Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.811
Filtrar
1.
Biomaterials ; 312: 122751, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121726

RESUMO

Tumor immunotherapies have emerged as a promising frontier in the realm of cancer treatment. However, challenges persist in achieving localized, durable immunostimulation while counteracting the tumor's immunosuppressive environment. Here, we develop a natural mussel foot protein-based nanomedicine with spatiotemporal control for tumor immunotherapy. In this nanomedicine, an immunoadjuvant prodrug and a photosensitizer are integrated, which is driven by their dynamic bonding and non-covalent assembling with the protein carrier. Harnessing the protein carrier's bioadhesion, this nanomedicine achieves a drug co-delivery with spatiotemporal precision, by which it not only promotes tumor photothermal ablation but also broadens tumor antigen repertoire, facilitating in situ immunotherapy with durability and maintenance. This nanomedicine also modulates the tumor microenvironment to overcome immunosuppression, thereby amplifying antitumor responses against tumor progression. Our strategy underscores a mussel foot protein-derived design philosophy of drug delivery aimed at refining combinatorial immunotherapy, offering insights into leveraging natural proteins for cancer treatment.


Assuntos
Imunoterapia , Nanomedicina , Animais , Imunoterapia/métodos , Nanomedicina/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Terapia Fototérmica/métodos , Camundongos , Humanos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas/química , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Adesivos/química , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/farmacologia
2.
Nat Commun ; 15(1): 7800, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242511

RESUMO

Dynamic tracking of spinal instrumentation could facilitate real-time evaluation of hardware integrity and in so doing alert patients/clinicians of potential failure(s). Critically, no method yet exists to continually monitor the integrity of spinal hardware and by proxy the process of spinal arthrodesis; as such hardware failures are often not appreciated until clinical symptoms manifest. Accordingly, herein, we report on the development and engineering of a bio-adhesive metal detector array (BioMDA), a potential wearable solution for real-time, non-invasive positional analyses of osseous implants within the spine. The electromagnetic coupling mechanism and intimate interfacial adhesion enable the precise sensing of the metallic implants position without the use of radiation. The customized decoupling models developed facilitate the precise determination of the horizontal and vertical positions of the implants with incredible levels of accuracy (e.g., <0.5 mm). These data support the potential use of BioMDA in real-time/dynamic postoperative monitoring of spinal implants.


Assuntos
Metais , Próteses e Implantes , Coluna Vertebral , Dispositivos Eletrônicos Vestíveis , Humanos , Coluna Vertebral/cirurgia , Metais/química , Adesivos , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos
3.
Carbohydr Polym ; 346: 122614, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245525

RESUMO

Bone defects caused by trauma, infection and congenital diseases still face great challenges. Dihydromyricetin (DHM) is a kind of flavone extracted from Ampelopsis grossedentata, a traditional Chinese medicine. DHM can enhance the osteogenic differentiation of human bone marrow mesenchymal stem cells with the potential to promote bone regeneration. Hydrogel can be used as a carrier of DHM to promote bone regeneration due to its unique biochemical characteristics and three-dimensional structure. In this study, oxidized phellinus igniarius polysaccharides (OP) and L-arginine chitosan (CA) are used to develop hydrogel. The pore size and gel strength of the hydrogel can be changed by adjusting the oxidation degree of oxidized phellinus igniarius polysaccharides. The addition of DHM further reduce the pore size of the hydrogel (213 µm), increase the mechanical properties of the hydrogel, and increase the antioxidant and antibacterial activities of the hydrogel. The scavenging rate of DPPH are 72.30 ± 0.33 %, and the inhibition rate of E.coli and S.aureus are 93.12 ± 0.38 % and 94.49 ± 1.57 %, respectively. In addition, PCAD has good adhesion and biocompatibility, and its extract can effectively promote the osteogenic differentiation of MC3T3-E1 cells. Network pharmacology and molecular docking show that the promoting effect of DHM on osteogenesis may be achieved by activating the PI3K/AKT and MAPK signaling pathways. This is confirmed through in vitro cell experiments and in vivo animal experiments.


Assuntos
Regeneração Óssea , Quitosana , Flavonóis , Hidrogéis , Sistema de Sinalização das MAP Quinases , Osteogênese , Fosfatidilinositol 3-Quinases , Polissacarídeos , Proteínas Proto-Oncogênicas c-akt , Quitosana/química , Quitosana/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Flavonóis/farmacologia , Flavonóis/química , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Arginina/química , Arginina/farmacologia , Oxirredução/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Adesivos/química , Adesivos/farmacologia
4.
ACS Appl Mater Interfaces ; 16(33): 43880-43891, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133011

RESUMO

For numerous biological and human-machine applications, it is critical to have a stable electrophysiological interface to obtain reliable signals. To achieve this, epidermal electrodes should possess conductivity, stretchability, and adhesiveness. However, limited types of materials can simultaneously satisfy these requirements to provide satisfying recording performance. Here, we present a dry electromyography (EMG) electrode based on conductive polymers and tea polyphenol (CPT), which offers adhesiveness (0.51 N/cm), stretchability (157%), and low impedance (14 kΩ cm2 at 100 Hz). The adhesiveness of the electrode is attributed to the interaction between catechol groups and hydroxyls in the polymer blend. This adhesive electrode ensures stable EMG recording even in the presence of vibrations and provides signals with a high signal-to-noise ratio (>25 dB) for over 72 h. By integrating the CPT electrode with a liquid metal strain sensor, we have developed a bimodal rehabilitation monitoring patch (BRMP) for sports injuries. The patch utilizes Kinesio Tape as a substrate, which serves to accelerate rehabilitation. It also tackles the challenge of recording with knee braces by fitting snugly between the brace and the skin, due to its thin and stretchable design. CPT electrodes not only enable BRMP to assist clinicians in formulating effective rehabilitation plans and offer patients a more comfortable rehabilitation experience, but also hold promise for future applications in biological and human-machine interface domains.


Assuntos
Eletrodos , Eletromiografia , Humanos , Polifenóis/química , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Adesivos/química , Epiderme/fisiologia , Adesividade , Polímeros/química
5.
Am J Dent ; 37(4): 216-220, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186604

RESUMO

PURPOSE: This two-treatment, four-period, double-blind, randomized controlled crossover trial assessed the ability of two denture adhesives, both applied with a thin nozzle in a continuous application pattern, to prevent food infiltration beneath partial dentures. METHODS: Participants with mandibular partial dentures and a history of food particle infiltration were enrolled. All participants used both an optimized calcium/zinc partial salt of polyvinyl methyl ether/maleic acid (PVM/MA) denture adhesive and a calcium/sodium partial salt of PVM/MA test denture adhesive, twice each, throughout four study periods, according to a randomly assigned sequence. At each visit, participants underwent two assessments: once with no denture adhesive (baseline) and once with denture adhesive, 1 hour after adhesive application. For each assessment, participants ate one-half of the top of a poppy seed muffin, and a dental professional counted the seeds retained on the denture and mucosa, which was the primary variable. The change-from-baseline comparison was made for each treatment separately using a paired t-test or Wilcoxon Signed Rank test depending on the normality of the data. A between-treatment comparison for the change from baseline was performed using a crossover ANCOVA with treatment and period as fixed effects and participant as a random effect. The baseline poppy seed count was used as a covariate. RESULTS: 30 participants were enrolled; 29 completed the trial. Both denture adhesives achieved statistically significantly fewer retained seeds versus baseline (P< 0.001). The calcium/zinc adhesive reduced the seed count from baseline by 85.9% (6.18 vs 0.86), and the calcium/ sodium adhesive reduced seed count by 76.6% (6.04 vs 1.43). Comparing the two denture adhesives, the reduction in seed count from baseline was statistically significantly greater for the calcium/zinc adhesive versus the calcium/sodium formulation (P= 0.008). CLINICAL SIGNIFICANCE: These results support the recommendation of denture adhesive use for the prevention of food infiltration beneath partial dentures, with optimized calcium/zinc denture adhesive showing the greatest prevention benefit.


Assuntos
Adesivos , Estudos Cross-Over , Humanos , Masculino , Feminino , Idoso , Método Duplo-Cego , Maleatos/química , Pessoa de Meia-Idade , Alimentos , Zinco , Prótese Parcial , Polietilenos
6.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39201785

RESUMO

The impressive adhesive capacity of marine mussels has inspired various fascinating designs in biomedical fields. Mussel-inspired injectable adhesive hydrogels, as a type of promising mussel-inspired material, have attracted much attention due to their minimally invasive property and desirable functions provided by mussel-inspired components. In recent decades, various mussel-inspired injectable adhesive hydrogels have been designed and widely applied in numerous biomedical fields. The rational incorporation of mussel-inspired catechol groups endows the injectable hydrogels with the potential to exhibit many properties, including tissue adhesiveness and self-healing, antimicrobial, and antioxidant capabilities, broadening the applications of injectable hydrogels in biomedical fields. In this review, we first give a brief introduction to the adhesion mechanism of mussels and the characteristics of injectable hydrogels. Further, the typical design strategies of mussel-inspired injectable adhesive hydrogels are summarized. The methodologies for integrating catechol groups into polymers and the crosslinking methods of mussel-inspired hydrogels are discussed in this section. In addition, we systematically overview recent mussel-inspired injectable adhesive hydrogels for biomedical applications, with a focus on how the unique properties of these hydrogels benefit their applications in these fields. The challenges and perspectives of mussel-inspired injectable hydrogels are discussed in the last section. This review may provide new inspiration for the design of novel bioinspired injectable hydrogels and facilitate their application in various biomedical fields.


Assuntos
Bivalves , Hidrogéis , Hidrogéis/química , Animais , Bivalves/química , Humanos , Materiais Biocompatíveis/química , Adesivos Teciduais/química , Materiais Biomiméticos/química , Adesivos/química , Injeções
7.
Nano Lett ; 24(35): 10790-10795, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39146458

RESUMO

The microtubule-kinesin biomolecular motor system, which is vital for cellular function, holds significant promise for nanotechnological applications. In vitro gliding assays have demonstrated the ability to transport microcargo by propelling microtubules across kinesin-coated surfaces. However, the uncontrolled directional motion of microtubules has posed significant challenges, limiting the system's application for precise cargo delivery. Microfluidic devices provide a means to direct microtubule movement through their geometric features. Norland Optical Adhesive (NOA) is valued for its mold-free application in microfluidic device fabrication; however, microtubules often climb up channel walls, limiting controlled movement. In this study, a surface passivation method for NOA is introduced, using polyethylene glycol via a thiol-ene click reaction. This technique significantly improved the directional control and concentration of microtubules within NOA microchannels. This approach presents new possibilities for the precise application of biomolecular motors in nanotechnology, enabling advancements in the design of microfluidic systems for complex biomolecular manipulations.


Assuntos
Adesivos , Cinesinas , Microtúbulos , Propriedades de Superfície , Microtúbulos/química , Microtúbulos/metabolismo , Adesivos/química , Cinesinas/química , Cinesinas/metabolismo , Nanotecnologia/métodos , Polietilenoglicóis/química , Técnicas Analíticas Microfluídicas , Dispositivos Lab-On-A-Chip
8.
Int J Pharm ; 663: 124549, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39128621

RESUMO

A new theory for the dispersibility enhancing effect of excipient fines for adhesive mixtures for inhalation is presented in this paper, while at the same time the shortcomings of current hypotheses are discussed. The proposed mechanism, denoted the 'viscoelastic damping effect', states that the presence of fines particles acts to dampen the collisions between carrier particles during mixing. As a consequence, fewer fine particles are 'irreversibly' pressed into the carriers, which in turn entails a higher fine particle fraction. The mechanism was demonstrated experimentally at different levels of added lactose fines by studying the influence of processing on fine particle fraction. This approach furthermore enabled quantification of the effect. All fine particles present in the blend (APIs and excipient fines) act together to exert the damping effect. The proposed mechanism is able to explain the main body of published data, including the effect of added excipient fines, the effect of an increased drug load, and the effect of removal of carrier fines. The viscoelastic damping mechanism is general in nature and conveys a broader and more general understanding of the behavior of adhesive mixtures for inhalation.


Assuntos
Adesivos , Excipientes , Lactose , Tamanho da Partícula , Lactose/química , Excipientes/química , Administração por Inalação , Adesivos/química , Química Farmacêutica/métodos , Portadores de Fármacos/química
9.
Int J Biol Macromol ; 277(Pt 4): 134337, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111482

RESUMO

Hydrogels as skin wound dressings have been extensively studied owing to their good flexibility and biocompatibility. Nevertheless, the mechanical performance, adhesive capability, antifouling and antibacterial properties of conventional hydrogels are still unsatisfactory, which hinder the application of hydrogel for cutaneous healing. Here, we developed a novel biocompatible multifunctional hydrogel with super flexible, fatigue resistant, antifouling and self-adhesive capability for effective wound healing, where naturally rigid polymers including quaternized chitosan (QCS) and Tunicate cellulose nanocrystals (TCNCs) are used as bioactive cross-linkers and reinforcers to endow the hydrogel with excellent mechanical and antibacterial property, and the synergistic contributions from the poly(acrylic acid/methacrylate anhydride dopamine/sulfobetaine methacrylate) (poly(AA/DMA/SBMA)) chains and QCS endow the hydrogel with excellent adhesive property, antioxidant, antifouling and pH-responsive sustained drug release capabilities. The optimized hydrogel exhibited high tensile strength (77.69 KPa), large tensile strain (889.9 %), large toughness (307.51KJ.m-3), high adhesive strength (35.57 KPa) and ideal compressive property. The in vivo infected full-thickness skin model demonstrated that the hydrogel with vanvomycin sustained release ability efficiently improved the granulation tissue formation, facilitating collagen deposition and reducing inflammatory expression, thus effectively accelerating wound healing. This superiorly skin-adhesive antibacterial biocompatible hydrogel appears to be a promising candidate for wound therapy.


Assuntos
Antibacterianos , Celulose , Hidrogéis , Nanopartículas , Cicatrização , Cicatrização/efeitos dos fármacos , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados , Nanopartículas/química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Urocordados/química , Camundongos , Resistência à Tração , Quitosana/química , Adesivos/química , Adesivos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
10.
ACS Appl Mater Interfaces ; 16(34): 45537-45549, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39138982

RESUMO

Addressing the conflict between achieving elevated mechanical stretchability and environmental adaptability is significant to a breakthrough in the practical application of flexible wearable materials. Therefore, inspired by the perceptive and protective properties of human skin, flexible wearable electronic skins (E-skins) based on deep eutectic solvent (DES) liquid and multiresponse eutectogel have been widely considered to be a promising platform for building a flexible wearable management system to achieve the purpose of "one stone, two birds". In this work, a multifunctional E-skin was designed based on an ultrastretchable, transparent, self-adhesive, and environmentally tolerant eutectogel by first incorporating cationized modified chitin nanocrystals into a covalently cross-linked polymer network comprised of the skeleton formed by a PAA polymerization network structure serving as a stretchable matrix and filled with DESs (ChCl:EG). The obtained eutectogel exhibits superhigh stretchability (up to 6707%), high toughness (17.7 MJ/m3), mechanical strength (0.48 MPa), self-adhesive, and high transparency (91.2%). Simultaneously, the multisignal sensor based on the above comprehensive properties and thermosensitive capacity exhibits a wide monitoring range, high strain/compression/temperature sensitivity, and good reproducibility. Remarkably, the sensor could be attached to rat hearts without glue or stickers for long-term monitoring of high-quality in vivo heartbeat signals. In this way, it is believed that the designed E-skin system based on eutectogel has great potential to serve as a promising platform for the next generation of flexible multisignal monitoring integrated wearable management systems.


Assuntos
Quitina , Géis , Nanopartículas , Dispositivos Eletrônicos Vestíveis , Animais , Nanopartículas/química , Quitina/química , Géis/química , Ratos , Humanos , Adesivos/química
11.
ACS Appl Mater Interfaces ; 16(34): 45550-45562, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39145483

RESUMO

Instant and strong adhesion to underwater adherends is a big challenge due to the continuous interference of water. Mussel foot protein-bioinspired catechol-based adhesives have garnered great interest in addressing this issue. Herein, a novel self-made catecholic compound with a long aliphatic chain was utilized to prepare thin (∼0.07 mm) and optically transparent (>80%) wet/underwater adhesive tapes by UV-initiated polymerization. Its adhesion activity was water-triggered, fast (<1 min), and strong (adhesion strength to porcine skin: ∼1.99 MPa; interfacial toughness: ∼610 J/m2, burst pressure: ∼1950 mmHg). The effect of the catechol/phenol group and positively charged moiety on the wet/underwater adhesion to abiotic/biotic substrates was investigated. On the wet/underwater adherends, the tape with catechol groups presented much higher interfacial toughness, adhesion strength, and burst pressure than the analogous tape with phenol groups. The tape with both the catechol group and cationic polyelectrolyte chitosan had a more impressive improvement in its adhesion to wet/underwater biological tissues than to abiotic substrates. Therefore, catechol and a positive moiety in the tape would synergistically enhance its wet/underwater adhesion to various substrates, especially to biological tissues. The instant, strong, and noncytotoxic tape may provide applications in underwater adhesion for sealing and wound closure.


Assuntos
Adesivos , Catecóis , Animais , Adesivos/química , Catecóis/química , Proteínas/química , Bivalves/química , Adesividade , Água/química , Suínos
12.
J Environ Manage ; 367: 122067, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111011

RESUMO

Adhesive production industry wastewater can be characterized by high chemical oxygen demand (COD) sourced from high refractory organic contaminants and high total suspended solids (TSS) concentration. Biodegradability of the wastewater is low and wastewater quality is unstable. Various treatment processes have limited applicability in such characterized wastewater. In this study, the treatment performance of electrochemical processes was investigated. Because it is not possible to meet the discharge standards by application of only one process for high refractory organic content, sequential electrochemical processes were studied in this work. In the first step of the sequential process, electrocoagulation (EC) using Al electrodes by which better performance was achieved was applied. In the second step, electrooxidation (EO) and peroxi-coagulation (PC) processes were applied to the EC effluent. In EO, Ti/MMO was selected as the most effective anode whereas in PC, Fe was used as the anode, and graphite was used as the cathode. Box-Behnken Design was applied to optimize the operating conditions of EO and PC processes and to obtain mathematical model equations. In the EC process, 77% COD, 78.5% TSS, and 85% UV254 removal efficiency were obtained under the optimum conditions (pH 7.2, reaction time 35 min, and current density 0.5 mA/cm2). With the EO and PC processes applied to the effluent of EC, 68.5% COD, 77% TSS, and 83% UV254 removal and 77.5% COD, 87% TSS, and 86.5% UV254 removal were obtained, respectively. The specific energy consumption of EC-EO and EC-PC processes was 16.08 kWh/kg COD and 15.06 kWh/kg COD, respectively. Considering the treatment targets and process operating costs, it was concluded that both sequential electrochemical systems could be promising alternative systems for the treatment of adhesive production industry wastewater.


Assuntos
Eletrocoagulação , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Eletrocoagulação/métodos , Análise da Demanda Biológica de Oxigênio , Adesivos , Poluentes Químicos da Água/química , Eletrodos
13.
Nanoscale ; 16(35): 16485-16499, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135488

RESUMO

Central nervous system tuberculosis (CNS-TB) is a severe form of extra-pulmonary tuberculosis with high mortality and morbidity rates. The standard treatment regimen for CNS-TB parallels that of pulmonary TB, despite the challenge posed by the blood-brain barrier (BBB), which limits the efficacy of first-line anti-TB drugs (ATDs). Nose-to-brain (N2B) drug delivery offers a promising solution for achieving high ATD concentrations directly at infection sites in the brain while bypassing the BBB. This study aimed to develop chitosan nanoparticles encapsulating ATDs, specifically isoniazid (INH) and rifampicin (RIF). These nanoparticles were further processed into micro-sized chitosan nano-aggregates (NA) via spray drying. Both INH-NA and RIF-NA showed strong mucoadhesion and significantly higher permeation rates across RPMI 2650 cells compared to free ATDs. Intranasal administration of these NAs to TB-infected mice for four weeks resulted in a significant reduction of mycobacterial load by approximately ∼2.86 Log 10 CFU compared to the untreated group. This preclinical data highlights the efficacy of intranasal chitosan nano-aggregates in treating CNS-TB, demonstrating high therapeutic potential, and addressing brain inflammation challenges. To our knowledge, this study is the first to show nasal delivery of ATD nano-formulations for CNS-TB management.


Assuntos
Antituberculosos , Quitosana , Isoniazida , Nanopartículas , Rifampina , Tuberculose do Sistema Nervoso Central , Animais , Camundongos , Tuberculose do Sistema Nervoso Central/tratamento farmacológico , Barreira Hematoencefálica , Quitosana/administração & dosagem , Quitosana/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Administração Intranasal , Células Epiteliais/efeitos dos fármacos , Antituberculosos/administração & dosagem , Antituberculosos/química , Camundongos Endogâmicos BALB C , Adesivos/administração & dosagem , Adesivos/química , Mucinas/química , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Humanos , Linhagem Celular , Isoniazida/administração & dosagem , Rifampina/administração & dosagem , Sistemas de Liberação de Medicamentos
14.
Int J Biol Macromol ; 278(Pt 2): 134712, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154688

RESUMO

The increasing demand for environmentally friendly performance materials in the field of wearable electronics has brought renewable and low-cost hydrogels based on natural polymers into the research spotlight. As a biodegradable natural polymer, sodium alginate (SA) shows great promise for applications in wearable electronics. Here, we report a hydrogel with printability, adhesion, and is highly stable based on gelatin (Gel) and SA. SA improves the viscosity of the hydrogel, which can bond iron products weighing up to 20 kg due to metal coordination with the material, and the hydrogel binder is recyclable and reusable. The presence of glycerin allowed the hydrogel sensor device to maintain sensitivity after exposure to air at 25 °C for up to 35 days, and printed hydrogel samples retained their compressive resilience after exposure to air (25 °C, 55 % RH) for 30 days. Hydrogel-based supercapacitors show good stability after 58 h of charge/discharge cycling. This paper provides research ideas for the preparation of hydrogels with strong adhesion properties, as well as hydrogel 3D printing technology for the preparation of flexible sensor devices and flexible energy storage devices.


Assuntos
Alginatos , Gelatina , Hidrogéis , Impressão Tridimensional , Alginatos/química , Hidrogéis/química , Gelatina/química , Dispositivos Eletrônicos Vestíveis , Capacitância Elétrica , Viscosidade , Adesivos/química
15.
Int J Biol Macromol ; 278(Pt 2): 134828, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39159800

RESUMO

Recently, Cellulose microfibers (CMF) have garnered significant attention due to their renewability, biodegradability, and unique properties such as high aspect ratio, low density, high strength, stiffness, and distinctive optical properties. These characteristics have been highlighted in publications worldwide. However, the structure of CMF is difficult to access with solvents, limiting its dissolution in common organic solvents. The synthesis of CMF-siloxane or CMF-silane hybrid materials from cellulose generally involves several reactions steps, and therefore catalysts. The allylation of CMF is catalyzed by the phase-transfer catalyst tetrabutylammonium bromide (TBAB), which enables the combination of CMF with allyl. This is followed by a hydrosilylation reaction catalyzed by Karstedt's catalyst, based on platinum (0), to combine the hydrophilic allylated CMF with hydride-terminated hydrophobic hydrosilane or hydrosiloxane. Environmentally friendly particleboards were developed using bio-based adhesives composed of corn-starch and Mimosa tannin (CSMT) mixtures. These mixtures included 4, 6, 8, and 10 wt% of CMF, allylated CMF and silylated CMF. The mechanical and physical properties of particleboards, such as modulus of elasticity (MOE), modulus of rupture (MOR), internal bond strength (IB), surface soundness (SS), water absorption (WA) and thickness swelling (TS) were determined.


Assuntos
Adesivos , Celulose , Silanos , Siloxanas , Amido , Taninos , Zea mays , Amido/química , Siloxanas/química , Celulose/química , Celulose/análogos & derivados , Silanos/química , Zea mays/química , Taninos/química , Adesivos/química
16.
J Hum Evol ; 194: 103578, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39146927

RESUMO

The foragers of the southern African Middle Stone Age were among the first humans to adapt their environment and its resources to their needs. They heat-treated stone to alter its mechanical properties, transformed yellow colorants into red pigments and produced moldable adhesive substances from plants. Until now, only Podocarpus conifers have been identified as the botanical origin of Middle Stone Age adhesives. This is curious as these conifers do not produce sticky exudations that could be recognized as potential adhesives. To obtain an adhesive, tar must be made with a technical process based on fire. However, the nature of these technical processes has remained unknown, hampering our understanding of the meaning of this adhesive technology for the cultural evolution of early Homo sapiens. Here, we present the first evidence of a technique used for tar making in the Middle Stone Age. We created an experimental reference collection containing naturally available adhesives along manufactured tars from plants available in the Middle Stone Age and compared these to artifacts using gas chromatography-mass spectrometry and infrared spectroscopy. We found that, in the Howiesons Poort at Sibhudu Cave, tar was made by condensation, an efficient above-ground process. Even more surprisingly, the condensation method was not restricted to Podocarpus. The inhabitants of Sibhudu also produced tar from the leaves of other plants. These tars were then used, either without further transformation or were processed into ochre-based compound adhesives, suggesting that people needed different moldable substances with distinct mechanical properties. This has important implications for our understanding of Middle Stone Age H. sapiens, portraying them as skilled engineers who used and transformed their resources in a knowledgeable way.


Assuntos
Adesivos , Arqueologia , Adesivos/química , Humanos , Tecnologia , Evolução Cultural , Traqueófitas/química , Biomassa
17.
Int J Biol Macromol ; 278(Pt 3): 134921, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173788

RESUMO

Recently, the utilization of the cellulose to fabricate the multifunctional materials with aim to replace the petroleum-based product, is receiving significant attentions. However, the development of cellulose-based multifunctional materials with high mechanical strength and temperature resistance is still a challenge. Herein, the intrinsic feature and property of cellulose and rosin were creatively employed to fabricate a novel cellulose-rosin based poly(esterimide) (PEI) by esterification reaction and imidization reaction, and the obtained cellulose-rosin derived PEI exhibits superior thermal stability. Then the as-prepared cellulose-rosin derived PEI was dissolved in polymerizable deep eutectic solvents (PDES) and in-situ formed the ionic conductive elastomer (ICE) with via UV-induced polymerization. These cellulose-rosin based ICE exhibited excellent mechanical properties, solvent resistance, and temperature tolerance. By adjusting the mass ratio of cellulose-rosin derived PEI and PDES, the as-prepared liquid-free ICE functions as UV shadowless adhesive and wearable sensors. The bonding strength of UV shadowless adhesive could 1.52 MPa, which could be applied to fix the broken glass toy models. Furthermore, wearable sensors based those ICE could monitor the large and subtle movements even under extreme environmental condition, such as being soaked in organic solvent (such as tetrahydrofuran) or at low/high temperature (-25 °C or 80 °C). This work opens a new avenue for the next-generation of multifunctional ICE.


Assuntos
Adesivos , Celulose , Elastômeros , Resinas Vegetais , Solventes , Temperatura , Celulose/química , Resinas Vegetais/química , Elastômeros/química , Adesivos/química , Solventes/química , Raios Ultravioleta , Condutividade Elétrica , Dispositivos Eletrônicos Vestíveis
18.
Bioinspir Biomim ; 19(5)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212200

RESUMO

Soft actuators made of soft materials cannot generate precisely efficient output forces compared to rigid actuators. It is a promising strategy to equip soft actuators with variable stiffness modules of layer jamming mechanism, which could increase their stiffness as needed. Inspired by the gecko's the array of setae, bionic adhesive flaps with inclined micropillars are applied in layer jamming mechanism. In this paper, after the manufacturing process of the layer jamming actuator based on the bionic adhesive flaps is described, the equivalent stiffness models of the whole actuator are established in the unjammed and jammed states. And the shear adhesive force of a single micropillar is calculated based on the Kendall viscoelastic band model. The finite element simulation results of two bionic adhesive flaps show that the interlaminar shear stress and stiffness increase with the increase of pressure. The measurement of shear adhesive force show that the critical shear adhesive force of the bionic adhesive material is 3.2 times that of polyethylene terephthalate (PET) material, and exhibit the ability of anisotropic adhesion behavior. The variable stiffness performance of the layer jamming actuator based on bionic adhesive flaps is evaluated by three test methods, and the max stiffness reaches 8.027 N mm-1, which is 1.5 times higher than the stiffness of the layer jamming actuator based on the PET flaps. All results of simulation and experiment effectively verify the validity and superiority of applying the bionic adhesive flaps to the layer jamming mechanism to enhance the stiffness.


Assuntos
Adesivos , Materiais Biomiméticos , Biônica , Desenho de Equipamento , Animais , Adesivos/química , Análise de Elementos Finitos , Lagartos/fisiologia , Simulação por Computador , Robótica/instrumentação , Biomimética/métodos , Polietilenotereftalatos/química , Estresse Mecânico
19.
PLoS One ; 19(8): e0307974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39208199

RESUMO

Through a comprehensive review of published literature on fish glue (FG), the ecological glue for traditional furniture, the traditional handicraft for making FG was found to include six main processes: soaking, steaming, manual smashing, decoction, filtration, and airing. The handicraft that makes FG is manual and is not only time-consuming and laborious but does not have clearly documented standard processes and is thus less repeatable. Considering this, experiments to optimize a new technique for making FG were designed. Six basic technological processes (cutting and drying, crushing, soaking, decoction, filtration, and airing) were investigated to optimize the new glue production technique. The technological processes of the new technique were compared with those of the traditional handicraft method. The results indicated that preparing FG following the optimal processes of the new glue-making technique not only ensured the quality of the glue solution but also outperformed the traditional handicraft technique in the following aspects: 1) it simplifies the production process, reduces labor intensity, and saves time: the soaking time is decreased by 50% and the traditional manual smashing process is not required; 2) it improves the glue yield by 5.42%; and 3) due to introduction of mechanical processing, time and temperature are controllable, rendering production more repeatable and easily up-scaled.


Assuntos
Adesivos , Peixes , Adesivos/química , Animais , Decoração de Interiores e Mobiliário
20.
Sci Rep ; 14(1): 20168, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215113

RESUMO

The utilization of high-performance ester materials in addressing soil erosion and conserving water remains a crucial area of research in soil remediation. Currently, however, the mechanism underlying the role of these materials in vegetation restoration remains unclear, hampering the accurate determination of the optimal ratio of high-performance ester composite materials for soil enhancement. To address this issue, this study examines the mechanism of how high-performance ester composite materials affect the germination and growth of plant seeds through soilless cultivation experiments. The results revealed that the high-performance ester composite materials significantly enhanced seed germination ability and fostered plant seedling growth. Notably, the promotional effects of the ester adhesive and water-retaining materials within the high-performance ester composite varied. Specifically, the adhesive material significantly spurred radicle development, while the water-retaining material significantly accelerated germ growth. Varying concentrations of adhesive materials exerted distinct effects on plant growth. In particular, a small amount of adhesive materials enhanced seed germination, whereas excessive amounts exhibited inhibitory effects. Consequently, the optimal adhesive materials dosage conducive to plant growth and the optimal weight ratio of adhesive to water-retaining materials were ascertained. Additionally, the underlying mechanism of high-performance ester composite materials influence plant growth was elucidated. Overall, this research offers a theoretical foundation for the optimal ratio adjustment of high-performance ester composite materials to optimize soil improvement efforts.


Assuntos
Ésteres , Germinação , Sementes , Solo , Germinação/efeitos dos fármacos , Solo/química , Ésteres/química , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Água/química , Adesivos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA