the commercial practicality of using plant oils rich in ALA for the provision of n-3 FA to companion animals.


In the realm of companion animal nutrition, the balance between the n-6 and n-3 fatty acids (FA) is important. The shared metabolic pathway of these two FA families and the respective signaling molecules produced have implications for the well-being of companion animals such as dogs, cats, and even horses. The n-6:n-3 FA ratio of the diet can directly influence inflammatory responses, disease management, and overall health. Given the prevalent use of n-6 FA-rich vegetable oils in both human and animal diets, there is a growing need to supplement these animals' diets with n-3 FA. While fish oils containing the long-chain n-3 FA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been the conventional choice, their overreliance is environmentally unsustainable. Plant-based oils abundant in the n-3 FA α-linolenic acid (ALA) such as flaxseed and camelina oils should be considered, especially given the health benefits of ALA that extend beyond its role as a precursor to EPA and DHA. This review examines the importance of n-3 FA and the n-6:n-3 FA ratio in companion animal diets on animal health while discussing environmentally sustainable alternatives to fish oil to supplement n-3 FA.


Assuntos
Ração Animal , Dieta , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Ácido alfa-Linolênico , Animais , Cães , Cavalos , Gatos , Ácidos Graxos Ômega-3/metabolismo , Ácido alfa-Linolênico/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ração Animal/análise , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição Animal
18.
Plant Foods Hum Nutr ; 79(2): 292-299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775983

RESUMO

The byproduct of Salvia hispanica (chia) seed oil extraction by cold pressing, also known as expeller, possesses a high nutritional value. It is rich in proteins, fibers, minerals, and has a residual oil content of 7-11%, which is rich in omega 3 linolenic acid (ALA). However, this byproduct has been historically undervalued. Thus, the aim of current work was to study the effects of consuming of a rich in chia expeller diet on a rabbit model of metabolically unhealthy normal weight to validate their use as a functional food. Rabbits were fed different diets for a period of 6 weeks: a standard diet (CD), a high-fat diet (HFD), a rich in expeller CD (Exp-CD) and a rich in expeller HFD (Exp-HFD). The Exp-HFD attenuated the rise in basal glucose, TyG index, triglycerides, cholesterol and non-HDL cholesterol induced by the HFD. Both rich in expeller diets reduced mean arterial blood pressure (MAP) and increase liver and fat ALA levels compared to their respective controls. Furthermore, the angiotensin converting enzyme (ACE) activity was lower in the lungs of animals fed on rich in expeller diets compared to their respective controls. In vitro studies showed that ALA inhibited ACE activity. The evaluation of vascular reactivity revealed that rich in expeller diets improved angiotensin II affinity and reduced contractile response to noradrenaline. In conclusion, the consumption of rich in expeller diets showed beneficial effects in preventing cardiovascular risk factors such as insulin resistance, dyslipidemia and MAP. Therefore, its use as functional ingredient holds significant promise.


Assuntos
Dieta Hiperlipídica , Óleos de Plantas , Salvia hispanica , Sementes , Animais , Coelhos , Sementes/química , Óleos de Plantas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Pressão Sanguínea/efeitos dos fármacos , Fatores de Risco de Doenças Cardíacas , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Doenças Cardiovasculares/prevenção & controle , Ácido alfa-Linolênico/farmacologia , Modelos Animais de Doenças , Alimento Funcional , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Colesterol/sangue , Salvia/química , Valor Nutritivo
19.
Int J Biol Macromol ; 270(Pt 1): 132154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734331

RESUMO

Flaxseed oil, rich in α-linolenic acid, plays a crucial role in various physiological processes. However, its stability presents certain challenges. In this study, the natural lignin-carbohydrate complex (LCC) was used to prepare the physical and oxidative stability of flaxseed oil-in-water emulsions. The LCC was characterized by HPLC, GPC, and FT-IR. The stability of emulsions was evaluated by viscosity, modulus, and micro-morphology changes. Then, the oxidation products were monitored by UV-vis spectrophotometer and HPLC. The results revealed that the high internal phase emulsion (HIPE) was successfully prepared with 2.5 wt% LCC at an oil/water ratio of 75/25 (v/v). Small droplet size (13.361 µm) and high viscosity (36,500 mPa·s) were found even after 30-day storage. Steric interactions of the LCC play a crucial role in ensuring stability, intricately linked to the interfacial properties of the emulsion. Meanwhile, the oxidative stability of α-linolenic acid in the encapsulated flaxseed oil was significantly higher than that in the bulk flaxseed oil. The results revealed that the LCC as a suitable emulsifier opens a new window for the storage of functional lipids rich in polyunsaturated fatty acids.


Assuntos
Emulsões , Lignina , Óleo de Semente do Linho , Oxirredução , Água , Óleo de Semente do Linho/química , Emulsões/química , Lignina/química , Água/química , Viscosidade , Carboidratos/química , Ácido alfa-Linolênico/química , Tamanho da Partícula
20.
J Agric Food Chem ; 72(19): 10862-10878, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712687

RESUMO

Bama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.


Assuntos
Cannabis , Regulação da Expressão Gênica de Plantas , Ácido Linoleico , Metabolômica , Proteínas de Plantas , Sementes , Transcriptoma , Ácido alfa-Linolênico , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/química , Ácido alfa-Linolênico/metabolismo , Cannabis/genética , Cannabis/crescimento & desenvolvimento , Cannabis/metabolismo , Cannabis/química , Ácido Linoleico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , China , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA