Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.004
Filtrar
1.
BMC Microbiol ; 24(1): 158, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720268

RESUMO

BACKGROUND: The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS: In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS: The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae , Ácido Succínico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentação
2.
Food Res Int ; 186: 114344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729696

RESUMO

The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.


Assuntos
Disponibilidade Biológica , Cicer , Ferro , Cicer/química , Ferro/química , Ferro/metabolismo , Humanos , Alimentos Fortificados , Proteínas de Plantas/química , Digestão , Minerais/química , Células CACO-2 , Ácido Succínico/química , Tamanho da Partícula , Manipulação de Alimentos/métodos , Solubilidade , Ferritinas/química , Ferritinas/metabolismo
3.
Int J Med Sci ; 21(6): 1155-1164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774749

RESUMO

Introduction: Clinical studies have shown that endodontically-treated nonvital teeth exhibit less root resorption during orthodontic tooth movement. The purpose of this study was to explore whether hypoxic dental pulp stem cells (DPSCs) can promote osteoclastogenesis in orthodontically induced inflammatory root resorption (OIIRR). Methods: Succinate in the supernatant of DPSCs under normal and hypoxic conditions was measured by a succinic acid assay kit. The culture supernatant of hypoxia-treated DPSCs was used as conditioned medium (Hypo-CM). Bone marrow-derived macrophages (BMDMs) from succinate receptor 1 (SUCNR1)-knockout or wild-type mice were cultured with conditioned medium (CM), exogenous succinate or a specific inhibitor of SUCNR1 (4c). Tartrate-resistant acid phosphatase (TRAP) staining, Transwell assays, qPCR, Western blotting, and resorption assays were used to evaluate osteoclastogenesis-related changes. Results: The concentration of succinate reached a maximal concentration at 6 h in the supernatant of hypoxia-treated DPSCs. Hypo-CM-treated macrophages were polarized to M1 proinflammatory macrophages. Hypo-CM treatment significantly increased the formation and differentiation of osteoclasts and increased the expression of osteoclastogenesis-related genes, and this effect was inhibited by the specific succinate inhibitor 4c. Succinate promoted chemotaxis and polarization of M1-type macrophages with increased expression of osteoclast generation-related genes. SUCNR1 knockout decreased macrophage migration, M1 macrophage polarization, differentiation and maturation of osteoclasts, as shown by TRAP and NFATc1 expression and cementum resorption. Conclusions: Hypoxic DPSC-derived succinate may promote osteoclast differentiation and root resorption. The regulation of the succinate-SUCNR1 axis may contribute to the reduction in the OIIRR.


Assuntos
Polpa Dentária , Camundongos Knockout , Osteoclastos , Osteogênese , Reabsorção da Raiz , Células-Tronco , Ácido Succínico , Animais , Camundongos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Reabsorção da Raiz/patologia , Reabsorção da Raiz/metabolismo , Humanos , Ácido Succínico/metabolismo , Osteogênese/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Meios de Cultivo Condicionados/farmacologia , Células Cultivadas
4.
Rapid Commun Mass Spectrom ; 38(15): e9769, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38782757

RESUMO

RATIONALE: Succinic acid and lactic acid have been associated with diarrhea in weaned piglets. The level of succinic acid and lactic acid in serum, meat, and intestinal contents is important to elucidate the mechanism of diarrhea in weaned piglets. METHODS: A facile method was developed for the quantification of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS). The serum samples underwent protein precipitation with methanol. The meat and intestinal contents were freeze-dried and homogenized using a tissue grinding apparatus. Methanol-water mixture (80:20, v/v) was used for homogenizing the meat, while water was used for homogenizing the intestinal contents. An additional step of protein precipitation with acetonitrile was required for the intestinal contents. The resulting solution was diluted with water before being analyzed by UHPLC/MS/MS. Separation of succinic acid and lactic acid could be achieved within 3 min using a Kinetic XB-C18 column. RESULTS: The coefficients of variation for peak areas of succinic acid and lactic acid were less than 5.0%. The established method demonstrated good linearity as indicated by correlation coefficients exceeding 0.996. Additionally, satisfactory recoveries ranging from 88.58% to 108.8% were obtained. The detection limits (RS/N = 3) for succinic acid and lactic acid were determined to be 0.75 ng/mL and 0.02 µg/mL, respectively. CONCLUSION: This method exhibited high sensitivity, simplicity in operation, and small sample weight, making it suitable for quantitative determination of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat. The method developed will provide valuable technical support in studying the metabolic mechanisms of succinic acid and lactic acid in pigs.


Assuntos
Ácido Láctico , Ácido Succínico , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Ácido Láctico/sangue , Ácido Láctico/análise , Cromatografia Líquida de Alta Pressão/métodos , Suínos , Ácido Succínico/sangue , Ácido Succínico/análise , Ácido Succínico/química , Carne/análise , Reprodutibilidade dos Testes , Limite de Detecção , Modelos Lineares
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731961

RESUMO

Recently, the increase in marine temperatures has become an important global marine environmental issue. The ability of energy supply in marine animals plays a crucial role in avoiding the stress of elevated temperatures. The investigation into anaerobic metabolism, an essential mechanism for regulating energy provision under heat stress, is limited in mollusks. In this study, key enzymes of four anaerobic metabolic pathways were identified in the genome of scallop Chlamys farreri, respectively including five opine dehydrogenases (CfOpDHs), two aspartate aminotransferases (CfASTs) divided into cytoplasmic (CfAST1) and mitochondrial subtype (CfAST2), and two phosphoenolpyruvate carboxykinases (CfPEPCKs) divided into a primitive type (CfPEPCK2) and a cytoplasmic subtype (CfPEPCK1). It was surprising that lactate dehydrogenase (LDH), a key enzyme in the anaerobic metabolism of the glucose-lactate pathway in vertebrates, was absent in the genome of scallops. Phylogenetic analysis verified that CfOpDHs clustered according to the phylogenetic relationships of the organisms rather than substrate specificity. Furthermore, CfOpDHs, CfASTs, and CfPEPCKs displayed distinct expression patterns throughout the developmental process and showed a prominent expression in muscle, foot, kidney, male gonad, and ganglia tissues. Notably, CfASTs displayed the highest level of expression among these genes during the developmental process and in adult tissues. Under heat stress, the expression of CfASTs exhibited a general downregulation trend in the six tissues examined. The expression of CfOpDHs also displayed a downregulation trend in most tissues, except CfOpDH1/3 in striated muscle showing significant up-regulation at some time points. Remarkably, CfPEPCK1 was significantly upregulated in all six tested tissues at almost all time points. Therefore, we speculated that the glucose-succinate pathway, catalyzed by CfPEPCK1, serves as the primary anaerobic metabolic pathway in mollusks experiencing heat stress, with CfOpDH3 catalyzing the glucose-opine pathway in striated muscle as supplementary. Additionally, the high and stable expression level of CfASTs is crucial for the maintenance of the essential functions of aspartate aminotransferase (AST). This study provides a comprehensive and systematic analysis of the key enzymes involved in anaerobic metabolism pathways, which holds significant importance in understanding the mechanism of energy supply in mollusks.


Assuntos
Glucose , Resposta ao Choque Térmico , Pectinidae , Filogenia , Animais , Pectinidae/metabolismo , Pectinidae/genética , Glucose/metabolismo , Resposta ao Choque Térmico/fisiologia , Anaerobiose , Ácido Succínico/metabolismo , Redes e Vias Metabólicas , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/genética
6.
Bioresour Technol ; 402: 130774, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701983

RESUMO

Formate as an ideal mediator between the physicochemical and biological realms can be obtained from electrochemical reduction of CO2 and used to produce bio-chemicals. Yet, limitations arise when employing natural formate-utilizing microorganisms due to restricted product range and low biomass yield. This study presents a breakthrough: engineered Corynebacterium glutamicum strains (L2-L4) through modular engineering. L2 incorporates the formate-tetrahydrofolate cycle and reverse glycine cleavage pathway, L3 enhances NAD(P)H regeneration, and L4 reinforces metabolic flux. Metabolic modeling elucidates C1 assimilation, guiding strain optimization for co-fermentation of formate and glucose. Strain L4 achieves an OD600 of 0.5 and produces 0.6 g/L succinic acid. 13C-labeled formate confirms C1 assimilation, and further laboratory evolution yields 1.3 g/L succinic acid. This study showcases a successful model for biologically assimilating formate in C. glutamicum that could be applied in C1-based biotechnological production, ultimately forming a formate-based bioeconomy.


Assuntos
Biomassa , Corynebacterium glutamicum , Formiatos , Engenharia Metabólica , Ácido Succínico , Corynebacterium glutamicum/metabolismo , Formiatos/metabolismo , Engenharia Metabólica/métodos , Ácido Succínico/metabolismo , Fermentação , Modelos Biológicos , Glucose/metabolismo
7.
Nat Commun ; 15(1): 4277, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769288

RESUMO

Elevated intracellular sodium Nai adversely affects mitochondrial metabolism and is a common feature of heart failure. The reversibility of acute Na induced metabolic changes is evaluated in Langendorff perfused rat hearts using the Na/K ATPase inhibitor ouabain and the myosin-uncoupler para-aminoblebbistatin to maintain constant energetic demand. Elevated Nai decreases Gibb's free energy of ATP hydrolysis, increases the TCA cycle intermediates succinate and fumarate, decreases ETC activity at Complexes I, II and III, and causes a redox shift of CoQ to CoQH2, which are all reversed on lowering Nai to baseline levels. Pseudo hypoxia and stabilization of HIF-1α is observed despite normal tissue oxygenation. Inhibition of mitochondrial Na/Ca-exchange with CGP-37517 or treatment with the mitochondrial ROS scavenger MitoQ prevents the metabolic alterations during Nai elevation. Elevated Nai plays a reversible role in the metabolic and functional changes and is a novel therapeutic target to correct metabolic dysfunction in heart failure.


Assuntos
Mitocôndrias Cardíacas , Sódio , Animais , Ratos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Sódio/metabolismo , Masculino , Miocárdio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ratos Sprague-Dawley , Compostos Organofosforados/farmacologia , Compostos Organofosforados/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , ATPase Trocadora de Sódio-Potássio/metabolismo , Oxirredução , Ácido Succínico/metabolismo
8.
J Nutr Sci Vitaminol (Tokyo) ; 70(2): 139-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38684384

RESUMO

Since propionate exerts several physiological effects, maintenance of its normal colonic fermentation is essential. To investigate whether vitamin B12 (VB12) is essential for normal propionate fermentation by colonic bacteria, via the succinate pathway, we examined if high-amylose cornstarch (HACS) feeding activated such a pathway, if high HACS feeding impaired propionate fermentation, and if oral VB12 supplementation normalized propionate fermentation. Male rats were given control, 20% HACS or 3% fucose diets (Expt. 1); a VB12-free control diet or one supplemented with 5-30% HACS (Expt. 2); and the 20% HACS diet supplemented with 0.025-25 mg/kg of VB12 (Expt. 3), for 14 d. HACS feeding significantly increased cecal succinate concentration, activating the succinate pathway (Expt. 1). Cecal cobalamin concentration in 20% and 30% HACS groups was about 75% of that in the control group (Expt. 2). Cecal succinate and propionate concentrations significantly increased and decreased in 30% HACS groups, respectively, compared with the control group. Although HACS group supplemented with 0.025 mg/kg of VB12 had a low concentration of cecal propionate, adding high amounts of VB12 to HACS diets provided sufficient amounts of VB12 to rat ceca and increased cecal propionate concentration (Expt. 3). Compared with the non-HACS group, the relative abundance of Akkermansia muciniphila, but not Bacteroides/Phocaeicola, was lower in the HACS counterpart and showed improvement with increased VB12 doses. To summarize, feeding high HACS decreased and increased cecal VB12 and succinate concentrations, respectively. Furthermore, colonic delivery of sufficient amounts of VB12 to rats likely reduced accumulation of succinate and normalized propionate fermentation.


Assuntos
Amilose , Ceco , Colo , Suplementos Nutricionais , Fermentação , Propionatos , Amido , Vitamina B 12 , Animais , Masculino , Propionatos/metabolismo , Ceco/microbiologia , Ceco/metabolismo , Vitamina B 12/administração & dosagem , Vitamina B 12/farmacologia , Colo/metabolismo , Colo/microbiologia , Amido/metabolismo , Amido/administração & dosagem , Amilose/administração & dosagem , Amilose/metabolismo , Ratos , Ácido Succínico/metabolismo , Dieta , Ratos Wistar , Ratos Sprague-Dawley
9.
Redox Biol ; 72: 103161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677214

RESUMO

Ischaemia-reperfusion (IR) injury is the paradoxical consequence of the rapid restoration of blood flow to an ischaemic organ. Although reperfusion is essential for tissue survival in conditions such as myocardial infarction and stroke, the excessive production of mitochondrial reactive oxygen species (ROS) upon reperfusion initiates the oxidative damage that underlies IR injury, by causing cell death and inflammation. This ROS production is caused by an accumulation of the mitochondrial metabolite succinate during ischaemia, followed by its rapid oxidation upon reperfusion by succinate dehydrogenase (SDH), driving superoxide production at complex I by reverse electron transport. Inhibitors of SDH, such as malonate, show therapeutic potential by decreasing succinate oxidation and superoxide production upon reperfusion. To better understand the mechanism of mitochondrial ROS production upon reperfusion and to assess potential therapies, we set up an in vitro model of IR injury. For this, isolated mitochondria were incubated anoxically with succinate to mimic ischaemia and then rapidly reoxygenated to replicate reperfusion, driving a burst of ROS formation. Using this system, we assess the factors that contribute to the magnitude of mitochondrial ROS production in heart, brain, and kidney mitochondria, as well as screening for inhibitors of succinate oxidation with therapeutic potential.


Assuntos
Mitocôndrias , Traumatismo por Reperfusão , Superóxidos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Superóxidos/metabolismo , Mitocôndrias/metabolismo , Ácido Succínico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Oxirredução , Malonatos/farmacologia , Malonatos/metabolismo , Masculino , Ratos , Camundongos
10.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38587863

RESUMO

Previously, we reported an engineered Saccharomyces cerevisiae CEN.PK113-1A derivative able to produce succinic acid (SA) from glycerol with net CO2 fixation. Apart from an engineered glycerol utilization pathway that generates NADH, the strain was equipped with the NADH-dependent reductive branch of the TCA cycle (rTCA) and a heterologous SA exporter. However, the results indicated that a significant amount of carbon still entered the CO2-releasing oxidative TCA cycle. The current study aimed to tune down the flux through the oxidative TCA cycle by targeting the mitochondrial uptake of pyruvate and cytosolic intermediates of the rTCA pathway, as well as the succinate dehydrogenase complex. Thus, we tested the effects of deletions of MPC1, MPC3, OAC1, DIC1, SFC1, and SDH1 on SA production. The highest improvement was achieved by the combined deletion of MPC3 and SDH1. The respective strain produced up to 45.5 g/L of SA, reached a maximum SA yield of 0.66 gSA/gglycerol, and accumulated the lowest amounts of byproducts when cultivated in shake-flasks. Based on the obtained data, we consider a further reduction of mitochondrial import of pyruvate and rTCA intermediates highly attractive. Moreover, the approaches presented in the current study might also be valuable for improving SA production when sugars (instead of glycerol) are the source of carbon.


Assuntos
Saccharomyces cerevisiae , Ácido Succínico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Glicerol/metabolismo , Dióxido de Carbono/metabolismo , NAD/metabolismo , Ácido Pirúvico/metabolismo , Membranas Mitocondriais/metabolismo , Carbono/metabolismo , Engenharia Metabólica/métodos
11.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592508

RESUMO

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Assuntos
Kluyveromyces , Ácido Succínico , Kluyveromyces/genética , Perfilação da Expressão Gênica , Transcriptoma
12.
Int. microbiol ; 27(2): 361-376, Abr. 2024.
Artigo em Inglês | IBECS | ID: ibc-232286

