Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.732
Filtrar
1.
Genes (Basel) ; 15(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336701

RESUMO

ACTN3 R577X and ACE I/D polymorphisms are associated with endurance exercise ability. This case-control study explored the association of ACTN3 and ACE gene polymorphisms with elite pure endurance in Korean athletes, hypothesizing that individuals with both ACTN3 XX and ACE II genotypes would exhibit superior endurance. We recruited 934 elite athletes (713 males, 221 females) and selected 45 pure endurance athletes (36 males, 9 females) requiring "≥90% aerobic energy metabolism during sports events", in addition to 679 healthy non-athlete Koreans (361 males, 318 females) as controls. Genomic DNA was extracted and genotyped for ACTN3 R577X and ACE I/D polymorphisms. ACE ID (p = 0.090) and ACTN3 RX+XX (p = 0.029) genotype distributions were significantly different between the two groups. Complex ACTN3-ACE genotypes also exhibited significant differences (p = 0.014), with dominant complex genotypes positively affecting endurance (p = 0.039). The presence of RX+II or XX+II was associated with a 1.763-fold higher likelihood of possessing a superior endurance capacity than that seen in healthy controls (90% CI = 1.037-3.089). Our findings propose an association of combined ACTN3 RX+XX and ACE II genotypes with enhanced endurance performance in elite Korean athletes. While causality remains to be confirmed, our study highlights the potential of ACTN3-ACE polymorphisms in predicting elite endurance.


Assuntos
Actinina , Atletas , Peptidil Dipeptidase A , Resistência Física , Humanos , Actinina/genética , Masculino , Peptidil Dipeptidase A/genética , Feminino , Resistência Física/genética , República da Coreia , Estudos de Casos e Controles , Adulto , Genótipo , Adulto Jovem , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Esportes , População do Leste Asiático
2.
Signal Transduct Target Ther ; 9(1): 243, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289355

RESUMO

The various mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pose a substantial challenge in mitigating the viral infectivity. The identification of novel host factors influencing SARS-CoV-2 replication holds potential for discovering new targets for broad-spectrum antiviral drugs that can combat future viral mutations. In this study, potential host factors regulated by SARS-CoV-2 infection were screened through different high-throughput sequencing techniques and further identified in cells. Subsequent analysis and experiments showed that the reduction of m6A modification level on ACTN4 (Alpha-actinin-4) mRNA leads to a decrease in mRNA stability and translation efficiency, ultimately inhibiting ACTN4 expression. In addition, ACTN4 was demonstrated to target nsp12 for binding and characterized as a competitor for SARS-CoV-2 RNA and the RNA-dependent RNA polymerase complex, thereby impeding viral replication. Furthermore, two ACTN4 agonists, YS-49 and demethyl-coclaurine, were found to dose-dependently inhibit SARS-CoV-2 infection in both Huh7 cells and K18-hACE2 transgenic mice. Collectively, this study unveils the pivotal role of ACTN4 in SARS-CoV-2 infection, offering novel insights into the intricate interplay between the virus and host cells, and reveals two potential candidates for future anti-SARS-CoV-2 drug development.


Assuntos
Actinina , Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Humanos , Animais , Antivirais/farmacologia , Actinina/genética , Actinina/metabolismo , Camundongos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , COVID-19/virologia , COVID-19/genética , COVID-19/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Camundongos Transgênicos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA Viral/genética
3.
Nat Cardiovasc Res ; 3(6): 666-684, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39196225

RESUMO

Cardiomyocyte maturation is crucial for generating adult cardiomyocytes and the application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). However, regulation at the cis-regulatory element level and its role in heart disease remain unclear. Alpha-actinin 2 (ACTN2) levels increase during CM maturation. In this study, we investigated a clinically relevant, conserved ACTN2 enhancer's effects on CM maturation using hPSC and mouse models. Heterozygous ACTN2 enhancer deletion led to abnormal CM morphology, reduced function and mitochondrial respiration. Transcriptomic analyses in vitro and in vivo showed disrupted CM maturation and upregulated anabolic mammalian target for rapamycin (mTOR) signaling, promoting senescence and hindering maturation. As confirmation, ACTN2 enhancer deletion induced heat shock protein 90A expression, a chaperone mediating mTOR activation. Conversely, targeting the ACTN2 enhancer via enhancer CRISPR activation (enCRISPRa) promoted hPSC-CM maturation. Our studies reveal the transcriptional enhancer's role in cardiac maturation and disease, offering insights into potentially fine-tuning gene expression to modulate cardiomyocyte physiology.


