Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.272
Filtrar
1.
Anal Methods ; 16(19): 3088-3098, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38690679

RESUMO

Herein, a novel fluorescent/colorimetric/photothermal biosensor is proposed for aflatoxin B1 (AFB1) detection in food based on Prussian blue nanoparticles (PBNPs) (∼50 nm), gold nanoclusters (AuNCs), and an aptamer (Apt) within three hours. Briefly, a multifunctional compound, namely PBNPs-PEI@AuNCs, was synthesized from PBNPs as the loading carrier, polyethyleneimine (PEI) as the cross-linking agent, and AuNCs directly combined on the surface of PBNPs. The AFB1 Apt was then modified on the PBNPs-PEI@AuNCs to form a PBNPs-PEI@AuNCs-Apt probe, whereby when AFB1 is present, AFB1 is specifically captured by the probe. Meanwhile, the MNPs@antibody was also introduced to capture AFB1, thereby forming a "sandwich" structure compound. After magnetic separation, high temperature was applied to this "sandwich" structure compound to induce the denaturation of the Apt. Then the fluorescent/colorimetric/photothermal signals were collected from the PBNPs-PEI@AuNCs@Apt to give information on its related condition. The detection limits of the biosensor were 0.64 × 10-14, 0.96 × 10-14, and 0.55 × 10-12 g mL-1 for the three signals, which were outputted independently and could be verified with each other to ensure the accuracy of the results. Moreover, the colorimetric and photothermal strategies with this probe do not require large-scale instruments, providing a promising choice for achieving the rapid field detection of AFB1.


Assuntos
Aflatoxina B1 , Técnicas Biossensoriais , Ferrocianetos , Ouro , Nanopartículas Metálicas , Aflatoxina B1/análise , Aflatoxina B1/química , Ouro/química , Técnicas Biossensoriais/métodos , Ferrocianetos/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Colorimetria/métodos , Contaminação de Alimentos/análise , Polietilenoimina/química
2.
ACS Appl Mater Interfaces ; 16(19): 25333-25342, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696706

RESUMO

Mycotoxin contamination in food and the environment seriously harms human health. Sensitive and timely detection of mycotoxins is crucial. Here, we report a dual-functional hybrid membrane with absorptivity and responsiveness for fluorescent-quantitative detection of mycotoxin aflatoxin B1 (AFB1). A biomineralization-inspired and microwave-accelerated fabrication method was established to prepare a hybrid membrane with a metal-organic framework (MOF) loaded in high density. The MOF presented high efficiency in capturing AFB1 and showed fluorescence intensity alteration simultaneously, enabling a dual adsorption-response mode. Deriving from the inherent porous structure of the hybrid membrane and the absorptive/responsive ability of the loaded MOF, a filtration-enhanced detection mode was elaborated to provide a 1.67-fold signal increase compared with the conventional soaking method. Therefore, the hybrid membrane exhibited a rapid response time of 10 min and a low detection limit of 0.757 ng mL-1, superior to most analogues in rapidity and sensitivity. The hybrid membrane also presented superior specificity, reproducibility, and anti-interference ability and even performed well in extreme environments such as strong acid or alkaline, satisfying the practical requirements for facile and in-field detection. Therefore, the membrane had strong applicability in chicken feed samples, with a detection recovery between 70.6% and 101%. The hybrid membrane should have significant prospects in the rapid and in-field inspection of mycotoxins for agriculture and food.


Assuntos
Aflatoxina B1 , Filtração , Estruturas Metalorgânicas , Micro-Ondas , Aflatoxina B1/análise , Aflatoxina B1/isolamento & purificação , Aflatoxina B1/química , Estruturas Metalorgânicas/química , Contaminação de Alimentos/análise , Animais , Galinhas , Membranas Artificiais , Limite de Detecção , Adsorção
3.
Biosens Bioelectron ; 258: 116357, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729049

RESUMO

The label probe plays a crucial role in enhancing the sensitivity of lateral flow immunoassays. However, conventional fluorescent microspheres (FMs) have limitations due to their short fluorescence lifetime, susceptibility to background fluorescence interference, and inability to facilitate multi-component detection. In this study, carboxylate-modified Eu(III)-chelate-doped polystyrene nanobeads were employed as label probes to construct a multiple time-resolved fluorescent microsphere-based immunochromatographic test strip (TRFM-ICTS). This novel TRFM-ICTS facilitated rapid on-site quantitative detection of three mycotoxins in grains: Aflatoxin B1 (AFB1), Zearalenone (ZEN), and Deoxynivalenol (DON). The limit of detection (LOD) for AFB1, ZEN, and DON were found to be 0.03 ng/g, 0.11 ng/g, and 0.81 ng/g, respectively. Furthermore, the TRFM-ICTS demonstrated a wide detection range for AFB1 (0.05-8.1 ng/g), ZEN (0.125-25 ng/g), and DON (1.0-234 ng/g), while maintaining excellent selectivity. Notably, the test strip exhibited remarkable stability, retaining its detection capability even after storage at 4 °C for over one year. Importantly, the detection of these mycotoxins relied solely on simple manual operations, and with a portable reader, on-site detection could be accomplished within 20 min. This TRFM-ICTS presents a promising solution for sensitive on-site mycotoxin detection, suitable for practical application in various settings due to its sensitivity, accuracy, simplicity, and portability.


Assuntos
Técnicas Biossensoriais , Grão Comestível , Contaminação de Alimentos , Limite de Detecção , Microesferas , Micotoxinas , Zearalenona , Micotoxinas/análise , Grão Comestível/química , Grão Comestível/microbiologia , Técnicas Biossensoriais/métodos , Contaminação de Alimentos/análise , Zearalenona/análise , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/instrumentação , Aflatoxina B1/análise , Aflatoxina B1/isolamento & purificação , Tricotecenos/análise , Fitas Reagentes/análise , Imunoensaio/métodos , Imunoensaio/instrumentação , Corantes Fluorescentes/química
4.
Ecotoxicol Environ Saf ; 275: 116278, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564860

RESUMO

Due to the rise in temperature and sea level caused by climate change, the detection rate of aflatoxin B1 (AFB1) in food crops has increased dramatically, and the frequency and severity of aflatoxicosis in humans and animals are also increasing. AFB1 has strong hepatotoxicity, causing severe liver damage and even cancer. However, the mechanism of AFB1 hepatotoxicity remains unclear. By integrating network toxicology, molecular docking and in vivo experiments, this research was designed to explore the potential hepatotoxicity mechanisms of AFB1. Thirty-three intersection targets for AFB1-induced liver damage were identified using online databases. PI3K/AKT1, MAPK, FOXO1 signaling pathways, and apoptosis were significantly enriched. In addition, the proteins of ALB, AKT1, PIK3CG, MAPK8, HSP90AA1, PPARA, MAPK1, EGFR, FOXO1, and IGF1 exhibited good affinity with AFB1. In vivo experiments, significant pathological changes occurred in the liver of mice. AFB1 induction increased the expression levels of EGFR, ERK, and FOXO1, and decreased the expression levsls of PI3K and AKT1. Moreover, AFB1 treatment caused an increase in Caspase3 expression, and a decrease in Bcl2/Bax ratio. By combining network toxicology with in vivo experiments, this study confirms for the first time that AFB1 promotes the FOXO1 signaling pathway by inactivating PI3K/AKT1 and activating EGFR/ERK signaling pathways, hence aggravating hepatocyte apoptosis. This research provides new strategies for studying the toxicity of environmental pollutants and new possible targets for the development of hepatoprotective drugs.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Simulação de Acoplamento Molecular , Aflatoxina B1/toxicidade , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB/metabolismo
5.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611741

RESUMO

We reported a highly efficient electrochemical immunosensor utilizing chitosan-graphene nanosheets (CS-GNs) nanocomposites for the detection of aflatoxin B1 (AFB1) in corn samples. The CS-GNs nanocomposites, serving as a modifying layer, provide a significant specific surface area and biocompatibility, thereby enhancing both the electron transfer rate and the efficiency of antibody immobilization. The electrochemical characterization was conducted utilizing both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Moreover, the antibody concentration, pH, antibody immobilization time, and immunoreaction time, were optimized. The results showed that the current change (ΔI) before and after the immunoreaction demonstrated a strong linear relationship (R2=0.990) with the AFB1 concentration, as well as good specificity and stability. The linear range extended from 0.05 to 25 ng/mL, with a detection limit of 0.021 ng/mL (S/N=3). The immunosensor exhibited a recovery rate ranging from 97.3% to 101.4% in corn samples, showing a promising performance using an efficient method, and indicating a remarkable prospect for the detection of fungal toxins in grains.


Assuntos
Técnicas Biossensoriais , Quitosana , Grafite , Zea mays , Aflatoxina B1 , Imunoensaio , Anticorpos
6.
Food Microbiol ; 121: 104524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637086

RESUMO

Aspergillus flavus colonization on agricultural products during preharvest and postharvest results in tremendous economic losses. Inspired by the synergistic antifungal effects of essential oils, the aims of this study were to explore the mechanism of combined cinnamaldehyde and nonanal (SCAN) against A. flavus and to evaluate the antifungal activity of SCAN loading into diatomite (DM). Shriveled mycelia were observed by scanning electron microscopy, especially in the SCAN treatment group. Calcofluor white staining, transmission electron microscopy, dichloro-dihydro-fluorescein diacetate staining and the inhibition of key enzymes in tricarboxylic acid cycle indicated that the antifungal mechanism of SCAN against A. flavus was related to the cell wall damage, reactive oxygen species accumulation and energy metabolism interruption. RNA sequencing revealed that some genes involved in antioxidation were upregulated, whereas genes responsible for cell wall biosynthesis, oxidative stress, cell cycle and spore development were significantly downregulated, supporting the occurrence of cellular apoptosis. In addition, compared with the control group, conidia production in 1.5 mg/mL DM/cinnamaldehyde, DM/nonanal and DM/SCAN groups were decreased by 27.16%, 48.22% and 76.66%, respectively, and the aflatoxin B1 (AFB1) contents decreased by 2.00%, 73.02% and 84.15%, respectively. These finding suggest that DM/SCAN complex has potential uses in food preservation.


Assuntos
Acroleína/análogos & derivados , Aldeídos , Antifúngicos , Aspergillus flavus , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aflatoxina B1/metabolismo , Conservação de Alimentos
7.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38572889

RESUMO

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Assuntos
Annona , Curcumina , Ratos , Animais , Aflatoxina B1/toxicidade , Curcumina/farmacologia , Alanina Transaminase/farmacologia , Fosfatase Alcalina/farmacologia , Creatinina/farmacologia , Fígado , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Aspartato Aminotransferases/farmacologia , Lactato Desidrogenases
8.
Anal Methods ; 16(19): 3030-3038, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38682263

RESUMO

In this work, a sensitive colorimetric bioassay method based on a poly(adenine) aptamer (polyA apt) and gold nanoparticles (AuNPs) was developed for the determination of aflatoxin B1 (AFB1). The polyA apt, adsorbed on the AuNPs, especially can bind to the analyte while deterring non-specific interactions. This nano aptasensor uses cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA), as an aggregating agent, to aggregate gold nanoparticles. PolyA apt-decorated gold nanoparticles (AuNPs/polyA apt) show resistance to PDDA-induced aggregation and maintains their dispersed state (red color) with the optical absorbance signal at λ = 520 nm. However, in the presence of AFB1 in the assay solution, the specific aptamer reacts with high affinity and folds into its three-dimensional form. Aggregation of AuNPs induced by PDDA caused their optical signal shift to λ = 620 nm (blue color). AFB1 concentration in the bioassay solution determines the amount of optical signal shift. Therefore, optical density ratio in two wavelengths (A620/520) can be used as a sturdy colorimetric signal to detect the concentration of aflatoxin B1. AFB1 was linearly detected between 0.5 and 20 ng mL-1, with a detection limit of 0.09 ng mL-1 (S/N = 3). The fabricated aptasensor was applied to the detection of AFB1 in real corn samples.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Colorimetria , Ouro , Nanopartículas Metálicas , Zea mays , Aflatoxina B1/análise , Aflatoxina B1/química , Ouro/química , Colorimetria/métodos , Zea mays/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Poli A/química , Limite de Detecção , Contaminação de Alimentos/análise , Compostos de Amônio Quaternário/química , Polietilenos
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124322, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663134

RESUMO

Aflatoxin B1 (AFB1), among the identified aflatoxins, exhibits the highest content, possesses the most potent toxicity, and poses the gravest threat. It is commonly found in peanuts and their derivatives. This study employs Raman spectroscopy to monitor the AFB1 levels in moldy peanuts, providing a reliable theoretical basis for peanut storage management. Firstly, different degrees of moldy peanuts are spectrally characterized using a portable Raman spectrometer. Subsequently, a two-step hybrid strategy for feature selection is proposed, combining backward interval partial least squares (BiPLS) and variable combination population analysis (VCPA), aiming to simplify model complexity and enhance predictive accuracy. Finally, partial least squares (PLS) regression models are constructed based on different feature intervals and wavelength points. The research results reveal that the PLS regression model using the optimized feature intervals and wavelength points exhibits improved predictive capability and generalization performance. Notably, the BiPLS-VCPA-PLS model, established through the two-step optimization, selects nine wavelength variables, achieving a root mean square error of prediction (RMSEP) of 33.3147 µg∙kg-1, a correlation coefficient of the prediction set (RP) of 0.9558, and a relative percent deviation (RPD) of 3.4896. These findings demonstrate that the two-step feature optimization method, combining feature interval selection and feature wavelength selection, can more accurately identify optimal variables, thus enhancing detection efficiency and predictive precision.


Assuntos
Aflatoxina B1 , Arachis , Análise Espectral Raman , Arachis/química , Análise Espectral Raman/métodos , Aflatoxina B1/análise , Análise dos Mínimos Quadrados , Análise Multivariada , Contaminação de Alimentos/análise
10.
Food Chem Toxicol ; 188: 114687, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663764

RESUMO

The present study aims to promote network toxicology and molecular docking strategies for the efficient evaluation of the toxicity of food contaminants. With the example of liver injury induced by the food contaminant Aflatoxin B1(AFB1), this study effectively investigated the putative toxicity of food contaminants and the potentially molecular mechanisms. The study found that AFB1 regulates multiple signalling pathways by modulating core targets such as AKT1, BCL2, TNF, CASP3, SRC and EGFR. These pathways encompass Pathways in cancer, PI3K-Akt signalling pathway, Endocrine resistance, Lipid and atherosclerosis, Apoptosis and other pathways, subsequently impacting immunotoxicity, inflammatory responses, apoptosis, cytogenetic mutations, and ultimately leading to liver injury. We provide a theoretical basis for understanding the molecular mechanisms of AFB1 hepatotoxicity and for the prevention and treatment of cancers caused by the food contaminant AFB1. Furthermore, our network toxicology and molecular docking methods also provide an effective method for the rapid evaluation of the toxicity of food contaminants, which effectively solves the cost and ethical problems associated with the use of experimental animals.


Assuntos
Aflatoxina B1 , Contaminação de Alimentos , Simulação de Acoplamento Molecular , Aflatoxina B1/toxicidade , Aflatoxina B1/química , Contaminação de Alimentos/análise , Humanos , Animais , Transdução de Sinais/efeitos dos fármacos
11.
Mikrochim Acta ; 191(5): 256, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598148

RESUMO

A dual-signal ratiometric electrochemical aptasensor has been developed  for AFB1 detection using thionine/Au/zeolitic imidazolate framework-8 (Thi/Au/ZIF-8) nanomaterials and catalytic hairpin assembly (CHA) reaction. Thi/Au/ZIF-8 combined with DNA hairpin 2 (H2) was used as a signal probe. [Fe(CN)6]3-/4- was served as another signal probe, and the IThi/Au/ZIF-8/I[Fe(CN)6]3-/4- ratio was for the first time utilized to quantify AFB1. AFB1-induced CHA was used to expand the ratio of electrical signals. In the presence of AFB1, H2/Thi/Au/ZIF-8 bound to the electrode via CHA, enhanced  the current signal of Thi/Au/ZIF-8. H2 contained the DNA phosphate backbone hindered [Fe(CN)6]3-/4- redox reaction and resulted in a lower [Fe(CN)6]3-/4- current signal. This aptasensor exhibited high specificity for AFB1, a linear range of 0.1 pg mL-1 to 100 ng mL-1, and a detection limit of 0.089 pg mL-1. It demonstrated favorable sensitivity, selectivity, stability, and repeatability. The aptasensor was suitable for detecting AFB1 in peanuts and black tea and holds potential for real sample applications.


Assuntos
Aflatoxina B1 , Fenotiazinas , Zeolitas , Arachis , Catálise , DNA
12.
Proc Natl Acad Sci U S A ; 121(16): e2314426121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574017

RESUMO

Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Animais , Camundongos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Aflatoxina B1/toxicidade , Ligantes , Linfoma de Burkitt/metabolismo , Quimiocinas , Carcinogênese
13.
Microbiol Res ; 283: 127710, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593581

RESUMO

Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus flavus, poses a severe threat to agricultural production, food safety and human health. The methylation of mRNA m6A has been identified as a regulator of both the growth and AFB1 production of A. flavus. However, its intracellular occurrence and function needs to be elucidated. Here, we identified and characterized a m6A methyltransferase, AflIme4, in A. flavus. The enzyme was localized in the cytoplasm, and knockout of AflIme4 significantly reduced the methylation modification level of mRNA. Compared with the control strains, ΔAflIme4 exhibited diminished growth, conidial formation, mycelial hydrophobicity, sclerotium yield, pathogenicity and increased sensitivity to CR, SDS, NaCl and H2O2. Notably, AFB1 production was markedly inhibited in the A. flavus ΔAflIme4 strain. RNA-Seq coupled with RT-qPCR validation showed that the transcriptional levels of genes involved in the AFB1 biosynthesis pathway including aflA, aflG, aflH, aflK, aflL, aflO, aflS, aflV and aflY were significantly upregulated. Methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) analysis demonstrated a significant increase in m6A methylation modification levels of these pathway-specific genes, concomitant with a decrease in mRNA stability. These results suggest that AflIme4 attenuates the mRNA stability of genes in AFB1 biosynthesis by enhancing their mRNA m6A methylation modification, leading to impaired AFB1 biosynthesis. Our study identifies a novel m6A methyltransferase AflIme4 and highlights it as a potential target to control A. flavus growth, development and aflatoxin pollution.


Assuntos
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/genética , Aflatoxina B1/genética , Aflatoxina B1/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Peróxido de Hidrogênio/metabolismo , RNA Mensageiro/metabolismo , Aflatoxinas/genética , Aflatoxinas/metabolismo
14.
Ecotoxicol Environ Saf ; 276: 116316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615640

RESUMO

Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.


Assuntos
Aflatoxina B1 , Apoptose , Sobrevivência Celular , Células Intersticiais do Testículo , Triterpenos , Aflatoxina B1/toxicidade , Apoptose/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Masculino , Triterpenos/farmacologia , Esteróis/farmacologia , Caspase 3/metabolismo , Substâncias Protetoras/farmacologia , Caspase 9/metabolismo
15.
Ecotoxicol Environ Saf ; 276: 116332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626608

RESUMO

According to the International Agency for Research on Cancer (IARC), aflatoxin B1 (AFB1) has been recognized as a major contaminant in food and animal feed and which is a common mycotoxin with high toxicity. Previous research has found that AFB1 inhibited zebrafish muscle development. However, the potential mechanism of AFB1 on fish muscle development is unknown, so it is necessary to conduct further investigation. In the present research, the primary myoblast of grass carp was used as a model, we treated myoblasts with AFB1 for 24 h. Our results found that 5 µM AFB1 significantly inhibited cell proliferation and migration (P < 0.05), and 10 µM AFB1 promoted lactate dehydrogenase (LDH) release (P < 0.05). Reactive oxygen species (ROS), protein carbonyl (PC) and malondialdehyde (MDA) levels were increased in 15, 5 and 10 µM AFB1 (P < 0.05), respectively. Catalase (CAT), glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activities were decreased in 10, 10 and 15 µM AFB1 (P < 0.05), respectively. Furthermore, 15 µM AFB1 induced oxidative damage by Nrf2 pathway, also induced apoptosis in primary myoblast of grass carp. Meanwhile, 15 µM AFB1 decreased MyoD gene and protein expression (P < 0.05). Importantly, 15 µM AFB1 decreased the protein expression of collagen Ⅰ and fibronectin (P < 0.05), and increased the protein levels of urokinase plasminogen activator (uPA), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), and p38 mitogen-activated protein kinase (p38MAPK) (P < 0.05). As a result, our findings suggested that AFB1 damaged the cell morphology, induced oxidative damage and apoptosis, degraded ECM components, in turn inhibiting myoblast development by activating the p38MAPK/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase (MMPs)/extracellular matrix (ECM) signaling pathway.


Assuntos
Aflatoxina B1 , Carpas , Proliferação de Células , Matriz Extracelular , Mioblastos , Espécies Reativas de Oxigênio , Animais , Aflatoxina B1/toxicidade , Mioblastos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
16.
Ecotoxicol Environ Saf ; 276: 116344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636259

RESUMO

Aflatoxin B1 (AFB1) is one of the common dietary contaminants worldwide, which can harm the liver of humans and animals. Salvia miltiorrhiza polysaccharide (SMP) is a natural plant-derived polysaccharide with numerous pharmacological activities, including hepatoprotective properties. The purpose of this study is to explore the intervention effect of SMP on AFB1-induced liver injury and its underlying mechanisms in rabbits. The rabbits were administered AFB1 (25 µg/kg/feed) and or treatment with SMP (300, 600, 900 mg/kg/feed) for 42 days. The results showed that SMP effectively alleviated the negative impact of AFB1 on rabbits' productivity by increasing average daily weight gain (ADG) and feed conversion rate (FCR). SMP reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in serum, ameliorating AFB1-induced hepatic pathological changes. Additionally, SMP enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activity, and inhibited reactive oxygen species (ROS), malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, thus mitigating AFB1-induced oxidative stress and inflammatory responses. Moreover, SMP upregulated the expression of nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and B-cell lymphoma 2 (Bcl2) while downregulating kelch like ECH associated protein 1 (Keap1), cytochrome c (cyt.c), caspase9, caspase3, and Bcl-2-associated X protein (Bax) expression, thereby inhibiting AFB1-induced hepatocyte apoptosis. Consequently, our findings conclude that SMP can mitigate AFB1-induced liver damage by activating the Nrf2/HO-1 pathway and inhibiting mitochondria-dependent apoptotic pathway in rabbits.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Polissacarídeos , Salvia miltiorrhiza , Animais , Coelhos , Polissacarídeos/farmacologia , Aflatoxina B1/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Salvia miltiorrhiza/química , Fígado/efeitos dos fármacos , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Alanina Transaminase/sangue , Espécies Reativas de Oxigênio/metabolismo
17.
Int J Food Microbiol ; 417: 110693, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38653122

RESUMO

Aspergillus flavus is a fungus notorious for contaminating food and feed with aflatoxins. As a saprophytic fungus, it secretes large amounts of enzymes to access nutrients, making endoplasmic reticulum (ER) homeostasis important for protein folding and secretion. The role of HacA, a key transcription factor in the unfolded protein response pathway, remains poorly understood in A. flavus. In this study, the hacA gene in A. flavus was knockout. Results showed that the absence of hacA led to a decreased pathogenicity of the strain, as it failed to colonize intact maize kernels. This may be due to retarded vegetable growth, especially the abnormal development of swollen tips and shorter hyphal septa. Deletion of hacA also hindered conidiogenesis and sclerotial development. Notably, the mutant strain failed to produce aflatoxin B1. Moreover, compared to the wild type, the mutant strain showed increased sensitivity to ER stress inducer such as Dithiothreitol (DTT), and heat stress. It also displayed heightened sensitivity to other environmental stresses, including cell wall, osmotic, and pH stresses. Further transcriptomic analysis revealed the involvement of the hacA in numerous biological processes, including filamentous growth, asexual reproduction, mycotoxin biosynthetic process, signal transduction, budding cell apical bud growth, invasive filamentous growth, response to stimulus, and so on. Taken together, HacA plays a vital role in fungal development, pathogenicity and aflatoxins biosynthesis. This highlights the potential of targeting hacA as a novel approach for early prevention of A. flavus contamination.


Assuntos
Aflatoxinas , Aspergillus flavus , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição , Resposta a Proteínas não Dobradas , Zea mays , Aspergillus flavus/genética , Aspergillus flavus/patogenicidade , Aspergillus flavus/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aflatoxinas/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/microbiologia , Virulência , Aflatoxina B1/biossíntese , Aflatoxina B1/metabolismo , Estresse do Retículo Endoplasmático
18.
Anal Chem ; 96(17): 6853-6859, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38646918

RESUMO

The presence of small molecule contaminants such as mycotoxins and heavy metals in foods and the environment causes a serious threat to human health and huge economic losses. The development of simple, rapid, sensitive, and on-site methods for small molecule pollutant detection is highly demanded. Here, combining the advantages of structure-switchable aptamer-mediated signal conversion and CRISPR/Cas12a-based signal amplification, we developed a CRISPR/Cas12a-amplified aptamer switch assay on a microplate for sensitive small molecule detection. In this assay, a short DNA strand complementary to the aptamer (cDNA) is immobilized on a microplate, which can capture the aptamer-linked active DNA probe (Apt-acDNA) in the sample solution when the target is absent. With the addition of the Cas12a reporter system, the captured Apt-acDNA probes activate Cas12a to indiscriminately cleave fluorescent DNA substrates, producing a high fluorescence signal. When the target is present, the Apt-acDNA probe specifically binds to the target rather than hybridizing with cDNA on the microplate, and the fluorescence signal is reduced. The analytical performance of our method was demonstrated by the detection of two highly toxic pollutants, aflatoxin B1 (AFB1) and cadmium ion (Cd2+), as examples. The assay exhibited good selectivity and high sensitivity, with detection limits of 31 pM AFB1 and 3.9 nM Cd2+. It also allowed the detection of targets in the actual sample matrix. With the general signal conversion strategy, this method can be used to detect other targets by simply changing the aptamer and cDNA, showing potential practical applications in broad fields.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Sistemas CRISPR-Cas , Aptâmeros de Nucleotídeos/química , Sistemas CRISPR-Cas/genética , Aflatoxina B1/análise , Aflatoxina B1/química , Técnicas Biossensoriais/métodos , Cádmio/química , Cádmio/análise , Limite de Detecção
19.
Food Chem ; 449: 139240, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599109

RESUMO

The study reports the efficacy of nanofabricated citronellal inside the chitosan biopolymer (NeCn) against Aspergillus flavus growth, aflatoxin B1 (AFB1) production, and active ingredient biodeterioration (Piperine) in Piper longum L. The prepared NeCn was characterized by Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FTIR). The results revealed that the NeCn exhibited distantly improved antifungal (1.25 µL/mL) and AFB1 inhibition (1.0 µL/mL) compared to free Cn. The perturbances in membrane function, mitochondrial membrane potential, antioxidant defense system, and regulatory genes (Ver-1 and Nor-1) of AFB1 biosynthesis were reported as probable modes of action of NeCn. The NeCn (1.25 µL/mL) effectively protects the P. longum from A. flavus (78.8%), AFB1 contamination (100%), and deterioration of Piperine (62.39%), thus demonstrating its potential as a promising novel antifungal agent for food preservation.


Assuntos
Monoterpenos Acíclicos , Aflatoxina B1 , Aspergillus flavus , Quitosana , Piper , Aflatoxina B1/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Quitosana/química , Quitosana/farmacologia , Piper/química , Biopolímeros/química , Biopolímeros/farmacologia , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Aldeídos/farmacologia , Aldeídos/química , Antifúngicos/farmacologia , Antifúngicos/química , Conservação de Alimentos/métodos , Monoterpenos/farmacologia , Monoterpenos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
20.
Food Chem ; 449: 139171, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604026

RESUMO

Aflatoxins, harmful substances found in peanuts, corn, and their derivatives, pose significant health risks. Addressing this, the presented research introduces an innovative MSGhostDNN model, merging contrastive learning with multi-scale convolutional networks for precise aflatoxin detection. The method significantly enhances feature discrimination, achieving an impressive 97.87% detection accuracy with a pre-trained model. By applying Grad-CAM, it further refines the model to identify key wavelengths, particularly 416 nm, and focuses on 40 key wavelengths for optimal performance with 97.46% accuracy. The study also incorporates a task dimensionality reduction approach for continuous learning, allowing effective ongoing aflatoxin spectrum monitoring in peanuts and corn. This approach not only boosts aflatoxin detection efficiency but also sets a precedent for rapid online detection of similar toxins, offering a promising solution to mitigate the health risks associated with aflatoxin exposure.


Assuntos
Aflatoxina B1 , Arachis , Contaminação de Alimentos , Zea mays , Aflatoxina B1/análise , Contaminação de Alimentos/análise , Arachis/química , Zea mays/química , Redes Neurais de Computação , Análise Espectral/métodos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...