RESUMO

With the increasingly serious problem of phosphorus deficiency in the subtropical zone, chemical fertilizers are widely used. But it pollutes the environment. Phosphorus-solubilizing microorganisms (PSMs) are referred to as a new solution to this problem. We explored the phosphorus-dissolving characteristics of PSB strains isolated from the rhizosphere soil of Torreya grandis to provide a theoretical basis for selecting the strain for managing phosphorus deficiency in subtropical soils and also provides a more sufficient theoretical basis for the utilization of PSMs. From 84 strains, three strains exhibiting high phosphorus solubility and strong IAA producing capacity were selected through a series of experiments. The phosphate-solubilizing capacity of the three selected strains W1, W74, and W83 were 339.78 mg/L, 332.57 mg/L, and 358.61 mg/L, respectively. Furthermore, W1 showed the strongest IAA secreting capacity of 8.62 mg/L, followed by W74 (7.58 mg/L), and W83 (7.59 mg/L). Determination by metabolites, it was observed that these three strains dissolved phosphorus by secreting a large amount of lactic acid, aromatic acid, and succinic acid. The genome of these PSBs were sequenced and annotated in this study. Our results revealed that PSB primarily promotes their metabolic pathway, especially carbon metabolism, to secrete plenty organic acids for dissolving insoluble phosphorus. (AU)


Assuntos
Humanos , Fósforo , Células Produtoras de Anticorpos , Ácido Láctico , Ácido Succínico
13.
Int. microbiol ; 27(2): 505-512, Abr. 2024. graf, tab
Artigo em Inglês | IBECS | ID: ibc-232296

RESUMO

As a consequence of alcoholic fermentation (AF) in wine, several compounds are released by yeasts, and some of them are linked to the general quality and mouthfeel perceptions in wine. However, others, such as succinic acid, act as inhibitors, mainly of malolactic fermentation. Succinic acid is produced by non-Saccharomyces and Saccharomyces yeasts during the initial stages of AF, and the presence of some amino acids such as γ-aminobutyric acid (GABA) and glutamic acid can increase the concentration of succinic acid. However, the influence of these amino acids on succinic acid production has been studied very little to date. In this work, we studied the production of succinic acid by different strains of non-Saccharomyces and Saccharomyces yeasts during AF in synthetic must, and the influence of the addition of GABA or glutamic acid or a combination of both. The results showed that succinic acid can be produced by non-Saccharomyces yeasts with values in the range of 0.2–0.4 g/L. Moreover, the addition of GABA or glutamic acid can increase the concentration of succinic acid produced by some strains to almost 100 mg/L more than the control, while other strains produce less. Consequently, higher succinic acid production by non-Saccharomyces yeast in coinoculated fermentations with S. cerevisiae strains could represent a risk of inhibiting Oenococcus oeni and therefore the MLF.(AU)


Assuntos
Humanos , Ácido Succínico , Ácido Glutâmico , Aminoácidos , Saccharomyces cerevisiae , Vinho/análise , Vinho/microbiologia , Ácido gama-Aminobutírico , Microbiologia , Leveduras , Fermentação
14.
Appl Microbiol Biotechnol ; 108(1): 278, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558151

RESUMO

The production of succinic acid from corn stover is a promising and sustainable route; however, during the pretreatment stage, byproducts such as organic acids, furan-based compounds, and phenolic compounds generated from corn stover inhibit the microbial fermentation process. Selecting strains that are resistant to stress and utilizing nondetoxified corn stover hydrolysate as a feedstock for succinic acid production could be effective. In this study, A. succinogenes CICC11014 was selected as the original strain, and the stress-resistant strain A. succinogenes M4 was obtained by atmospheric and room temperature plasma (ARTP) mutagenesis and further screening. Compared to the original strain, A. succinogenes M4 exhibited a twofold increase in stress resistance and a 113% increase in succinic acid production when hydrolysate was used as the substrate. By conducting whole-genome resequencing of A. succinogenes M4 and comparing it with the original strain, four nonsynonymous gene mutations and two upstream regions with base losses were identified. KEY POINTS: • A high-stress-resistant strain A. succinogenes M4 was obtained by ARTP mutation •  The production of succinic acid increased by 113% • The mutated genes of A. succinogenes M4 were detected and analyzed.


Assuntos
Actinobacillus , Zea mays , Zea mays/química , Ácido Succínico , Melhoramento Vegetal , Fermentação , Mutação
15.
Sci Rep ; 14(1): 8045, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580674

RESUMO

Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/química , Fibra de Algodão , Ácido Succínico , Nanopartículas Metálicas/química , Têxteis , Antibacterianos/farmacologia , Antibacterianos/química
16.
J Environ Sci (China) ; 143: 164-175, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644014

RESUMO

Utilizing CO2 for bio-succinic acid production is an attractive approach to achieve carbon capture and recycling (CCR) with simultaneous production of a useful platform chemical. Actinobacillus succinogenes and Basfia succiniciproducens were selected and investigated as microbial catalysts. Firstly, the type and concentration of inorganic carbon concentration and glucose concentration were evaluated. 6 g C/L MgCO3 and 24 g C/L glucose were found to be the optimal basic operational conditions, with succinic acid production and carbon yield of over 30 g/L and over 40%, respectively. Then, for maximum gaseous CO2 fixation, carbonate was replaced with CO2 at different ratios. The "less carbonate more CO2" condition of the inorganic carbon source was set as carbonate: CO2 = 1:9 (based on the mass of carbon). This condition presented the highest availability of CO2 by well-balanced chemical reaction equilibrium and phase equilibrium, showing the best performance with regarding CO2 fixation (about 15 mg C/(L·hr)), with suppressed lactic acid accumulation. According to key enzymes analysis, the ratio of phosphoenolpyruvate carboxykinase to lactic dehydrogenase was enhanced at high ratios of gaseous CO2, which could promote glucose conversion through the succinic acid path. To further increase gaseous CO2 fixation and succinic acid production and selectivity, stepwise CO2 addition was evaluated. 50%-65% increase in inorganic carbon utilization was obtained coupled with 20%-30% increase in succinic acid selectivity. This was due to the promotion of the succinic acid branch of the glucose metabolism, while suppressing the pyruvate branch, along with the inhibition on the conversion from glucose to lactic acid.


Assuntos
Dióxido de Carbono , Ácido Succínico , Dióxido de Carbono/metabolismo , Ácido Succínico/metabolismo , Actinobacillus/metabolismo , Glucose/metabolismo
17.
BMC Gastroenterol ; 24(1): 106, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486162

RESUMO

To investigate the effect of Oncometabolite succinate on colorectal cancer migration and invasion and to initially explore the underlying mechanism.Succinate acid detection kit detected the succinate content in tissues. The growth of colorectal cancer cells was measured by cck-8 assay, wound-healing migration assay and transwell migration and invasion assays, and then explored the level of epithelial-mesenchymal transition (EMT) and STAT3/ p-STAT3 expression by western blot analysis and quantitative real-time PCR for mRNA expression. We found that succinate levels were significantly higher in carcinoma tissues than paracancerous tissues. After succinate treatment, the colorectal cancer cell lines SW480 and HCT116 had enhanced migration and invasion, the expression of biomarkers of EMT was promoted, and significantly increased phosphorylation of STAT3. In vivo experiments also showed that succinate can increase p-STAT3 expression, promote the EMT process, and promote the distant metastasis of colorectal cancer in mice.Succinate promotes EMT through the activation of the transcription factor STAT3, thus promoting the migration and invasion of colorectal cancer.


Assuntos
Neoplasias Colorretais , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Ácido Succínico , Fosforilação
18.
PLoS Genet ; 20(3): e1011142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457455

RESUMO

Succinate is a potent immune signalling molecule that is present in the mammalian gut and within macrophages. Both of these infection niches are colonised by the pathogenic bacterium Salmonella enterica serovar Typhimurium during infection. Succinate is a C4-dicarboyxlate that can serve as a source of carbon for bacteria. When succinate is provided as the sole carbon source for in vitro cultivation, Salmonella and other enteric bacteria exhibit a slow growth rate and a long lag phase. This growth inhibition phenomenon was known to involve the sigma factor RpoS, but the genetic basis of the repression of bacterial succinate utilisation was poorly understood. Here, we use an experimental evolution approach to isolate fast-growing mutants during growth of S. Typhimurium on succinate containing minimal medium. Our approach reveals novel RpoS-independent systems that inhibit succinate utilisation. The CspC RNA binding protein restricts succinate utilisation, an inhibition that is antagonised by high levels of the small regulatory RNA (sRNA) OxyS. We discovered that the Fe-S cluster regulatory protein IscR inhibits succinate utilisation by repressing the C4-dicarboyxlate transporter DctA. Furthermore, the ribose operon repressor RbsR is required for the complete RpoS-driven repression of succinate utilisation, suggesting a novel mechanism of RpoS regulation. Our discoveries shed light on the redundant regulatory systems that tightly regulate the utilisation of succinate. We speculate that the control of central carbon metabolism by multiple regulatory systems in Salmonella governs the infection niche-specific utilisation of succinate.


Assuntos
Proteínas de Bactérias , Ácido Succínico , Animais , Proteínas de Bactérias/metabolismo , Ácido Succínico/metabolismo , Salmonella typhimurium/genética , Succinatos/metabolismo , Carbono/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
19.
Artigo em Russo | MEDLINE | ID: mdl-38529859

RESUMO

The review is devoted to a comparative analysis of the clinical efficacy of the original domestic derivatives of 3-hydroxypyridine and succinic acid (emoxipine, reamberin and mexidol) in comparison with the results of an experimental study of their dopaminergic action. The position that the dopaminomimetic activity of emoxipin, reamberin and mexidol largely determines their anti-ischemic, antihypoxic, insulin-potentiating neuroprotective, nootropic and antidepressant potential has been substantiated. A comparative analysis of the safety profile of emoxipine, reamberin and mexidol was carried out, taking into account potential and real side-effects caused by iatrogenic deviations from the eudopaminergic state. It has been shown that mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate), which is simultaneously a derivative of 3-hydroxypyridine and succinic acid, has the best balance of efficacy and safety. A generalized assessment of the available data on the successful use of off-label derivatives of 3-hydroxypyridine and succinic acid indicates the advisability of a significant expansion of indications for their clinical use. The authors resume that the «therapeutic retargeting¼ of emoxipin, reamberin and mexidol (i.e. their use for qualitatively new indications) will contribute to progress in the treatment of socially significant and most common diseases.


Assuntos
Meglumina/análogos & derivados , Succinatos , Ácido Succínico , Humanos , Ácido Succínico/uso terapêutico , Succinatos/uso terapêutico , Picolinas/uso terapêutico , Piridinas/uso terapêutico
20.
Appl Environ Microbiol ; 90(4): e0000824, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38506527

RESUMO

Currently, the L-malic acid titer achieved through Aspergillus niger fermentation reaches 201 g/L, meeting industrial demands satisfactorily. However, the co-presence of structurally similar fumaric acid and succinic acid in fermentation products suggests a theoretical potential for further improvement in L-malic acid production. In the tricarboxylic acid cycle, fumarate reductase mediates the conversion of succinic acid to fumaric acid. Subsequently, fumarase catalyzes the conversion of fumaric acid to L-malic acid. Notably, both enzymatic reactions are reversible. Our investigation revealed that A. niger contains only one mitochondria-located fumarase FumA. Employing CRISPR-Cas9 technology, we performed a replacement of the fumA promoter with a doxycycline-induced promoter Tet. Under non-inducing condition, the conditional strain exhibited increased levels of fumaric acid and succinic acid. It strongly suggests that FumA mainly promotes the flow of fumaric acid to L-malic acid. Furthermore, a promoter PmfsA that is exclusively activated in a fermentation medium by calcium carbonate was identified through RNA-sequencing screening. Utilizing PmfsA to regulate fumA expression led to a 9.0% increase in L-malic acid titer, an 8.75% increase in yield (glucose to L-malic acid), and an 8.86% enhancement in productivity. This research serves as a significant step toward expediting the industrialization of L-malic acid synthesis via biological fermentation. Additionally, it offers valuable insights for the biosynthesis of other organic acids.IMPORTANCEThis study focuses on enhancing L-malic acid synthesis by modifying the tricarboxylic acid cycle within the mitochondria of Aspergillus niger. We emphasize the significant role of fumarase in converting fumaric acid into L-malic acid, enhancing our understanding of metabolic pathways in A. niger. The precise regulation of fumA is highlighted as a key factor in enhancing L-malic acid production. Furthermore, this research introduces a stringent conditional promoter (PmfsA), exclusively activated by CaCO3. The utilization of PmfsA for fumA expression resulted in heightened L-malic acid titers. The progress in metabolic engineering and bioprocess optimization holds promise for expediting industrial L-malic acid synthesis via biological fermentation. Moreover, it carries implications for the biosynthesis of various other organic acids.


Assuntos
Aspergillus niger , Fumarato Hidratase , Fumaratos , Aspergillus niger/genética , Aspergillus niger/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Malatos/metabolismo , Ácido Succínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...