Assuntos
Actinina , Diferenciação Celular , Elementos Facilitadores Genéticos , Miócitos Cardíacos , Miócitos Cardíacos/metabolismo , Humanos , Elementos Facilitadores Genéticos/genética , Animais , Actinina/genética , Actinina/metabolismo , Diferenciação Celular/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Transdução de Sinais/genética , Camundongos , Transcrição Gênica , Regulação da Expressão Gênica no Desenvolvimento , Linhagem Celular , Fenótipo
4.
Cells ; 13(16)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39195263

RESUMO

Synaptopodin 2-like protein (SYNPO2L) is localized in the sarcomere of cardiomyocytes and is involved in heart morphogenesis. However, the molecular function of SYNPO2L in the heart is not fully understood. We investigated the interaction of SYNPO2L with sarcomeric α-actinin and actin filaments in cultured mouse cardiomyocytes. Immunofluorescence studies showed that SYNPO2L colocalized with α-actinin and actin filaments at the Z-discs of the sarcomere. Recombinant SYNPO2La or SYNPO2Lb caused a bundling of the actin filaments in the absence of α-actinin and enhanced the α-actinin-dependent formation of actin bundles. In addition, high-speed atomic force microscopy revealed that SYNPO2La directly bound to α-actinin via its globular ends. The interaction between α-actinin and SYNPO2La fixed the movements of the two proteins on the actin filaments. These results strongly suggest that SYNPO2L cooperates with α-actinin during actin bundle formation to facilitate sarcomere formation and maintenance.


Assuntos
Actinina , Proteínas dos Microfilamentos , Proteínas Musculares , Miócitos Cardíacos , Ligação Proteica , Sarcômeros , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Proteínas Musculares/metabolismo
5.
Acta Histochem ; 126(5-7): 152187, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126836

RESUMO

Membrane trafficking and actin-remodeling are critical for well-maintained integrity of the cell organization and activity, and they require Arf6 (ADP ribosylation factor 6) activated by GEF (guanine nucleotide exchange factor) including EFA6 (exchange factor for Arf6). In the present immuno-electron microscopic study following previous immunohistochemical study by these authors (Chomphoo et al., 2020) of in situ skeletal myoblasts and myotubes of pre-and perinatal mice, the immunoreactivity for EFA6A was found to be localized at Z-bands and sarcoplasmic reticulum (SR) membranes in I-domains as well as I-domain myofilaments of skeletal myofibers of perinatal mice. Based on the previous finding that EFA6 anchored on the neuronal postsynaptic density via α-actinin which is known to be shared by muscular Z-bands, the present finding suggests that EFA6A is also anchored on Z-bands via α-actinin and involved in the membrane trafficking and actin-remodeling in skeletal myofibers. The localization of EFA6A-immunoreactivity in I-domain SR suggests a differential function in the membrane traffic between the I- and A-domain intracellular membranes in perinatal skeletal myofibers.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Troca do Nucleotídeo Guanina , Retículo Sarcoplasmático , Animais , Camundongos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Retículo Sarcoplasmático/metabolismo , Miofibrilas/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Actinina/metabolismo
7.
Nutrients ; 16(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125391

RESUMO

BACKGROUND: In recent years, the study of creatine supplementation in professional athletes has been of great interest. However, the genetics involved in response to supplementation is unknown. The aim of this study was to analyse, for the first time, the relationship between muscle performance-related genes and the risk of an increased body mass index (BMI) and muscle mass and a decrease in fat mass in professional football players after creatine supplementation. METHODS: For this longitudinal study, one hundred and sixty-one men's professional football players were recruited. The polymorphisms ACE I/D, ACTN3 c.1729C>T, AMPD1 c.34C>T, CKM c.*800A>G, and MLCK (c.49C>T and c.37885C>A) were genotyped using Single-Nucleotide Primer Extension (SNPE). To assess the combined impact of these six polymorphisms, a total genotype score (TGS) was calculated. The creatine supplementation protocol consisted of 20 g/day of creatine monohydrate for 5 days (loading dose) and 3-5 g/day for 7 weeks (maintenance dose). Anthropometric characteristics (body mass index (BMI), fat, and muscle mass) were recorded before and after the creatine supplementation protocol. Characteristics of non-contact muscle injuries during the 2022/2023 season were classified according to a consensus statement for injury recording. The results showed that the allelic frequencies of ACE and AMPD1 differed between responders and non-responders in muscle mass increase (all p < 0.05). Players with a TGS exceeding 54.16 a.u. had an odds ratio (OR) of 2.985 (95%CI: 1.560-5.711; p = 0.001) for muscle mass increase. By contrast, those with a TGS below 54.16 a.u. had an OR of 9.385 (95%CI: 4.535-19.425; p < 0.001) for suffering non-contact muscle injuries during the season. CONCLUSIONS: The increase in BMI and muscle mass in response to creatine supplementation in professional football players was influenced by a TGS derived from the combination of favourable genotypes linked to muscle performance. The CC genotype and C allele of AMPD1 were particularly associated with a higher likelihood of muscle mass increase under creatine supplementation in this group of professional football players.


Assuntos
AMP Desaminase , Actinina , Índice de Massa Corporal , Creatina , Suplementos Nutricionais , Músculo Esquelético , Polimorfismo de Nucleotídeo Único , Futebol , Humanos , Masculino , Creatina/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Actinina/genética , AMP Desaminase/genética , Adulto , Estudos Longitudinais , Adulto Jovem , Peptidil Dipeptidase A/genética , Creatina Quinase Forma MM/genética , Atletas , Traumatismos em Atletas/genética , Traumatismos em Atletas/prevenção & controle , Genótipo
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125881

RESUMO

Several genetic markers have shown associations with muscle performance and physical abilities, but the response to exercise therapy is still unknown. The aim of this study was to test the response of patients with long COVID through an aerobic physical therapy strategy by the Nordic walking program and how several genetic polymorphisms involved in muscle performance influence physical capabilities. Using a nonrandomized controlled pilot study, 29 patients who previously suffered from COVID-19 (long COVID = 13, COVID-19 = 16) performed a Nordic walking exercise therapy program for 12 sessions. The influence of the ACE (rs4646994), ACTN3 (rs1815739), AMPD1 (rs17602729), CKM (rs8111989), and MLCK (rs2849757 and rs2700352) polymorphisms, genotyped by using single nucleotide primer extension (SNPE) in lactic acid concentration was established with a three-way ANOVA (group × genotype × sessions). For ACE polymorphism, the main effect was lactic acid (p = 0.019). In ACTN3 polymorphism, there were no main effects of lactic acid, group, or genotype. However, the posthoc analysis revealed that, in comparison with nonlong COVID, long COVID increased lactic acid concentrations in Nordic walking sessions in CT and TT genotypes (all p < 0.05). For AMPD1 polymorphism, there were main effects of lactic acid, group, or genotype and lactic acid × genotype or lactic acid × group × genotype interactions (all p < 0.05). The posthoc analysis revealed that, in comparison with nonlong COVID, long COVID increased lactic acid concentrations in Nordic walking sessions in CC and CT genotypes (all p < 0.05). Physical therapy strategy through Nordic walking enhanced physical capabilities during aerobic exercise in post-COVID19 patients with different genotypes in ACTN3 c.1729C>T and AMPD1 c.34C>T polymorphisms. These findings suggest that individuals who reported long COVID who presumably exercised less beforehand appeared to be less able to exercise, based on lactate levels, and the effect of aerobic physical exercise enhanced physical capabilities conditioned by several genetic markers in long COVID patients.


