Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.385
Filtrar
1.
Front Immunol ; 15: 1392681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835751

RESUMO

Background: Pasteurella multocida is a bacterial pathogen that causes a variety of infections across diverse animal species, with one of the most devastating associated diseases being hemorrhagic septicemia. Outbreaks of hemorrhagic septicemia in cattle and buffaloes are marked by rapid progression and high mortality. These infections have particularly harmful socio-economic impacts on small holder farmers in Africa and Asia who are heavily reliant on a small number of animals kept as a means of subsistence for milk and draft power purposes. A novel vaccine target, PmSLP-3, has been identified on the surface of hemorrhagic septicemia-associated strains of P. multocida and was previously shown to elicit robust protection in cattle against lethal challenge with a serogroup B strain. Methods: Here, we further investigate the protective efficacy of this surface lipoprotein, including evaluating the immunogenicity and protection upon formulation with a variety of adjuvants in both mice and cattle. Results: PmSLP-3 formulated with Montanide ISA 61 elicited the highest level of serum and mucosal IgG, elicited long-lasting serum antibodies, and was fully protective against serogroup B challenge. Studies were then performed to identify the minimum number of doses required and the needed protein quantity to maintain protection. Duration studies were performed in cattle, demonstrating sustained serum IgG titres for 3 years after two doses of vaccine and full protection against lethal serogroup B challenge at 7 months after a single vaccine dose. Finally, a serogroup E challenge study was performed, demonstrating that PmSLP-3 vaccine can provide protection against challenge by the two serogroups responsible for hemorrhagic septicemia. Conclusion: Together, these data indicate that PmSLP-3 formulated with Montanide ISA 61 is an immunogenic and protective vaccine against hemorrhagic septicemia-causing P. multocida strains in cattle.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Doenças dos Bovinos , Septicemia Hemorrágica , Pasteurella multocida , Animais , Bovinos , Pasteurella multocida/imunologia , Septicemia Hemorrágica/prevenção & controle , Septicemia Hemorrágica/veterinária , Septicemia Hemorrágica/imunologia , Septicemia Hemorrágica/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Camundongos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Feminino , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/imunologia , Infecções por Pasteurella/microbiologia , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Vacinação
2.
Front Immunol ; 15: 1388721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840926

RESUMO

The disaccharide (ß-D-glucopyranosyluronic acid)-(1→4)-ß-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.


Assuntos
Interleucina-17 , Vacinas Pneumocócicas , Soroalbumina Bovina , Streptococcus pneumoniae , Animais , Interleucina-17/imunologia , Interleucina-17/metabolismo , Streptococcus pneumoniae/imunologia , Camundongos , Soroalbumina Bovina/imunologia , Vacinas Pneumocócicas/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Dissacarídeos/imunologia , Cápsulas Bacterianas/imunologia , Polissacarídeos Bacterianos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Feminino , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Linfócitos Intraepiteliais/imunologia , Sorogrupo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
3.
Hum Vaccin Immunother ; 20(1): 2363016, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38839044

RESUMO

Recombinant protein vaccines represent a well-established, reliable and safe approach for pandemic vaccination. SpikoGen® is a recombinant spike protein trimer manufactured in insect cells and formulated with Advax-CpG55.2 adjuvant. In murine, hamster, ferret and non-human primate studies, SpikoGen® consistently provided protection against a range of SARS-CoV-2 variants. A pivotal Phase 3 placebo-controlled efficacy trial involving 16,876 participants confirmed the ability of SpikoGen® to prevent infection and severe disease caused by the virulent Delta strain. SpikoGen® subsequently received a marketing authorization from the Iranian FDA in early October 2021 for prevention of COVID-19 in adults. Following a successful pediatric study, its approval was extended to children 5 years and older. Eight million doses of SpikoGen® have been delivered, and a next-generation booster version is currently in development. This highlights the benefits of adjuvanted protein-based approaches which should not overlook when vaccine platforms are being selected for future pandemics.


SpikoGen is a more traditional COVID-19 vaccine comprising SARS-CoV-2 spike protein extracellular domain formulated with Advax-CpG adjuvantSpikoGen differs from the Novavax vaccine in major ways including its use of the soluble secreted spike protein ECD rather than nanoparticle formulation and the use of a different adjuvantSpikoGen demonstrates robust protection against homologous and heterologous SARS-CoV-2 strains in hamster, ferret and non-human primate challenge modelsSpikoGen induces broadly cross-neutralizing antibodies, but still protects even after these antibody levels waneIn a pivotal Phase 3 clinical trial, SpikoGen reduced the risk of severe infection by 77.5% and was not associated with myocarditis, thrombosis or any other adverse safety signalsSpikoGen received an Emergency Use Authorization in the Middle East on 6 October 2021, making it the first recombinant spike protein vaccine to achieve this milestoneEight million doses of SpikoGen vaccine have been safely delivered to dateProtein-based vaccines have a long history of reliability and safety.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas Sintéticas , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , COVID-19/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , SARS-CoV-2/imunologia , Adjuvantes de Vacinas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Desenvolvimento de Vacinas
4.
J Nanobiotechnology ; 22(1): 308, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825711

RESUMO

Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Nanotecnologia , Neoplasias , Vacinas de mRNA , Humanos , Vacinas Anticâncer/imunologia , Nanotecnologia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Sistemas de Liberação de Medicamentos/métodos , COVID-19/prevenção & controle , Adjuvantes de Vacinas , RNA Mensageiro/genética , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia
5.
Cell Commun Signal ; 22(1): 305, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831299

RESUMO

As a major component of innate immunity and a positive regulator of interferons, the Stimulator of interferon gene (STING) has an immunotherapy potential to govern a variety of infectious diseases. Despite the recent advances regarding vaccines against COVID-19, nontoxic novel adjuvants with the potential to enhance vaccine efficacy are urgently desired. In this connection, it has been well-documented that STING agonists are applied to combat COVID-19. This approach is of major significance for boosting immune responses most likely through an autophagy-dependent manner in susceptible individuals against infection induced by severe acute respiratory syndrome Coronavirus (SARS­CoV­2). Given that STING agonists exert substantial immunomodulatory impacts under a wide array of pathologic conditions, these agents could be considered novel adjuvants for enhancing immunogenicity against the SARS-related coronavirus. Here, we intend to discuss the recent advances in STING agonists' recruitment to boost innate immune responses upon vaccination against SARS-related coronavirus infections. In light of the primordial role of autophagy modulation, the potential of being an antiviral vaccine adjuvant was also explored.


Assuntos
Autofagia , COVID-19 , Proteínas de Membrana , SARS-CoV-2 , Autofagia/imunologia , Autofagia/efeitos dos fármacos , Humanos , Proteínas de Membrana/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Animais , Vacinas contra COVID-19/imunologia , Imunidade Inata/efeitos dos fármacos , Adjuvantes de Vacinas/uso terapêutico , Adjuvantes de Vacinas/farmacologia , Adjuvantes Imunológicos/farmacologia
6.
ACS Appl Bio Mater ; 7(6): 3877-3889, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38832760

RESUMO

Adjuvants and immunomodulators that effectively drive a Th17-skewed immune response are not part of the standard vaccine toolkit. Vaccine adjuvants and delivery technologies that can induce Th17 or Th1/17 immunity and protection against bacterial pathogens, such as tuberculosis (TB), are urgently needed. Th17-polarized immune response can be induced using agonists that bind and activate C-type lectin receptors (CLRs) such as macrophage inducible C-type lectin (Mincle). A simple but effective strategy was developed for codelivering Mincle agonists with the recombinant Mycobacterium tuberculosis fusion antigen, M72, using tunable silica nanoparticles (SNP). Anionic bare SNP, hydrophobic phenyl-functionalized SNP (P-SNP), and cationic amine-functionalized SNP (A-SNP) of different sizes were coated with three synthetic Mincle agonists, UM-1024, UM-1052, and UM-1098, and evaluated for adjuvant activity in vitro and in vivo. The antigen and adjuvant were coadsorbed onto SNP via electrostatic and hydrophobic interactions, facilitating multivalent display and delivery to antigen presenting cells. The cationic A-SNP showed the highest coloading efficiency for the antigen and adjuvant. In addition, the UM-1098-adsorbed A-SNP formulation demonstrated slow-release kinetics in vitro, excellent stability over 12 months of storage, and strong IL-6 induction from human peripheral blood mononuclear cells. Co-adsorption of UM-1098 and M72 on A-SNP significantly improved antigen-specific humoral and Th17-polarized immune responses in vivo in BALB/c mice relative to the controls. Taken together, A-SNP is a promising platform for codelivery and proper presentation of adjuvants and antigens and provides the basis for their further development as a vaccine delivery platform for immunization against TB or other diseases for which Th17 immunity contributes to protection.


Assuntos
Antígenos de Bactérias , Lectinas Tipo C , Nanopartículas , Dióxido de Silício , Células Th17 , Lectinas Tipo C/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/agonistas , Nanopartículas/química , Células Th17/imunologia , Animais , Dióxido de Silício/química , Camundongos , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/química , Mycobacterium tuberculosis/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Teste de Materiais , Humanos , Feminino , Proteínas de Membrana/imunologia , Proteínas de Membrana/agonistas
7.
Int J Biol Macromol ; 272(Pt 2): 132913, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38851606

RESUMO

Nasal vaccine is a non-invasive vaccine that activates systemic and mucosal immunity in the presence of an adjuvant, thereby enhancing immune function. In this work, chitosan/oligochitosan/tween 80 (CS-COS-T80) co-stabilized emulsion was designed and further used as the nasal adjuvant. CS-COS-T80 emulsion exhibited outstanding stability under pH 6-8 with uniformly dispersed droplets and nano-scale particle size (<0.25 µm), and maintained stable at 4 °C for 150-day storage. Addition of model antigen ovalbumin (OVA) had no effect on the stability of CS-COS-T80 emulsion. In vivo nasal immunity indicated that CS-COS-T80 emulsion prolonged the retention time of OVA in the nasal cavity (from 4 to 8 h to >12 h), as compared to T80-emulsion. CS-COS-T80 emulsion produced a stronger mucosal immune response to OVA, with secretory IgA levels 5-fold and 2-fold higher than those of bare OVA and commercial adjuvant MF59, respectively. Compared to MF59, CS-COS-T80 induced a stronger humoral immune response and a mixed Th1/Th2 immune response of OVA after immunization. Furthermore, in the presence of CS-COS-T80 emulsion, the secretion of IL-4 and IFN-γ and the activation of splenocyte memory T-cell differentiation increased from 173.98 to 210.21 pg/mL and from 75.46 to 104.01 pg/mL, respectively. Therefore, CS-COS-T80 emulsion may serve as a promising adjuvant platform.


Assuntos
Adjuvantes Imunológicos , Quitosana , Emulsões , Imunidade nas Mucosas , Mucosa Nasal , Ovalbumina , Quitosana/química , Animais , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Imunidade nas Mucosas/efeitos dos fármacos , Camundongos , Ovalbumina/imunologia , Ovalbumina/química , Mucosa Nasal/imunologia , Feminino , Administração Intranasal , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Tamanho da Partícula , Oligossacarídeos
8.
ACS Nano ; 18(24): 15557-15575, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38837909

RESUMO

Tumor vaccines have demonstrated a modest response rate, primarily attributed to their inefficient delivery to dendritic cells (DCs), low cross-presentation, DC-intrinsic immunosuppressive signals, and an immunosuppressive tumor microenvironment (TME). Here, draining lymph node (DLN)-targeted and tumor-targeted nanovaccines were proposed to address these limitations, and heterocyclic lipidoid (A18) and polyester (BR647) were synthesized to achieve dual-targeted cancer immunotherapy. Meanwhile, oligo hyaluronic acid (HA) and DMG-PEG2000-Mannose were incorporated to prepare dual-targeted nanovaccines encapsulated with STAT3 siRNA and model antigens. The nanovaccines were designed to target the DLN and the tumor, facilitating the delivery of cargo into the cytoplasm. These dual-targeted nanovaccines improved antigen presentation and DC maturation, activated the stimulator of interferon genes (STING) pathway, enhanced the pro-apoptotic effect, and stimulated antitumor immune responses. Additionally, these dual-targeted nanovaccines overcame immunosuppressive TME, reduced immunosuppressive cells, and promoted the polarization of tumor-associated neutrophils from N2 to N1. Among the four dual-targeted nanovaccines that induced robust antitumor responses, the heterocyclic lipidoid@polyester hybrid nanovaccines (MALO@HBNS) demonstrated the most promising results. Furthermore, a combination strategy involving MALO@HBNS and an anti-PD-L1 antibody exhibited an immensely powerful anticancer role. This work introduced a dual-targeted nanovaccine platform for antitumor treatment, suggesting its potential combination with an immune checkpoint blockade as a comprehensive anticancer strategy.


Assuntos
Vacinas Anticâncer , Imunoterapia , Nanopartículas , Poliésteres , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Animais , Camundongos , Poliésteres/química , Nanopartículas/química , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Lipídeos/química , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Linhagem Celular Tumoral , RNA Interferente Pequeno/química , Ácido Hialurônico/química , Nanovacinas
9.
Pharm Res ; 41(6): 1163-1181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839718

RESUMO

OBJECTIVE: This study aims to utilize PEGylated poly (lactic-co-glycolic acid) (PLGA) nanoparticles as a delivery system for simultaneous administration of the BRAFV600E peptide, a tumor-specific antigen, and imiquimod (IMQ). The objective is to stimulate dendritic cell (DC) maturation, activate macrophages, and facilitate antigen presentation in C57BL6 mice. METHODS: PEG-PLGA-IMQ-BRAFV600E nanoparticles were synthesized using a PLGA-PEG-PLGA tri-block copolymer, BRAFV600E, and IMQ. Characterization included size measurement and drug release profiling. Efficacy was assessed in inhibiting BPD6 melanoma cell growth and activating immature bone marrow DCs, T cells, macrophages, and splenocyte cells through MTT and ELISA assays. In vivo, therapeutic and immunogenic effects potential was evaluated, comparing it to IMQ + BRAFV600E and PLGA-IMQ-BRAFV600E nanoparticles in inhibiting subcutaneous BPD6 tumor growth. RESULTS: The results highlight the successful synthesis of PEG-PLGA-IMQ-BRAFV600E nanoparticles (203 ± 11.1 nm), releasing 73.4% and 63.2% of IMQ and BARFV600E, respectively, within the initial 48 h. In vitro, these nanoparticles demonstrated a 1.3-fold increase in potency against BPD6 cells, achieving ~ 2.8-fold enhanced cytotoxicity compared to PLGA-IMQ-BRAFV600E. Moreover, PEG-PLGA-IMQ-BRAFV600E exhibited a 1.3-fold increase in potency for enhancing IMQ cytotoxic effects and a 1.1- to ~ 2.4-fold increase in activating DCs, T cells, macrophages, and splenocyte cells compared to IMQ-BRAFV600E and PLGA-IMQ-BRAFV600E. In vivo, PEG-PLGA-IMQ-BRAFV600E displayed a 1.3- to 7.5-fold increase in potency for inhibiting subcutaneous BPD6 tumor growth compared to the other formulations. CONCLUSIONS: The findings suggest that PEG-PLGA nanoparticles effectively promote DC maturation, T cell activation, and potentially macrophage activation. The study highlights the promising role of this nanocomposite in vaccine development.


Assuntos
Células Dendríticas , Imiquimode , Melanoma , Camundongos Endogâmicos C57BL , Nanopartículas , Polietilenoglicóis , Proteínas Proto-Oncogênicas B-raf , Animais , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas B-raf/genética , Melanoma/imunologia , Melanoma/tratamento farmacológico , Nanopartículas/química , Linhagem Celular Tumoral , Camundongos , Imiquimode/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Feminino , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Liberação Controlada de Fármacos , Humanos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/tratamento farmacológico
10.
Sci Rep ; 14(1): 13800, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877101

RESUMO

Adjuvants enhance, prolong, and modulate immune responses by vaccine antigens to maximize protective immunity and enable more effective immunization in the young and elderly. Most adjuvants are formulated with injectable vaccines. However, an intranasal route of vaccination may induce mucosal and systemic immune responses for enhancing protective immunity in individuals and be easier to administer compared to injectable vaccines. In this study, a next generation of broadly-reactive influenza hemagglutinin (HA) vaccines were developed using the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology. These HA vaccines were formulated with Mastoparan 7 (M7-NH2) mast cell degranulating peptide adjuvant and administered intranasally to determine vaccine-induced seroconversion of antibodies against a panel of influenza viruses and protection following infection with H1N1 and H3N2 viruses in mice. Mice vaccinated intranasally with M7-NH2-adjuvanted COBRA HA vaccines had high HAIs against a panel of H1N1 and H3N2 influenza viruses and were protected against both morbidity and mortality, with reduced viral lung titers, following challenge with an H1N1 influenza virus. Additionally, M7-NH2 adjuvanted COBRA HA vaccines induced Th2 skewed immune responses with robust IgG and isotype antibodies in the serum and mucosal lung lavages. Overall, this intranasally delivered M7-NH2 -adjuvanted COBRA HA vaccine provides effective protection against drifted H1N1 and H3N2 viruses.


Assuntos
Adjuvantes Imunológicos , Administração Intranasal , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Animais , Camundongos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Camundongos Endogâmicos BALB C , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Adjuvantes de Vacinas/administração & dosagem
11.
Arch Microbiol ; 206(7): 293, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850421

RESUMO

Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.


Assuntos
Adjuvantes Imunológicos , Vacinas Fúngicas , Micoses , Vacinas Fúngicas/imunologia , Humanos , Micoses/prevenção & controle , Micoses/imunologia , Animais , Fungos/imunologia
12.
Commun Biol ; 7(1): 709, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851856

RESUMO

Vaccination reduces morbidity and mortality due to infections, but efficacy may be limited due to distinct immunogenicity at the extremes of age. This raises the possibility of employing adjuvants to enhance immunogenicity and protection. Early IFNγ production is a hallmark of effective vaccine immunogenicity in adults serving as a biomarker that may predict effective adjuvanticity. We utilized mass cytometry (CyTOF) to dissect the source of adjuvant-induced cytokine production in human blood mononuclear cells (BMCs) from newborns (~39-week-gestation), adults (~18-63 years old) and elders (>65 years of age) after stimulation with pattern recognition receptors agonist (PRRa) adjuvants. Dimensionality reduction analysis of CyTOF data mapped the BMC compartment, elucidated age-specific immune responses and profiled PRR-mediated activation of monocytes and DCs upon adjuvant stimulation. Furthermore, we demonstrated PRRa adjuvants mediated innate IFNγ induction and mapped NK cells as the key source of TLR7/8 agonist (TLR7/8a) specific innate IFNγ responses. Hierarchical clustering analysis revealed age and TLR7/8a-specific accumulation of innate IFNγ producing γδ T cells. Our study demonstrates the application of mass cytometry and cutting-edge computational approaches to characterize immune responses across immunologically distinct age groups and may inform identification of the bespoke adjuvantation systems tailored to enhance immunity in distinct vulnerable populations.


Assuntos
Adjuvantes Imunológicos , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Adulto , Pessoa de Meia-Idade , Adjuvantes Imunológicos/farmacologia , Idoso , Adulto Jovem , Adolescente , Interferon gama/metabolismo , Recém-Nascido , Feminino , Masculino , Fatores Etários , Imunidade Inata
14.
Methods Mol Biol ; 2815: 131-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884916

RESUMO

Streptococcus suis is a bacterial pathogen that can cause significant economic losses in the swine industry due to high morbidity and mortality rates in infected animals. Vaccination with bacterins, which consist of inactivated bacteria and adjuvants to enhance the pig's immune response, is an effective approach to control S. suis infections in piglets. Here we provide a description of S. suis bacterins and the methods for vaccine preparation. Moreover, this chapter also describes the addition of recombinant Sao (rSao-L) protein to the S. suis bacterin, aiming to enhance the efficacy of the bacterins against S. suis in piglets. Furthermore, the methods for evaluating the immune response elicited by the bacterins are also covered in this chapter.


Assuntos
Streptococcus suis , Animais , Suínos , Streptococcus suis/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Vacinação/métodos , Vacinas Bacterianas/imunologia , Adjuvantes Imunológicos/farmacologia , Anticorpos Antibacterianos/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Vacinas Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem
15.
Nat Commun ; 15(1): 5310, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906867

RESUMO

Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is closely associated with various malignancies. Considering the complex life cycle of EBV, developing vaccines targeting key entry glycoproteins to elicit robust and durable adaptive immune responses may provide better protection. EBV gHgL-, gB- and gp42-specific antibodies in healthy EBV carriers contributed to sera neutralizing abilities in vitro, indicating that they are potential antigen candidates. To enhance the immunogenicity of these antigens, we formulate three nanovaccines by co-delivering molecular adjuvants (CpG and MPLA) and antigens (gHgL, gB or gp42). These nanovaccines induce robust humoral and cellular responses through efficient activation of dendritic cells and germinal center response. Importantly, these nanovaccines generate high levels of neutralizing antibodies recognizing vulnerable sites of all three antigens. IgGs induced by a cocktail vaccine containing three nanovaccines confer superior protection from lethal EBV challenge in female humanized mice compared to IgG elicited by individual NP-gHgL, NP-gB and NP-gp42. Importantly, serum antibodies elicited by cocktail nanovaccine immunization confer durable protection against EBV-associated lymphoma. Overall, the cocktail nanovaccine shows robust immunogenicity and is a promising candidate for further clinical trials.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Vírus Epstein-Barr , Glicoproteínas , Herpesvirus Humano 4 , Animais , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/prevenção & controle , Infecções por Vírus Epstein-Barr/virologia , Anticorpos Neutralizantes/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Feminino , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Glicoproteínas/imunologia , Glicoproteínas/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/química , Adjuvantes Imunológicos/administração & dosagem , Linfoma/imunologia , Linfoma/virologia , Nanovacinas
16.
Hum Vaccin Immunother ; 20(1): 2351584, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38838170

RESUMO

Phase III multi-country studies (ZOE-50/70) demonstrated that the adjuvanted recombinant zoster vaccine (RZV) was well tolerated and prevented herpes zoster (HZ) in healthy ≥ 50-year-olds, with a vaccine efficacy (VE) > 90% across age groups. These pivotal trials did not enroll participants from mainland China where RZV is licensed, therefore similar clinical data are missing for this population. In this phase IV observer-blind study (NCT04869982) conducted between 2021 and 2023 in China, immunocompetent and medically stable ≥ 50-year-olds were randomized 1:1 to receive two RZV or placebo doses, 2 months apart. This study assessed the VE (overall, as confirmatory objective, and descriptively by age category [50-69-year-olds/≥ 70-year-olds]), reactogenicity, and safety of RZV in this Chinese population. Of the 6138 enrolled participants, 99.2% completed the study. During a mean follow-up period of 15.2 (±1.1) months, 31 HZ episodes were confirmed (RZV = 0; placebo = 31) for an incidence rate of 0.0 vs 8.2 per 1000 person-years and an overall VE of 100% (89.82-100). The descriptive VE was 100% (85.29-100) for 50-69-year-olds and 100% (60.90-100) for ≥ 70-year-olds. Solicited adverse events (AEs) were more frequent in the RZV vs the placebo group (median duration: 1-3 days for both groups). Pain and fatigue were the most frequent local and general AEs (RZV: 72.1% and 43.4%; placebo: 9.2% and 5.3%). The frequencies of unsolicited AEs, serious AEs, potential immune-mediated diseases, and deaths were similar between both groups. RZV is well tolerated and efficacious in preventing HZ in Chinese ≥ 50-year-olds, consistent with efficacy studies including worldwide populations with similar age and medical characteristics.


What is the context? Herpes zoster, commonly known as shingles, is a painful rash resulting from the reactivation of the dormant virus causing chickenpox.Vaccines preventing shingles, such as Shingrix, were shown to be well tolerated and efficacious in healthy adults over 50 years of age from Europe, North and Latin America, Australia, and Asia (Taiwan, Hong Kong, Korea, Japan).However, data on real-world protective effect of Shingrix are limited in some regions where the vaccine is licensed for use, such as mainland China.What is new? We analyzed data from Chinese adults aged 50 years or older to determine the efficacy and safety of Shingrix.Around 6000 participants were divided in two equal groups to receive two doses of Shingrix or two doses of a placebo, given 2 months apart.We found that, during the study period, the vaccine was 100% efficacious in preventing shingles.We showed that the vaccine had an acceptable safety profile in this Chinese population.What is the impact? Shingrix is efficacious and well tolerated in Chinese adults over 50 years of age, as it is in similarly aged populations from other evaluated regions.


Assuntos
Vacina contra Herpes Zoster , Herpes Zoster , Vacinas Sintéticas , Humanos , Vacina contra Herpes Zoster/efeitos adversos , Vacina contra Herpes Zoster/administração & dosagem , Vacina contra Herpes Zoster/imunologia , Herpes Zoster/prevenção & controle , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , China/epidemiologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Eficácia de Vacinas , Idoso de 80 Anos ou mais , População do Leste Asiático
17.
J Acquir Immune Defic Syndr ; 96(4): 350-360, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38916429

RESUMO

BACKGROUND: An effective vaccine is required to end the HIV pandemic. We evaluated the safety and immunogenicity of a DNA (DNA-HIV-PT123) vaccine with low- or high-dose bivalent (TV1.C and 1086.C glycoprotein 120) subtype C envelope protein combinations, adjuvanted with MF59 or AS01B. METHODS: HIV Vaccine Trials Network (HVTN)108 was a randomized, placebo-controlled, double-blind, phase 1/2a trial conducted in the United States and South Africa. HIV-negative adults were randomly assigned to 1 of 7 intervention arms or placebo to assess DNA prime with DNA/protein/adjuvant boosts, DNA/protein/adjuvant co-administration, and low-dose protein/adjuvant regimens. HVTN111 trial participants who received an identical regimen were also included. Outcomes included safety and immunogenicity 2 weeks and 6 months after final vaccination. RESULTS: From June 2016 to July 2018, 400 participants were enrolled (N = 334 HVTN108, N = 66 HVTN111); 370 received vaccine and 30 received placebo. There were 48 grade 3 and 3 grade 4 reactogenicity events among 39/400 (9.8%) participants, and 32 mild/moderate-related adverse events in 23/400 (5.8%) participants. All intervention groups demonstrated high IgG response rates (>89%) and high magnitudes to HIV-1 Env gp120 and gp140 proteins; response rates for AS01B-adjuvanted groups approached 100%. V1V2 IgG magnitude, Fc-mediated functions, IgG3 Env response rates, and CD4+ T-cell response magnitudes and rates were higher in the AS01B-adjuvanted groups. The AS01B-adjuvanted low-dose protein elicited greater IgG responses than the higher protein dose. CONCLUSIONS: The vaccine regimens were generally well tolerated. Co-administration of DNA with AS01B-adjuvanted bivalent Env gp120 elicited the strongest humoral responses; AS01B-adjuvanted regimens elicited stronger CD4+ T-cell responses, justifying further evaluation.ClinicalTrials.gov registration: NCT02915016, registered 26 September 2016.


Assuntos
Vacinas contra a AIDS , Adjuvantes Imunológicos , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV , Infecções por HIV , HIV-1 , Polissorbatos , Esqualeno , Vacinas de DNA , Humanos , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/efeitos adversos , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos , Feminino , Masculino , Adulto , Esqualeno/administração & dosagem , Polissorbatos/administração & dosagem , Proteína gp120 do Envelope de HIV/imunologia , Adjuvantes Imunológicos/administração & dosagem , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Anticorpos Anti-HIV/sangue , Método Duplo-Cego , Pessoa de Meia-Idade , Adulto Jovem , Adjuvantes de Vacinas/administração & dosagem , África do Sul , Imunogenicidade da Vacina , Adolescente , Estados Unidos
18.
Front Immunol ; 15: 1397072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915403

RESUMO

Background: Allergen-specific immunotherapy (AIT) is able to restore immune tolerance to allergens in allergic patients. However, some patients do not or only poorly respond to current treatment protocols. Therefore, there is a need for deeper mechanistic insights and further improvement of treatment strategies. The relevance of the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, has been investigated in several inflammatory diseases, including allergic asthma. However, its potential role in AIT still needs to be addressed. Methods: A murine model of AIT in ovalbumin-induced allergic airway inflammation was performed in AhR-deficient (AhR-/-) and wild-type mice. Furthermore, AIT was combined with the application of the high-affinity AhR agonist 10-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (10-Cl-BBQ) as an adjuvant to investigate the effects of AhR activation on therapeutic outcome. Results: Although AhR-/- mice suffer stronger allergic responses than wild-type mice, experimental AIT is comparably effective in both. Nevertheless, combining AIT with the administration of 10-Cl-BBQ improved therapeutic effects by an AhR-dependent mechanism, resulting in decreased cell counts in the bronchoalveolar fluid, decreased pulmonary Th2 and Th17 cell levels, and lower sIgE levels. Conclusion: This study demonstrates that the success of AIT is not dependent on the AhR. However, targeting the AhR during AIT can help to dampen inflammation and improve tolerogenic vaccination. Therefore, AhR ligands might represent promising candidates as immunomodulators to enhance the efficacy of AIT.


Assuntos
Adjuvantes Imunológicos , Alérgenos , Asma , Dessensibilização Imunológica , Modelos Animais de Doenças , Camundongos Knockout , Receptores de Hidrocarboneto Arílico , Animais , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia , Receptores de Hidrocarboneto Arílico/agonistas , Camundongos , Dessensibilização Imunológica/métodos , Alérgenos/imunologia , Asma/imunologia , Asma/terapia , Ovalbumina/imunologia , Feminino , Camundongos Endogâmicos C57BL , Células Th2/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos
19.
BMC Vet Res ; 20(1): 173, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702665

RESUMO

Strangles is a highly contagious disease of the equine upper respiratory tract caused by Streptococcus equi subspecies. Streptococcus equi subsp. equi (S. equi) and Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) was isolated, as local, hot, and field strains, from horses clinically suffering from respiratory distress. The isolated Streptococci were identified using bacteriological and molecular techniques. Four formulations of inactivated S. equi vaccines were developed and evaluated. The first formulation was prepared using the S. equi isolates, adjuvanted with MONTANIDE GEL adjuvant, while the second formulation was adjuvanted with MONTANIDE ISA-70 adjuvant. The other 2 formulations were inactivated combined vaccines prepared from both S. equi and S. zooepidemicus isolates. The 3rd formulation was the combined isolates adjuvanted with MONTANIDE GEL while the 4th formulation was the combined isolates adjuvanted with MONTANIDE ISA-70. The developed vaccines' physical properties, purity, sterility, safety, and potency were ensured. The immunizing efficacy was determined in isogenic BALB/c mice and white New Zealand rabbits using the passive hemagglutination test. Also, the antibodies' titer of the combined S. equi and S. zooepidemicus vaccine adjuvanted with MONTANIDE ISA-70 in foals was tracked using an indirect enzyme-linked immunosorbent assay. The protective efficacy of the developed vaccines was determined using a challenge test in both laboratory and field animal models, where a 75% protection rate was achieved. The combined vaccine proved to be more efficacious than the monovalent vaccine. Also, the MONTANIDE ISA-70 adjuvant provided significant protective efficacy than the MONTANIDE GEL. The current work is introducing a very promising mitigative and strategic controlling solution for strangles.


Assuntos
Doenças dos Cavalos , Camundongos Endogâmicos BALB C , Infecções Estreptocócicas , Vacinas Estreptocócicas , Streptococcus equi , Streptococcus , Animais , Streptococcus equi/imunologia , Cavalos , Coelhos , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Camundongos , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/imunologia , Vacinas Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Feminino , Anticorpos Antibacterianos/sangue , Adjuvantes Imunológicos/administração & dosagem , Vacinas de Produtos Inativados/imunologia
20.
Hum Vaccin Immunother ; 20(1): 2348124, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38714332

RESUMO

South Korea's National Immunization Program administers the quadrivalent influenza vaccine (QIV) to manage seasonal influenza, with a particular focus on the elderly. After reviewing the safety and immune response triggered by the adjuvanted QIV (aQIV) in individuals aged 65 and older, the Ministry of Food and Drug Safety in Korea approved its use. However, the extensive impact of aQIV on public health is yet to be fully understood. This study assessed the cost-effectiveness of replacing QIV with aQIV in South Korean adults aged 65 years and older. A dynamic transmission model, calibrated with national influenza data, was applied to compare the influence of aQIV and QIV on older adults and the broader population throughout a single influenza season. This study considered both the direct and indirect effects of vaccination on the elderly. We derived the incremental cost-effectiveness ratios (ICERs) from quality-adjusted life-years (QALYs) and costs incurred, validated through a probabilistic sensitivity analysis with 5,000 simulations. Findings suggest that transitioning to aQIV from QIV in the elderly would be cost-effective, particularly if aQIV's efficacy reaches or exceeds 56.1%. With an ICER of $29,267/QALY, considerably lower than the $34,998/QALY willingness-to-pay threshold, aQIV presents as a cost-effective option. Thus, implementing aQIV with at least 56.1% efficacy is beneficial from both financial and public health perspectives in mitigating seasonal influenza in South Korea.


Assuntos
Adjuvantes Imunológicos , Análise Custo-Benefício , Vacinas contra Influenza , Influenza Humana , Humanos , Vacinas contra Influenza/economia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , República da Coreia , Idoso , Influenza Humana/prevenção & controle , Influenza Humana/economia , Idoso de 80 Anos ou mais , Adjuvantes Imunológicos/economia , Adjuvantes Imunológicos/administração & dosagem , Masculino , Feminino , Anos de Vida Ajustados por Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...