Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.394
Filtrar
1.
Food Res Int ; 186: 114382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729736

RESUMO

Black carrot anthocyanins have gained increasing attention as natural coloring agent, owing to their higher stability than anthocyanins from berries. The stability has been attributed to their higher degree of acylation. This study investigated the impact of acylation on the stability of individual anthocyanins during storage in light and darkness. We hypothesized that the acylated anthocyanins would be more stable than the non-acylated ones. The major five anthocyanins were fractioned by semi-preparative HPLC and stored at pH 4.5 in light and darkness to investigate how acylation affected the stability. The stability was evaluated by absorption spectroscopy and mass spectrometry (MS). Two of the anthocyanins were non-acylated; 3-xylosyl(glucosyl)galactoside and cyanidin 3-xylosylgalactoside, and three were acylated; cyanidin 3-xylosyl(sinapolyglucosyl)galacto-side, cyanidin 3-xylosyl(feruloylglu-cosyl)galactoside, and cyanidin 3-xylosyl(coumaroyl-glucosyl)galactoside. Both methods (spectroscopy and MS) showed a clear effect of acylation when stored in light, but surprisingly the two non-acylated anthocyanins, showed higher stability than the three acylated ones.


Assuntos
Antocianinas , Daucus carota , Luz , Antocianinas/química , Antocianinas/análise , Acilação , Daucus carota/química , Daucus carota/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Escuridão , Armazenamento de Alimentos/métodos , Espectrometria de Massas , Concentração de Íons de Hidrogênio
2.
J Transl Med ; 22(1): 489, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778315

RESUMO

OBJECTIVE: Mild therapeutic hypothermia (MTH) is an important method for perioperative prevention and treatment of myocardial ischemia-reperfusion injury (MIRI). Modifying mitochondrial proteins after protein translation to regulate mitochondrial function is one of the mechanisms for improving myocardial ischemia-reperfusion injury. This study investigated the relationship between shallow hypothermia treatment improving myocardial ischemia-reperfusion injury and the O-GlcNAcylation level of COX10. METHODS: We used in vivo Langendorff model and in vitro hypoxia/reoxygenation (H/R) cell model to investigate the effects of MTH on myocardial ischemia-reperfusion injury. Histological changes, myocardial enzymes, oxidative stress, and mitochondrial structure/function were assessed. Mechanistic studies involved various molecular biology methods such as ELISA, immunoprecipitation (IP), WB, and immunofluorescence. RESULTS: Our research results indicate that MTH upregulates the O-GlcNACylation level of COX10, improves mitochondrial function, and inhibits the expression of ROS to improve myocardial ischemia-reperfusion injury. In vivo, MTH effectively alleviates ischemia-reperfusion induced cardiac dysfunction, myocardial injury, mitochondrial damage, and redox imbalance. In vitro, the OGT inhibitor ALX inhibits the OGT mediated O-GlcNA acylation signaling pathway, downregulates the O-Glc acylation level of COX10, promotes ROS release, and counteracts the protective effect of MTH. On the contrary, the OGA inhibitor ThG showed opposite effects to ALX, further confirming that MTH activated the OGT mediated O-GlcNAcylation signaling pathway to exert cardioprotective effects. CONCLUSIONS: In summary, MTH activates OGT mediated O-glycosylation modified COX10 to regulate mitochondrial function and improve myocardial ischemia-reperfusion injury, which provides important theoretical basis for the clinical application of MTH.


Assuntos
Hipotermia Induzida , Traumatismo por Reperfusão Miocárdica , Regulação para Cima , Animais , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Masculino , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias/metabolismo , Glicosilação , Acilação
3.
J Oleo Sci ; 73(5): 657-664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692889

RESUMO

This present work investigated the influence of black rice anthocyanins as antioxidants on the oxidation stability of oil. Malonic acid, succinic acid and succinic anhydride were grafted on black rice anthocyanins through acylation method to improve their antioxidant activity in oil. The results from fourier transform infrared spectroscopy (FTIR) showed new absorption peaks near 1744 cm -1 and 1514 cm -1 , which implied that malonic acid, succinic acid and succinic anhydride grafted on the -OH of glucoside and rutinoside through esterification reaction and resulted that the polarity of these were reduced. Total content of anthocyanin (TAC) decreased to 166. 3 mg/g, 163.7 mg/g and 150.2 mg/g, respectively after modification with succinic acid, malonic acid and succinic anhydride. Compared with native anthocyanins, the acylation of black rice anthocyanins partially reduced its antioxidant activity. In addition, DPPH clearance of molecular modified anthocyanins decreased to 62.6% (San-An). As revealed in the oil stability through the determination of primary oxidation products (PV) and secondary oxidation products (p-AV), Sa-An, Ma-An and San-An showed stronger antioxidant activity in Schaal oven accelerated oxidation test during 12 days than native black rice anthocyanin in both corn oil and flaxseed oil. Molecular modified black rice anthocyanins are expected to be used as colorants, antioxidants, etc. in oil-rich food.


Assuntos
Antocianinas , Antioxidantes , Oryza , Oxirredução , Antocianinas/química , Antocianinas/farmacologia , Antioxidantes/farmacologia , Oryza/química , Acilação , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Nat Chem ; 16(5): 717-726, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594368

RESUMO

RNA localization is highly regulated, with subcellular organization driving context-dependent cell physiology. Although proximity-based labelling technologies that use highly reactive radicals or carbenes provide a powerful method for unbiased mapping of protein organization within a cell, methods for unbiased RNA mapping are scarce and comparably less robust. Here we develop α-alkoxy thioenol and chloroenol esters that function as potent acylating agents upon controlled ester unmasking. We pair these probes with subcellular-localized expression of a bioorthogonal esterase to establish a platform for spatial analysis of RNA: bioorthogonal acylating agents for proximity labelling and sequencing (BAP-seq). We demonstrate that, by selectively unmasking the enol probe in a locale of interest, we can map RNA distribution in membrane-bound and membrane-less organelles. The controlled-release acylating agent chemistry and corresponding BAP-seq method expand the scope of proximity labelling technologies and provide a powerful approach to interrogate the cellular organization of RNAs.


Assuntos
RNA , RNA/química , RNA/metabolismo , Humanos , Acilação , Coloração e Rotulagem/métodos , Esterases/metabolismo , Esterases/química
5.
Angew Chem Int Ed Engl ; 63(23): e202401486, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563640

RESUMO

Spatiotemporal regulation of clustered regularly interspaced short palindromic repeats (CRISPR) system is attractive for precise gene editing and accurate molecular diagnosis. Although many efforts have been made, versatile and efficient strategies to control CRISPR system are still desirable. Here, we proposed a universal and accessible acylation strategy to regulate the CRISPR-Cas12a system by efficient acylation of 2'-hydroxyls (2'-OH) on crRNA strand with photolabile agents (PLGs). The introduction of PLGs confers efficient suppression of crRNA function and rapid restoration of CRISPR-Cas12a reaction upon short light exposure regardless of crRNA sequences. Based on this strategy, we constructed a universal PhotO-Initiated CRISPR-Cas12a system for Robust One-pot Testing (POIROT) platform integrated with recombinase polymerase amplification (RPA), which showed two orders of magnitude more sensitive than the conventional one-step assay and comparable to the two-step assay. For clinical sample testing, POIROT achieved high-efficiency detection performance comparable to the gold-standard quantitative PCR (qPCR) in sensitivity and specificity, but faster than the qPCR method. Overall, we believe the proposed strategy will promote the development of many other universal photo-controlled CRISPR technologies for one-pot assay, and even expand applications in the fields of controllable CRISPR-based genomic editing, disease therapy, and cell imaging.


Assuntos
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Acilação , Humanos , Processos Fotoquímicos , Edição de Genes/métodos , Ácidos Nucleicos/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
6.
Org Biomol Chem ; 22(18): 3544-3558, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624091

RESUMO

Chemical tools and principles have become central to biological and medical research/applications by leveraging a range of classical organic chemistry reactions. Friedel-Crafts alkylation and acylation are arguably some of the most well-known and used synthetic methods for the preparation of small molecules but their use in biological and medical fields is relatively less frequent than the other reactions, possibly owing to the notion of their plausible incompatibility with biological systems. This review demonstrates advances in Friedel-Crafts alkylation and acylation reactions in a variety of biomolecular chemistry fields. With the discoveries and applications of numerous biomolecule-catalyzed or -assisted processes, these reactions have garnered considerable interest in biochemistry, enzymology, and biocatalysis. Despite the challenges of reactivity and selectivity of biomolecular reactions, the alkylation and acylation reactions demonstrated their utility for the construction and functionalization of all the four major biomolecules (i.e., nucleosides, carbohydrates/saccharides, lipids/fatty acids, and amino acids/peptides/proteins), and their diverse applications in biological, medical, and material fields are discussed. As the alkylation and acylation reactions are often fundamental educational components of organic chemistry courses, this review is intended for both experts and nonexperts by discussing their basic reaction patterns (with the depiction of each reaction mechanism in the ESI) and relevant real-world impacts in order to enrich chemical research and education. The significant growth of biomolecular Friedel-Crafts reactions described here is a testament to their broad importance and utility, and further development and investigations of the reactions will surely be the focus in the organic biomolecular chemistry fields.


Assuntos
Proteínas , Alquilação , Acilação , Proteínas/química , Aminoácidos/química , Aminoácidos/síntese química , Carboidratos/química , Carboidratos/síntese química , Ácidos Graxos/química , Lipídeos/química , Nucleosídeos/química , Nucleosídeos/síntese química , Peptídeos/química , Peptídeos/síntese química
7.
FEBS Lett ; 598(9): 959-977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644468

RESUMO

Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.


Assuntos
Neoplasias , Humanos , Animais , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Aciltransferases/metabolismo , Aciltransferases/química , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/metabolismo , Acilação , Lipoilação , Processamento de Proteína Pós-Traducional , Doenças do Sistema Imunitário/enzimologia , Doenças do Sistema Imunitário/metabolismo
8.
Food Chem ; 449: 139179, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574527

RESUMO

Pea proteins lack the desirable functional characteristics for food and beverage applications. In this study, transacylation reaction assisted with ultrasonication was used to glycate pea proteins with propylene glycol alginate to enhance their functional properties. The reaction was carried out at pH 11.0 for different pea protein isolate: propylene glycol alginate mass ratios and time durations in a sonic bath at 40 °C. Glycation was confirmed in gel electrophoresis, and ultrasonication enhanced the glycation, with optimal degrees of glycation observed at 45 min reaction time and mass ratios of 2:1 (37.73%) and 1:1 (35.96%). The transacylation reaction increased random coil content of pea proteins by 28% and enhanced their solubility by 2.02 times at pH 7.0, water holding capacity by >50% at pH 7.0, foaming properties, emulsifying properties, and heat stability. This study offers a novel approach that can enhance functionality and applicability of pea proteins.


Assuntos
Alginatos , Proteínas de Ervilha , Pisum sativum , Proteínas de Ervilha/química , Acilação , Alginatos/química , Pisum sativum/química , Solubilidade , Concentração de Íons de Hidrogênio
9.
Biochim Biophys Acta Biomembr ; 1866(5): 184311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570122

RESUMO

The acylated pore-forming Repeats in ToXin (RTX) cytolysins α-hemolysin (HlyA) and adenylate cyclase toxin (CyaA) preferentially bind to ß2 integrins of myeloid leukocytes but can also promiscuously bind and permeabilize cells lacking the ß2 integrins. We constructed a HlyA1-563/CyaA860-1706 chimera that was acylated either by the toxin-activating acyltransferase CyaC, using sixteen carbon-long (C16) acyls, or by the HlyC acyltransferase using fourteen carbon-long (C14) acyls. Cytolysin assays with the C16- or C14-acylated HlyA/CyaA chimeric toxin revealed that the RTX domain of CyaA can functionally replace the RTX domain of HlyA only if it is modified by C16-acyls on the Lys983 residue of CyaA. The C16-monoacylated HlyA/CyaA chimera was as pore-forming and cytolytic as native HlyA, whereas the C14-acylated chimera exhibited very low pore-forming activity. Hence, the capacity of the RTX domain of CyaA to support the insertion of the N-terminal pore-forming domain into the target cell membrane, and promote formation of toxin pores, strictly depends on the modification of the Lys983 residue by an acyl chain of adapted length.


Assuntos
Toxina Adenilato Ciclase , Proteínas Hemolisinas , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Toxina Adenilato Ciclase/metabolismo , Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/genética , Acilação , Humanos , Domínios Proteicos , Animais , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética
10.
Shock ; 61(6): 877-884, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661185

RESUMO

ABSTRACT: Hypermetabolic reprogramming triggered by thermal injury causes substantial morbidity and mortality. Despite the therapeutic potential of targeting this response, the underlying mechanisms remain poorly understood. Interestingly, protein S-acylation is a reversible posttranslational modification induced by metabolic alterations via DHHC acyltransferases. While this modification aids in the regulation of cellular functions, deregulated S-acylation contributes to various diseases by altering protein structure, stability, and localization. However, whether and how S-acylation may impact morbidity and mortality during postburn hypermetabolism is unknown. In this study, we discovered that alterations in the acyl proteome play a key role in mediating adverse outcomes that occur after burn injury. Using a murine model, we show that burn injury induces profound changes in the expression of various DHHC isoforms in metabolic organs central to regulating postburn hypermetabolism, the adipose tissue, and liver. This was accompanied by increased levels of S-acylated proteins in several pathways involved in mediating the adverse hypermetabolic response, including ER stress, lipolysis, and browning. In fact, similar results were also observed in adipose tissue from severely burned patients, as reflected by increased S-acylation of ERK1/2, eIF2a, ATGL, FGF21, and UCP1 relative to nonburn controls. Importantly, pharmacologically targeting this posttranslational modification using a nonselective DHHC inhibitor effectively attenuated burn-induced ER stress, lipolysis, and browning induction in an ex vivo explant model. Together, these findings suggest that S-acylation may facilitate the protein activation profile that drives burn-induced hypermetabolism and that targeting it could potentially be an effective strategy to restore metabolic function and improve outcomes after injury.


Assuntos
Queimaduras , Proteoma , Animais , Queimaduras/metabolismo , Camundongos , Humanos , Proteoma/metabolismo , Masculino , Acilação , Camundongos Endogâmicos C57BL , Feminino , Fígado/metabolismo , Estresse do Retículo Endoplasmático
11.
J Am Chem Soc ; 146(17): 12138-12154, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635392

RESUMO

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.


Assuntos
Proteínas de Bactérias , Corynebacterium glutamicum , Proteômica , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Ácidos Micólicos/metabolismo , Ácidos Micólicos/química , Espectrometria de Massas em Tandem , Cromatografia Líquida , Acilação , Química Click
12.
Biochem Biophys Res Commun ; 712-713: 149960, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640734

RESUMO

An essential ketone body, ß-hydroxybutyrate (BOHB), plays various roles in physiological regulations via protein acylations such as lysine acetylation and ß-hydroxybutyrylation. Here, to understand how BOHB systemically regulates acylations from an overarching perspective, we administered a ketogenic diet to mice to increase BOHB concentration and examined acylations. We found that global acetylation and ß-hydroxybutyrylation dramatically increase in various organs except for the brains, where the increase was much smaller than in the other organs. Interestingly, we observe no increase in histone acetylation in the organs where significant global protein acetylation occurs despite a substantial rise in histone ß-hydroxybutyrylation. Finally, we compared the transcriptome data of the mice's liver after the ketogenic diet to the public databases, showing that upregulated genes are enriched in those related to histone ß-hydroxybutyrylation in starvation. Our data indicate that a ketogenic diet induces diverse patterns of acylations depending on organs and protein localizations, suggesting that different mechanisms regulate acylations and that the ketogenic diet is associated with starvation in terms of protein modifications.


Assuntos
Ácido 3-Hidroxibutírico , Dieta Cetogênica , Histonas , Camundongos Endogâmicos C57BL , Animais , Histonas/metabolismo , Camundongos , Ácido 3-Hidroxibutírico/metabolismo , Masculino , Acilação , Fígado/metabolismo , Acetilação , Especificidade de Órgãos , Proteínas/metabolismo , Proteínas/genética , Transcriptoma
13.
Appetite ; 198: 107362, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636667

RESUMO

This was a preliminary study that examined whether appetite regulation is altered during the menstrual cycle or with oral contraceptives. Ten naturally cycling females (NON-USERS) and nine tri-phasic oral contraceptive using females (USERS) completed experimental sessions during each menstrual phase (follicular phase: FP; ovulatory phase: OP; luteal phase: LP). Appetite perceptions and blood samples were obtained fasted, 30, 60, and 90 min post-prandial to measure acylated ghrelin, active glucagon-like peptide-1 (GLP-1), and total peptide tyrosine tyrosine (PYY). Changes were considered important if p < 0.100 and the effect size was ≥medium. There appeared to be a three-way (group x phase x time) interaction for acylated ghrelin where concentrations appeared to be greater in USERS versus NON-USERS during the OP 90-min post-prandial and during the LP fasted, and 90-min post-prandial. In USERS, ghrelin appeared to be greater 90-min post-prandial in the OP versus the FP with no other apparent differences between phases. There were no apparent differences between phases in NON-USERS. There appeared to be a three-way interaction for PYY where concentrations appeared to be greater in USERS during the FP 60-min post-prandial and during the OP 30-min post-prandial. In USERS PYY appeared to be greater 60-min post-prandial during the OP versus the LP with no other apparent differences. There were no apparent differences between phases in NON-USERS. There appeared to be no effect of group or phase on GLP-1, or appetite perceptions. These data demonstrate small effects of menstrual cycle phase and oral contraceptive use on the acylated ghrelin and total PYY response to a standardized meal, with no effects on active GLP-1 or perceived appetite, though more work with a large sample size is necessary.


Assuntos
Grelina , Peptídeo 1 Semelhante ao Glucagon , Ciclo Menstrual , Peptídeo YY , Período Pós-Prandial , Humanos , Feminino , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo YY/sangue , Adulto Jovem , Adulto , Anticoncepcionais Orais/administração & dosagem , Anticoncepcionais Orais/farmacologia , Apetite , Regulação do Apetite/fisiologia , Adolescente , Jejum , Acilação
14.
J Org Chem ; 89(8): 5746-5763, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38597924

RESUMO

Racemic total synthesis of the natural product oxacyclododecindione, isolated in 2008 as the first member of the oxacyclododecindione family, is reported. Studies toward this molecule commenced with a biomimetic late-stage C-H oxidation starting from 14-deoxyoxacyclododecindione as a known precursor. This provided insights into the reactivity of the macrolactone class but did not permit the synthesis of the target natural product. Based on these results, a synthetic strategy through intramolecular Friedel-Crafts acylation combined with Barton decarboxylation to introduce the tertiary alcohol, a major challenge in previous synthetic efforts, was envisioned. This resulted in an 11-step racemic total synthesis of (±)-oxacyclododecindione, renowned for its potent anti-inflammatory and antifibrotic activities.


Assuntos
Produtos Biológicos , Compostos Macrocíclicos , Anti-Inflamatórios , Acilação
15.
Anal Chim Acta ; 1304: 342538, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637049

RESUMO

BACKGROUND: With the advent of proline-based reporter isobaric Tandem Mass Tag (TMTpro) reagents, the sample multiplexing capacity of tandem mass tags (TMTs) has been expanded, and up to 18 samples can be quantified in a multiplexed manner. Like classic TMT reagents, TMTpro reagents contain a tertiary amine group, which markedly enhances their reactivity toward hydroxyl groups and results in O-acylation of serine, threonine and tyrosine residues. This overlabeling significantly compromises proteome analysis in terms of depth and precision. In particular, the reactivity of hydroxyl-containing residues can be dramatically enhanced when coexisting with a histidine in the same peptides, leading to a severe systematic bias against the analysis of these peptides. Although some protocols using a reduced molar excess of TMT under alkaline conditions can alleviate overlabeling of histidine-free peptides to some extent, they have a limited effect on histidyl- and hydroxyl-containing peptides. RESULTS: Here, we report a novel TMTpro labeling method that overcomes detrimental overlabeling while providing high labeling efficiency of amines. Additionally, our method is cost-effective, as it requires only half the amount of TMTpro reagents recommended by the reagent manufacturer. In a deep-scale analysis of a yeast/human two-proteome model sample, we compared our method with a typical alkaline labeling method using a reduced molar excess of TMTpro. Even at a depth of over 10,000 proteins, our method detected 23.7% more unique peptides and 8.7% more protein groups compared to the alkaline labeling method. Moreover, our method significantly improved the quantitative precision due to the reduced variability in labeling and increased protein sequence coverage. This substantially enhanced the statistical power of our method for detecting differentially abundant proteins, providing an average of 13% more yeast proteins that reached statistical significance. SIGNIFCANCE: We presented a novel TMTpro labeling method that overcomes the detrimental O-acylation and thus significantly improves the depth and quantitative precision for proteome analysis.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Peptídeos/química , Aminas , Acilação
16.
Nat Commun ; 15(1): 2004, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443379

RESUMO

Mutations in the human PARK7 gene that encodes protein DJ-1 lead to familial Parkinsonism due to loss of dopaminergic neurons. However, the molecular function of DJ-1 underpinning its cytoprotective effects are unclear. Recently, DJ-1 has been shown to prevent acylation of amino groups of proteins and metabolites by 1,3-bisphosphoglycerate. This acylation is indirect and thought to proceed via the formation of an unstable intermediate, presumably a cyclic 3-phosphoglyceric anhydride (cPGA). Several lines of evidence indicate that DJ-1 destroys cPGA, however this enzymatic activity has not been directly demonstrated. Here, we report simple and effective procedures for synthesis and quantitation of cPGA and present a comprehensive characterization of this highly reactive acylating electrophile. We demonstrate that DJ-1 is an efficient cPGA hydrolase with kcat/Km = 5.9 × 106 M-1s-1. Experiments with DJ-1-null cells reveal that DJ-1 protects against accumulation of 3-phosphoglyceroyl-lysine residues in proteins. Our results establish a definitive cytoprotective function for DJ-1 that uses catalytic hydrolysis of cPGA to mitigate the damage from this glycolytic byproduct.


Assuntos
Glicólise , Hidrolases , Humanos , Hidrólise , Acilação , Anidridos
17.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441122

RESUMO

Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.


Assuntos
Gravitropismo , Proteínas Quinases , Acilação , Transporte Biológico , Ácidos Indolacéticos
18.
J Agric Food Chem ; 72(12): 6077-6088, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501450

RESUMO

Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, ß-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.


Assuntos
Proteínas , Proteômica , Animais , Humanos , Proteínas/metabolismo , Acilação , Acetilação , Processamento de Proteína Pós-Traducional
19.
Chemistry ; 30(28): e202400581, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470445

RESUMO

α,ß-aromatic lactams are highly abundant in biologically active molecules, yet so far they cannot be radiolabeled with short-lived (t1/2=20.3 min), ß+-decaying carbon-11, which has prevented their application as positron emission tomography tracers. Herein, we developed, optimized, and applied a widely applicable, one-pot, quick, robust and automatable radiolabeling method for α,ß-aromatic lactams starting from [11C]CO2 using the reagent POCl3⋅AlCl3. This method proceeds via intramolecular Friedel-Crafts acylation of in situ formed [11C]isocyanates and shows a broad substrate scope for the formation of five- and six-membered rings. We implemented our developed labeling method for the radiosynthesis of the potential PARP1 PET tracer [carbonyl-11C]DPQ in a clinical radiotracer production facility following the standards of the European Pharmacopoeia.


Assuntos
Radioisótopos de Carbono , Isocianatos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Radioisótopos de Carbono/química , Acilação , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Isocianatos/química , Tomografia por Emissão de Pósitrons/métodos , Marcação por Isótopo/métodos , Lactamas/química
20.
Angew Chem Int Ed Engl ; 63(21): e202402178, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38480851

RESUMO

Incorporating stimuli-responsive components into RNA constructs provides precise spatiotemporal control over RNA structures and functions. Despite considerable advancements, the utilization of redox-responsive stimuli for the activation of caged RNAs remains scarce. In this context, we present a novel strategy that leverages post-synthetic acylation coupled with redox-responsive chemistry to exert control over RNA. To achieve this, we design and synthesize a series of acylating reagents specifically tailored for introducing disulfide-containing acyl adducts into the 2'-OH groups of RNA ("cloaking"). Our data reveal that these acyl moieties can be readily appended, effectively blocking RNA catalytic activity and folding. We also demonstrate the traceless release and reactivation of caged RNAs ("uncloaking") through reducing stimuli. By employing this strategy, RNA exhibits rapid cellular uptake, effective distribution and activation in the cytosol without lysosomal entrapment. We anticipate that our methodology will be accessible to laboratories engaged in RNA biology and holds promise as a versatile platform for RNA-based applications.


Assuntos
Oxirredução , RNA , Acilação , RNA/química , RNA/metabolismo , Humanos , Dissulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...