Assuntos
Actinina , COVID-19 , Terapia por Exercício , Ácido Láctico , Caminhada , Humanos , Masculino , Terapia por Exercício/métodos , Feminino , COVID-19/genética , COVID-19/terapia , Projetos Piloto , Pessoa de Meia-Idade , Actinina/genética , Ácido Láctico/sangue , Idoso , SARS-CoV-2 , Marcadores Genéticos , AMP Desaminase/genética , Peptidil Dipeptidase A/genética , Polimorfismo de Nucleotídeo Único , Síndrome de COVID-19 Pós-Aguda , Músculo Esquelético/metabolismo , Genótipo
9.
Am J Nephrol ; 55(5): 583-596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39074452

RESUMO

INTRODUCTION: Buffalo/Mna rats spontaneously develop nephrotic syndrome (NS) which recurs after renal transplantation. The immunosuppressive drug LF15-0195 can promote regression of the initial and post-transplantation nephropathy via induction of regulatory T cells. We investigate if this drug has an additional effect on the expression and localization of podocyte specific proteins. METHODS: Buffalo/Mna kidney samples were collected before and after the occurrence of proteinuria, and after the remission of proteinuria induced by LF15-0195 treatment and compared by quantitative RT-PCR, Western blot, electron, and confocal microscopy to kidney samples of age-matched healthy rats. Cytoskeleton changes were assessed in culture by stress fibers induction by TNFα. RESULTS: We observed, by electron microscopy, a restoration of foot process architecture in the LF15-0195-treated Buff/Mna kidneys, consistent with proteinuria remission. Nephrin, podocin, CD2AP, and α-actinin-4 mRNA levels remained low during the active disease in the Buff/Mna, in comparison with healthy rats which increase, while podocalyxin and synaptopodin transcripts were elevated before the occurrence of the disease but did not differ from healthy animals after. No difference in the mRNA and protein expression between the untreated and the LF15-0195-treated proteinuric Buff/Mna were seen for these 6 proteins. No changes were observed by confocal microscopy in the protein distribution at a cellular level, but a more homogenous distribution similar to healthy rats, was observed within the glomeruli of LF15-0195-treated rats. In addition, LF15-0195 could partially restore actin cytoskeleton of endothelial cells in TNFα-induced-cell stress experiment. CONCLUSION: The effect of LF15-0195 treatment appears to be mediated by 2 mechanisms: an immunomodulatory effect via regulatory T cells induction, described in our previous work and which can act on immune cell involved in the disease pathogenesis, and an effect on the restoration of podocyte cytoskeleton, independent of expression levels of the proteins involved in the slit diaphragm and podocyte function, showed in this article.


Assuntos
Actinina , Citoesqueleto , Imunossupressores , Proteínas de Membrana , Síndrome Nefrótica , Podócitos , Sialoglicoproteínas , Animais , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Ratos , Imunossupressores/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Sialoglicoproteínas/metabolismo , Actinina/metabolismo , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/imunologia , Proteinúria , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/imunologia , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Masculino , Proteínas dos Microfilamentos/metabolismo , RNA Mensageiro/metabolismo
10.
Genet Test Mol Biomarkers ; 28(7): 281-288, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949978

RESUMO

Objective: To investigate the association between ACTN4 gene mutation and primary nephrotic syndrome (PNS) in children in Guangxi Autonomous Region, China. Methods: The high-throughput sequencing technology was used to sequence ACTN4 gene in 155 children with PNS in Guangxi Autonomous Region in China, with 98 healthy children serving as controls. Twenty-three exon-specific capture probes targeting ACTN4 were designed and used to hybridize with the genomic DNA library. The targeted genomic region DNA fragments were enriched and sequenced. The protein levels of ACTN4 in both case and control groups were quantified using ELISA method. Results: Bioinformatics analysis revealed five unique ACTN4 mutations exclusively in patients with PNS, including c.1516G>A (p.G506S) on one exon in 2 patients, c.1442 + 10G>A at the splice site in 1 patient, c.1649A>G (p.D550G) on exon in 1 patient, c.2191-4G>A at the cleavage site in 2 patients, and c.2315C>T (p.A772V) on one exon in 1 patient. The c.1649A>G (p.D550G) and c.2315C>T (p.A772V) were identified from the same patient. Notably, c.1649A>G (p.D550G) represents a novel mutation in ACTN4. In addition, three other ACTN4 polymorphisms occurred in both case and control groups, including c.162 + 6C>T (1 patient in case group and 2 patients in control group), c.572 + 11G>A (1 patient in case group and 2 patients in control group), and c.2191-5C>T (4 patients in the case group and 3 patients in control group). The serum ACTN4 concentration in the case group was markedly higher, averaging 544.7 ng/mL (range: 264.6-952.6 ng/mL), compared with 241.20 ng/mL (range: 110.75-542.35 ng/mL) in the control group. Conclusion: Five ACTN4 polymorphisms were identified among children with PNS in Guangxi Autonomous Region, China, including the novel mutation c.1649A>G. The lower serum levels of α-actinin-4 in the case group suggest that this protein might play a protective role in PNS.


Assuntos
Actinina , Síndrome Nefrótica , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Actinina/genética , Estudos de Casos e Controles , China/epidemiologia , Éxons/genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Síndrome Nefrótica/genética , População do Leste Asiático/genética
11.
Genes Genomics ; 46(9): 1013-1022, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38990270

RESUMO

BACKGROUND: In humans, ACTN2 mutations are identified as highly relevant to a range of cardiomyopathies such as DCM and HCM, while their association with sudden cardiac death has been observed in forensic cases. Although ACTN2 has been shown to regulate sarcomere Z-disc organization, a causal relationship between ACTN2 dysregulation and cardiomyopathies under chronic stress has not yet been investigated. OBJECTIVE: In this work, we explored the relationship between Actn2 dysregulation and cardiomyopathies under dexamethasone treatment. METHODS: Previous cases of ACTN2 mutations were collected and the conservative analysis was carried out by MEGA 11, the possible impact on the stability and function of ACTN2 affected by these mutations was predicted by Polyphen-2. ACTN2 was suppressed by siRNA in H9c2 cells under dexamethasone treatment to mimic the chronic stress in vitro. Then the cardiac hypertrophic molecular biomarkers were elevated, and the potential pathways were explored by transcriptome analysis. RESULTS: Actn2 suppression impaired calcium uptake and increased hypertrophy in H9c2 cells under dexamethasone treatment. Concomitantly, hypertrophic molecular biomarkers were also elevated in Actn2-suppressed cells. Further transcriptome analysis and Western blotting data suggested that Actn2 suppression led to the excessive activation of the MAPK pathway and ERK cascade. In vitro pharmaceutical intervention with ERK inhibitors could partially reverse the morphological changes and inhibit the excessive cardiac hypertrophic molecular biomarkers in H9c2 cells. CONCLUSION: Our study revealed a functional role of ACTN2 under chronic stress, loss of ACTN2 function accelerated H9c2 hypertrophy through ERK signaling. A commercial drug, Ibudilast, was identified to reverse cell hypertrophy in vitro.


Assuntos
Actinina , Dexametasona , Animais , Humanos , Ratos , Actinina/genética , Actinina/metabolismo , Linhagem Celular , Dexametasona/farmacologia , Sistema de Sinalização das MAP Quinases , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Estresse Fisiológico/genética
12.
Genes (Basel) ; 15(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062675

RESUMO

This study sought to assess how post-game creatine kinase (CK) levels correlate with the number of sprints and the impact of the ACTN3 polymorphism on this response. This research constituted a descriptive/observational, retrospective cross-sectional study. DNA was extracted from blood samples for ACTN3 polymorphism genotyping. CK was measured 48 h after official matches, and the number of sprints (>19 km/h) was tracked using Global Positioning System (GPS) technology. The main cohort included 23 professional soccer players from the top tier of the Brazilian Championship. We analyzed 115 GPS + CK data sets. The replication cohort comprised 18 professional soccer players from the First Division of the Championship, had the same methodology applied, and featured a total of 90 GPS (sprints > 25.2 km/h) + CK data sets. For the main cohort, a significant positive correlation was seen between the number of sprints and the CK levels (p = 0.009). Athletes with the ACTN3 RR genotype had higher CK levels as more sprints were performed during the match (p = 0.017). However, the relationship was not found for X allele carriers (p > 0.05). For the replication cohort, there was a near-significant correlation between CK levels and the number of sprints (p = 0.05), and RR individuals showed a significant association (p = 0.01), whereas X allele carriers did not (p = 0.06). A greater number of sprints during matches is linked to higher CK levels, primarily among players with the ACTN3 RR genotype, which is potentially due to an increased presence of type II muscle fibers. These findings were replicated for both cohorts of elite Brazilian soccer players, emphasizing the importance of genetic factors in injury prevention.


Assuntos
Actinina , Creatina Quinase , Corrida , Futebol , Humanos , Actinina/genética , Brasil , Masculino , Creatina Quinase/sangue , Creatina Quinase/genética , Adulto , Atletas , Desempenho Atlético , Estudos Transversais , Estudos Retrospectivos , Genótipo , Polimorfismo de Nucleotídeo Único , Adulto Jovem , Polimorfismo Genético
13.
J Mater Sci Mater Med ; 35(1): 43, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073623

RESUMO

Collagen hydrogel has been shown promise as an inducer for chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), contributing to the repair of cartilage defects. However, the precise molecular mechanism underlying this phenomenon remains poorly elucidated. Here, we induced chondrogenic differentiation of BMSCs using collagen hydrogel and identified 4451 differentially expressed genes (DEGs) through transcriptomic sequencing. Our analysis revealed that DEGs were enriched in the focal adhesion pathway, with a notable decrease in expression levels in the collagen hydrogel group compared to the control group. Protein-protein interaction network analysis suggested that actinin alpha 1 (ACTN1) and actinin alpha 4 (ACTN4), two proteins also involved in cytoskeletal recombination, may be crucial in collagen hydrogel-induced chondrogenic differentiation of BMSCs. Additionally, we found that N6-methyladenosine RNA methylation (m6A) modification was involved in collagen hydrogel-mediated chondrogenic differentiation, with fat mass and obesity-associated protein (FTO) implicated in regulating the expression of ACTN1 and ACTN4. These findings suggest that collagen hydrogel might regulate focal adhesion and actin cytoskeletal signaling pathways through down-regulation of ACTN1 and ACTN4 mRNA via FTO-mediated m6A modification, ultimately driving chondrogenic differentiation of BMSCs. In conclusion, our study provides valuable insights into the molecular mechanisms of collagen hydrogel-induced chondrogenic differentiation of BMSCs, which may aid in developing more effective strategies for cartilage regeneration.


Assuntos
Diferenciação Celular , Condrogênese , Colágeno , Perfilação da Expressão Gênica , Hidrogéis , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Diferenciação Celular/efeitos dos fármacos , Hidrogéis/química , Colágeno/química , Animais , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/química , Transcriptoma/efeitos dos fármacos , Actinina/metabolismo , Actinina/genética , Células Cultivadas , Metilação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Ratos
14.
J Frailty Aging ; 13(3): 267-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39082772

RESUMO

BACKGROUND: Recent studies have suggested the potential benefits of habitual coffee and green tea consumption on skeletal muscle health. However, it remains unclear whether these benefits are modified by genetic factors, particularly the alpha-actinin-3 (ACTN3) genotype, which is associated with the skeletal muscle phenotype. This study aimed to investigate the interaction between habitual coffee or green tea consumption and the ACTN3 genotype in association with skeletal muscle mass (SMM) and strength. METHODS: This cross-sectional study was conducted on 1,023 Japanese middle-aged and older adults (619 females, aged 45-74 years) living in the community. SMM was gauged using a bioelectrical impedance spectroscopy device, and handgrip strength (HGS) was used to measure muscle strength. The ACTN3 genotype (RR, RX, and XX) was determined from blood samples. Sex-specific linear regression models were used to analyze the interactions between coffee or green tea consumption and the ACTN3 genotype in association with SMM and HGS. RESULTS: In females, a significant interaction was observed between green tea consumption and the ACTN3 genotype in association with HGS (P interaction < 0.05). Furthermore, stratified analysis revealed a positive association between green tea consumption and HGS, specifically in females with the ACTN3 XX genotype (P trend < 0.05). In males, no significant interactions were observed between coffee or green tea consumption and the ACTN3 genotype in association with SMM or HGS (P interaction > 0.05). CONCLUSION: Our findings suggest that the skeletal muscle strength benefits associated with habitual green tea consumption may be contingent upon sex and the ACTN3 genotype.


Assuntos
Actinina , Café , Genótipo , Força da Mão , Músculo Esquelético , Chá , Humanos , Feminino , Masculino , Actinina/genética , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Músculo Esquelético/fisiologia , Força da Mão/fisiologia , Japão , Força Muscular
15.
Nat Commun ; 15(1): 6151, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034324

RESUMO

α-Actinins play crucial roles in cytoskeletal mechanobiology by acting as force-bearing structural modules that orchestrate and sustain the cytoskeletal framework, serving as pivotal hubs for diverse mechanosensing proteins. The mechanical stability of α-actinin dimer, a determinant of its functional state, remains largely unexplored. Here, we directly quantify the force-dependent lifetimes of homo- and hetero-dimers of human α-actinins, revealing an ultra-high mechanical stability of the dimers associated with > 100 seconds lifetime within 40 pN forces under shear-stretching geometry. Intriguingly, we uncover that the strong dimer stability is arisen from much weaker sub-domain pair interactions, suggesting the existence of distinct dimerized functional states of the dimer, spanning a spectrum of mechanical stability, with the spectrin repeats (SRs) in folded or unfolded conformation. In essence, our study supports a potent mechanism for building strength in biomolecular dimers through weak, multiple sub-domain interactions, and illuminates multifaceted roles of α-actinin dimers in cytoskeletal mechanics and mechanotransduction.


Assuntos
Actinina , Multimerização Proteica , Humanos , Actinina/metabolismo , Actinina/química , Citoesqueleto/metabolismo , Mecanotransdução Celular , Domínios Proteicos , Imagem Individual de Molécula/métodos
17.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 275-283, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814202

RESUMO

Sport is a multifactorial phenomenon that is influenced by many factors. Although many factors affect sports performance, genetic factors may be important issues that need to be examined. In addition, the relationship between sports performance and genes is still unclear. Due to the developments in omics technologies, approximately 185 genetic markers have been identified for the relationship between sports performance and genes. These genes are expressed differently in metabolism according to the characteristics of sports performance. The aim of this study was to investigate the relationship between sports and genetics. Pubmed, Pubmed Central and Google Scholar internet search engines were used in current study. Additionally, the PRISMA technique was used in the study design. For this purpose, COL1A1, COL5A1, ACTN3 and ELN genes may be important regulators on soft tissues. For endurance sports, genes like ACE, ACTN3, ADRB2, HFE, COL5A1, BDKRB2, NOS3, HIF, VEGF, AMPD and PPARGC1A significantly may influence performance limits. ACE and ACTN3 genes, on the other hand, may determine power/strength and speed skills in athletes. As a result, knowing the athlete's genetic predisposition to sports can be effective in achieving success.


Assuntos
Desempenho Atlético , Humanos , Desempenho Atlético/fisiologia , Actinina/genética , Actinina/metabolismo
18.
Georgian Med News ; (348): 72-77, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38807395

RESUMO

Abnormalities of the cytoskeleton and the slit diaphragm of podocytes have been attributed to diabetic nephropathy. In this study, we assessed urinary excretion of alpha-actinin-4 (ACTN-4), a cytoskeleton protein and a component of the slit diaphragm, and tight junction protein 1 (TJP-1, or ZO-1), a peripheral membrane protein that forms molecular complexes with actin filaments, in patients with type 2 diabetes (T2D) and albuminuric or non-albuminuric chronic kidney disease (CKD). The study included 140 patients with long-term T2D (≥10 years) and 20 healthy subjects as control. Patterns of CKD were identified based on the estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (UACR). Urinary ACTN-4 and TJP-1 were assessed by ELISA. Patients with T2D had increased urinary excretion of ACTN-4 (p=0.03) and TJP-1 (p=0.006). In logistic regression models, both ACTN-4 and TJP-1 demonstrated associations with albuminuric CKD (UACR ≥3.0 mg/mmol and eGFR <60 mL/min×1.73 m2) after adjusting to age, sex, diabetes duration, HbA1c, and smoking. In ROC-analysis, TJP-1 excretion ≥70 pg/mmol was associated with albuminuric CKD (OR 5.45, 95% CI 1.96-15.18, p=0.001). The results demonstrate that elevated urinary ACTN-4 and TJP-1 are associated specifically with albuminuric CKD, but not with non-albuminuric CKD, in T2D patients.


Assuntos
Actinina , Diabetes Mellitus Tipo 2 , Taxa de Filtração Glomerular , Insuficiência Renal Crônica , Proteína da Zônula de Oclusão-1 , Humanos , Actinina/urina , Masculino , Diabetes Mellitus Tipo 2/urina , Feminino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/urina , Insuficiência Renal Crônica/fisiopatologia , Proteína da Zônula de Oclusão-1/urina , Proteína da Zônula de Oclusão-1/metabolismo , Idoso , Nefropatias Diabéticas/urina , Nefropatias Diabéticas/fisiopatologia , Albuminúria/urina , Creatinina/urina , Estudos de Casos e Controles , Adulto
19.
Turk J Med Sci ; 54(1): 148-156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812641

RESUMO

Background/aim: Although high muscle strength worsens the sense of force, it is unknown whether there is a relationship between this deterioration and the underlying molecular mechanisms. This study examined the relationship between decreased force sense (FS) acuity and strength-related gene expressions. Materials and methods: Maximal voluntary isometric contraction (MVIC) and FS (50% MVIC) tests were performed on the knee joints of twenty-two subjects. The expression analyses were evaluated by qRT-PCR in blood samples taken before, after MVIC, after 50% MVIC, and 15 min after the test. Results: MVIC and FS error values were significantly correlated with each other (r = .659, p = .001). The qRT-PCR analyses demonstrated that the expressed mRNAs of the interleukin 6 (IL-6), alpha-actinin 3 (ACTN3), angiotensin-converting enzyme (ACE), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor receptor (CNTFR) genes dramatically increased until 50% MVIC and subsequently decreased 15 min after the exercise (p < .05). The muscle-specific creatine kinase (CKMM), myosin light chain kinase (MLCK), and G-protein ß3 subunit (GNB3) genes reached their peak expression levels 30 min after MVIC (p < .05). ACE and ACTN3 gene expression increased significantly in parallel with the increased FS error (p < .05). These gene expression fluctuations observed at 50% MVIC and after the rest could be related to changes in cellular metabolism leading to fatigue. Conclusion: The time points of gene expression levels during exercise need to be considered. The force acuity of those whose maximal force develops too much may deteriorate.


Assuntos
Contração Isométrica , Força Muscular , Humanos , Masculino , Força Muscular/genética , Força Muscular/fisiologia , Contração Isométrica/fisiologia , Adulto , Adulto Jovem , Expressão Gênica , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Interleucina-6/genética , Feminino , Fator Neurotrófico Derivado do Encéfalo/genética , Peptidil Dipeptidase A/genética , Actinina/genética , Articulação do Joelho
20.
Hum Genomics ; 18(1): 47, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760851

RESUMO

Association between genomic variants and athletic performance has seen a high degree of controversy, as there is often conflicting data as far as the association of genomic variants with endurance, speed and strength is concerned. Here, findings from a thorough meta-analysis from 4228 articles exploring the association of genomic variants with athletic performance in power and endurance sports are summarized, aiming to confirm or overrule the association of genetic variants with athletic performance of all types. From the 4228 articles, only 107 were eligible for further analysis, including 37 different genes. From these, there were 21 articles for the ACE gene, 29 articles for the ACTN3 gene and 8 articles for both the ACE and ACTN3 genes, including 54,382 subjects in total, from which 11,501 were endurance and power athletes and 42,881 control subjects. These data show that there is no statistically significant association between genomic variants and athletic performance either for endurance or power sports, underlying the fact that it is highly risky and even unethical to make such genetic testing services for athletic performance available to the general public. Overall, a strict regulatory monitoring should be exercised by health and other legislative authorities to protect the public from such services from an emerging discipline that still lacks the necessary scientific evidence and subsequent regulatory approval.


Assuntos
Actinina , Desempenho Atlético , Genômica , Resistência Física , Humanos , Resistência Física/genética , Actinina/genética , Peptidil Dipeptidase A/genética , Atletas , Esportes , Variação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA