Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.368
Filtrar
1.
Euro Surveill ; 29(20)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757288

RESUMO

Wastewater treatment plants (WWTPs) are increasingly identified as Legionnaires' disease (LD) sources. An outbreak investigation was initiated following five LD cases reported in September 2022 in Houten, the Netherlands. Case identification was based on the European LD case definition, with symptom onset from 1 September 2022, residence in or within 5 km of Houten, or visit to Houten within the incubation period, without other likely sources. We sampled potential sources and genotyped environmental and clinical isolates. We identified 15 LD cases with onset between 13 September and 23 October 2022. A spatial source identification and wind direction model suggested an industrial (iWWTP) and a municipal WWTP (mWWTP) as potential sources, with the first discharging water into the latter. Both tested positive for Legionella pneumophila serogroups 1 and 6 with multiple sequence types (ST). We detected L. pneumophila sg1 ST42 in the mWWTP, matching with one of three available clinical isolates. Following control measures at the WWTPs, no further cases were observed. This outbreak underlines that municipal and industrial WWTPs can play an important role in community LD cases and outbreaks, especially those with favourable conditions for Legionella growth and dissemination, or even non-favourable conditions for growth but with the influx of contaminated water.


Assuntos
Surtos de Doenças , Legionella pneumophila , Doença dos Legionários , Águas Residuárias , Microbiologia da Água , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Humanos , Países Baixos/epidemiologia , Águas Residuárias/microbiologia , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/genética , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Purificação da Água , Adulto , Genótipo
2.
J Environ Manage ; 359: 120979, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692033

RESUMO

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.


Assuntos
Carvão Vegetal , Ferro , Espécies Reativas de Oxigênio , Tetraciclina , Águas Residuárias , Tetraciclina/química , Carvão Vegetal/química , Espécies Reativas de Oxigênio/química , Águas Residuárias/química , Ferro/química , Poluentes Químicos da Água/química , Peróxidos/química , Transporte de Elétrons
3.
Sci Total Environ ; 931: 172896, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38692327

RESUMO

The next generation of the self-forming dynamic membrane, referred to in this study as the "Living Membrane (LM)", is a new patented technology based on an encapsulated biological layer that self-forms on a designed coarse-pore size support material during wastewater treatment and acts as a natural membrane filter. Integrating electrochemical processes with wastewater treatment using the LM approach has also been recently studied (the reactor is referred to as the Electro-Living Membrane Bioreactor or e-LMBR). This study investigated the effects of varying current densities, i.e., 0.3, 0.5, and 0.9 mA/cm2, on the performance of an e-LMBR. The results were also compared with those of the Living Membrane Bioreactor or LMBR (without applied current density). Higher pollutant removals were observed in the presence of the electric field. However, the effect of varying applied current densities on the COD (98-99 %), NH3-N (97-99 %), and PO43-P (100 %) removals was not statistically significant. The more prominent differences (p < 0.05) were observed in the decrease of NO3--N concentrations from mixed liquor to effluent, with increasing current density resulting in lower mean NO3--N effluent concentrations (0.3 mA/cm2: 6.13 mg/L; 0.5 mA/cm2: 4.38 mg/L; 0.9 mA/cm2: 3.70 mg/L). The reduction of NO3--N concentrations as wastewater permeated through the LM layer also confirmed its role in removing nitrogen-containing compounds. Higher current densities resulted in lower concentrations of fouling substances, particularly those of microbial extracellular polymeric substances (EPS) and transparent exopolymer particles (TEPs). The average values of the temporal variation of transmembrane pressure (d(TMP)/d(t)) in the e-LMBR were extremely low, in the range of 0.013-0.041 kPa/day, throughout the operation period. The highest (d(TMP)/d(t)) was observed for the highest current density. However, the TMP values remained below 2 kPa in all the e-LMBR runs even after the initial LM formation stage.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Incrustação Biológica/prevenção & controle , Poluentes Químicos da Água/análise
4.
Chemosphere ; 358: 142202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692361

RESUMO

Desalination reverse osmosis reject brine-based porous geopolymer (RO/GP) was produced and investigated as an improved adsorbent for phosphorus (P) removal from tainted seawater, brackish water, river water, and municipal wastewater effluent. The RO reject brine/geopolymer was produced by reacting metakaolin and fly ash with a Na-alkali activator and anhydrous RO brine as a sacrificial template. The influence of RO reject brine content on water absorption, porosity, mechanical, and structural properties were examined. The developed RO-based geopolymers exhibited the greatest porosity (58.3-84.2 % vol%), a significant ratio of open porosity to total porosity (67.7-92.1 %), and outstanding compression strength (3.6-10.4 MPa). The produced RO/GP structure has an adsorption capacity of 92.4 mg-P/g. The sequestration reaction of phosphorus by RO/GP is of pseudo-second-order kinetic behavior via Chi-squared (χ2), RMSE, and determination coefficient (R2) values. Regarding their agreement with Langmuir behavior, the phosphorus adsorption uptakes occur in homogeneous and monolayer states. The reaction is exothermic, spontaneous, and favorable. The RO/GP exhibits significant affinity for phosphorus co-existing with Cl-, Na+, SO42-, K+, HCO3-, and Ca2+. The RO/GP shows high safety during the adsorption investigation, with a total cost of 0.32 $/kg-P.


Assuntos
Fósforo , Sais , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Fósforo/química , Porosidade , Adsorção , Poluentes Químicos da Água/química , Purificação da Água/métodos , Águas Residuárias/química , Sais/química , Polímeros/química , Água do Mar/química , Cinética , Osmose
5.
Chemosphere ; 358: 142179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692364

RESUMO

Household and personal care chemicals (HPCCs) constitute a significant component of everyday products, with their global usage on the rise. HPCCs are eventually discharged into municipal wastewater treatment plants (WWTPs). However, the behaviors of HPCCs inside the Bacillus Bioreactor (BBR) process, including their prevalence, fate, and elimination mechanisms, remain underexplored. Addressing this gap, our study delves into samples collected from a BBR process at a significant WWTP in the northeast of China. Our results spotlight the dominance of linear alkylbenzene sulfonates (LASs) in the influent with concentrations ranging between 238 and 789 µg/L, much higher than the other HPCC concentrations, and remained dominant in the subsequent treatment units. After treatment using the BBR process, the concentrations of HPCCs in the effluent were diminished. Examination of different treatment units underscores the grit chamber removed over 60% of higher-concentration HPCCs, while the performance of the (RBC) tank needs to be improved. Except for the ultraviolet radiation (UV)-filters, seasonal variations exert minimal impact on the concentrations and removal efficiencies of other HPCCs in the BBR process. According to the mass balance analysis, the important mechanisms for HPCC removal were biodegradation and sludge adsorption. Also, the octocrylene (OCT) concerns raised by the environmental risk assessment of the HPCCs residuals in the final effluent, indicate a moderate risk to the surrounding aquatic environment (0.1 < RQ < 1), whereas other HPCCs have a lower risk level (RQ < 0.1). Overall, the research offers new perspectives on the fate and elimination mechanisms of HPCCs throughout the BBR process.


Assuntos
Bacillus , Reatores Biológicos , Estações do Ano , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Reatores Biológicos/microbiologia , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bacillus/metabolismo , China , Biodegradação Ambiental , Cosméticos/análise , Produtos Domésticos/análise , Ácidos Alcanossulfônicos/análise , Monitoramento Ambiental , Esgotos
6.
Chemosphere ; 358: 142194, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692369

RESUMO

China's aquatic environment continues to face several difficulties. Ecological constructed wetland systems (CWs) can be used to treat polluted saline water to alleviate water shortages regionally and globally. However, the performance is limited by low temperatures. To expand the use of CWs, we introduced a slag-sponge, a flaky material derived from alkaline waste slag, to create a newly constructed wetland system that can operate at both low and high temperatures. We evaluated its effectiveness by placing it at different heights in our devices. The results showed that the treatment was effective for saline wastewater with multiple contaminants. The efficiency was 20% higher than that of traditional CWs. Slag-sponges were found to carry pore structures and exhibit thermal insulation, which led to the enrichment of functional microbial communities (Chryseobacterium and Exiguerium) at low temperatures according to the microbial species analysis. The enhanced CWs offer another option for the treatment of polluted saline water in the environment and provide promising strategies for the utilization of waste slag.


Assuntos
Temperatura , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Águas Residuárias/química , Águas Residuárias/microbiologia , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , China , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biodegradação Ambiental
7.
Appl Microbiol Biotechnol ; 108(1): 321, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709299

RESUMO

Most reduced organic matter entering activated sludge systems is particulate (1-100-µm diameter) or colloidal (0.001-1-µm diameter), yet little is known about colonization of particulate organic matter by activated sludge bacteria. In this study, colonization of biopolymers (chitin, keratin, lignocellulose, lignin, and cellulose) by activated sludge bacteria was compared with colonization of glass beads in the presence and absence of regular nutrient amendment (acetate and ammonia). Scanning electron microscopy and quantitative PCR revealed chitin and cellulose were most readily colonized followed by lignin and lignocellulose, while keratin and glass beads were relatively resistant to colonization. Bacterial community profiles on particles compared to sludge confirmed that specific bacterial phylotypes preferentially colonize different biopolymers. Nitrifying bacteria proved adept at colonizing particles, achieving higher relative abundance on particles compared to bulk sludge. Denitrifying bacteria showed similar or lower relative abundance on particles compared to sludge. KEY POINTS: • Some activated sludge bacteria colonize natural biopolymers more readily than others. • Nitrifying bacteria are overrepresented in natural biopolymer biofilm communities. • Biopolymers in wastewater likely influence activated sludge community composition.


Assuntos
Bactérias , Esgotos , Águas Residuárias , Biopolímeros/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Esgotos/microbiologia , Águas Residuárias/microbiologia , Lignina/metabolismo , Microscopia Eletrônica de Varredura , Celulose/metabolismo , Biofilmes/crescimento & desenvolvimento , Quitina/metabolismo , Nitrificação , Purificação da Água/métodos
8.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785221

RESUMO

Wastewater-based surveillance (WBS) is an important epidemiological and public health tool for tracking pathogens across the scale of a building, neighbourhood, city, or region. WBS gained widespread adoption globally during the SARS-CoV-2 pandemic for estimating community infection levels by qPCR. Sequencing pathogen genes or genomes from wastewater adds information about pathogen genetic diversity, which can be used to identify viral lineages (including variants of concern) that are circulating in a local population. Capturing the genetic diversity by WBS sequencing is not trivial, as wastewater samples often contain a diverse mixture of viral lineages with real mutations and sequencing errors, which must be deconvoluted computationally from short sequencing reads. In this study we assess nine different computational tools that have recently been developed to address this challenge. We simulated 100 wastewater sequence samples consisting of SARS-CoV-2 BA.1, BA.2, and Delta lineages, in various mixtures, as well as a Delta-Omicron recombinant and a synthetic 'novel' lineage. Most tools performed well in identifying the true lineages present and estimating their relative abundances and were generally robust to variation in sequencing depth and read length. While many tools identified lineages present down to 1 % frequency, results were more reliable above a 5 % threshold. The presence of an unknown synthetic lineage, which represents an unclassified SARS-CoV-2 lineage, increases the error in relative abundance estimates of other lineages, but the magnitude of this effect was small for most tools. The tools also varied in how they labelled novel synthetic lineages and recombinants. While our simulated dataset represents just one of many possible use cases for these methods, we hope it helps users understand potential sources of error or bias in wastewater sequencing analysis and to appreciate the commonalities and differences across methods.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , COVID-19/virologia , COVID-19/epidemiologia , Humanos , Biologia Computacional/métodos , Genômica/métodos , Vigilância Epidemiológica Baseada em Águas Residuárias , Filogenia
9.
Sci Total Environ ; 932: 172917, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701931

RESUMO

PMMoV has been widely used to normalize the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, influenza, and respiratory syncytial virus (RSV) to account for variations in the fecal content of wastewater. PMMoV is also used as an internal RNA recovery control for wastewater-based epidemiology (WBE) tests. While potentially useful for the interpretation of WBE data, previous studies have suggested that PMMoV concentration can be affected by various physico-chemical characteristics of wastewater. There is also the possibility that laboratory methods, particularly the variability in centrifugation steps to remove supernatant from pellets can cause PMMoV variability. The goal of this study is to improve our understanding of the main drivers of PMMoV variability by assessing the relationship between PMMoV concentration, the physico-chemical characteristics of wastewater, and the methodological approach for concentrating wastewater samples. We analyzed 24-hour composite wastewater samples collected from the influent stream of three wastewater treatment plants (WWTPs) located in the City of Toronto, Ontario, Canada. Samples were collected 3 to 5 times per week starting from the beginning of March 2021 to mid-July 2023. The influent flow rate was used to partition the data into wet and dry weather conditions. Physico-chemical characteristics (e.g., total suspended solids (TSS), biological oxygen demand (BOD), alkalinity, electrical conductivity (EC), and ammonia (NH3)) of the raw wastewater were measured, and PMMoV was quantified. Spatial and temporal variability of PMMoV was observed throughout the study period. PMMoV concentration was significantly higher during dry weather conditions. Multiple linear regression analysis demonstrates that the number and type of physico-chemical parameters that drive PMMoV variability are site-specific, but overall BOD and alkalinity were the most important predictors. Differences in PMMoV concentration for a single WWTP between two different laboratory methods, along with a weak correlation between pellet mass and TSS using one method may indicate that differences in sample concentration and subjective subsampling bias could alter viral recovery and introduce variability to the data.


Assuntos
Tobamovirus , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/virologia , Ontário , Eliminação de Resíduos Líquidos/métodos , Monitoramento Ambiental/métodos
10.
Sci Total Environ ; 932: 172982, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705287

RESUMO

In recent decades, the presence of perfluoroalkyl acids (PFAAs) in municipal solid waste leachate has emerged as a growing concern. Research has focused on PFAA release and occurrence characteristics in landfill and waste-to-energy leachate, highlighting their significant impact when released into wastewater treatment plants. Given the extremely high loading rate faced by current on-site leachate treatment plants (LTPs), the objective of this study is to assess whether the current "anaerobic/aerobic (A/O) + membrane bioreactor (MBR) + nanofiltration (NF) + reverse osmosis (RO)" configuration is effective in PFAAs removal. Concentrations of raw and treated leachate in 10 on-site LTPs with same treatment configuration and varying landfill ages were measured, and a comprehensive mass flow analysis of each treatment process was conducted. The results indicate that A/O treatment has limited capacity for PFAA removal, while NF and RO processes reached 77.44 % and 94.30 % removal rates of ∑PFAAs concentration, respectively. Short-chain PFAAs (> 80 % detected frequency) primarily influenced the distribution and variations of PFAAs in leachate and tend to disperse in the water phase. Correlation analysis revealed the current on-site LTPs exhibit a more efficient removal capacity for long-chain PFAAs.


Assuntos
Fluorocarbonos , Instalações de Eliminação de Resíduos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Reatores Biológicos
11.
J Environ Sci (China) ; 144: 185-198, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802230

RESUMO

There is a large surface-groundwater exchange downstream of wastewater treatment plants (WWTPs), and antibiotics upstream may influence sites downstream of rivers. Thus, samples from 9 effluent-receiving urban rivers (ERURs) and 12 groundwater sites were collected in Shijiazhuang City in December 2020 and April 2021. For ERURs, 8 out of 13 target quinolone antibiotics (QNs) were detected, and the total concentration of QNs in December and April were 100.6-4,398 ng/L and 8.02-2,476 ng/L, respectively. For groundwater, all target QNs were detected, and the total QNs concentration was 1.09-23.03 ng/L for December and 4.54-170.3 ng/L for April. The distribution of QNs was dissimilar between ERURs and groundwater. Most QN concentrations were weakly correlated with land use types in the system. The results of a positive matrix factorization model (PMF) indicated four potential sources of QNs in both ERURs and groundwater, and WWTP effluents were the main source of QNs. From December to April, the contribution of WWTP effluents and agricultural emissions increased, while livestock activities decreased. Singular value decomposition (SVD) results showed that the spatial variation of most QNs was mainly contributed by sites downstream (7.09%-88.86%) of ERURs. Then, a new method that combined the results of SVD and PMF was developed for a specific-source-site risk quotient (SRQ), and the SRQ for QNs was at high level, especially for the sites downstream of WWTPs. Regarding temporal variation, the SRQ for WWTP effluents, aquaculture, and agricultural emissions increased. Therefore, in order to control the antibiotic pollution, more attention should be paid to WWTP effluents, aquaculture, and agricultural emission sources for the benefit of sites downstream of WWTPs.


Assuntos
Antibacterianos , Monitoramento Ambiental , Água Subterrânea , Quinolonas , Rios , Águas Residuárias , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , China , Rios/química , Quinolonas/análise , Antibacterianos/análise , Águas Residuárias/química , Cidades , Eliminação de Resíduos Líquidos/métodos
12.
Helicobacter ; 29(3): e13095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798008

RESUMO

The prevalence of multidrug-resistant Campylobacter species in wastewater effluents presents a formidable challenge at the intersection of environmental sustainability and public health. This study examined the presence of multidrug-resistant Campylobacter in wastewater effluents in the Eastern Cape Province, South Africa, and its implications for environmental ecosystems and public health. Forty-five samples from household effluent (HHE) and wastewater treatment plant effluent (WWTPE) were collected at different geographical locations within the province between April and September 2022. The counts of the presumptive Campylobacter genus ranged from 5.2 × 103 to 6.03 × 104 CFU/mL for HHE and 4.93 × 103 to 1.04 × 104 CFU/mL for WWTPE. About 42.55% of the samples were positive for Campylobacter species. Five virulence determinants including the cadF and wlaN were detected in all the isolates; however, flgR (19.23%), ciaB, and ceuE (15.38%) were less prevalent. The antibiogram profiles of confirmed Campylobacter isolates revealed high resistance (>55%) against all tested antibiotics ranging from 55.77% (nalidixic acid) to 92.30% (erythromycin), and resistance against the other antibiotics followed the order ciprofloxacin (51.92%), azithromycin (50%), and levofloxacin (48.08%). On the contrary, gentamicin was sensitive against 61.54% of the isolates, followed by imipenem (57.69%) and streptomycin (51.92%). The WWTPE's antibiotic resistance index (ARI) was 0.19, lower than the permitted Krumperman threshold of 0.2; and HHE's ARIs were higher. The isolates' respective multiple antibiotic resistance indexes (MARI) varied between 0.08 and 1.00. Among the phenotypically resistant Campylobacter isolates examined, 21 resistance determinants encoding resistance against ß-lactam, carbapenems, aminoglycosides, phenicol, quinolones, tetracyclines, and macrolides were detected, which explains the phenotypic resistance observed in the study. This study concludes that the wastewaters in the study areas are important reservoirs of multidrug-resistant and potentially pathogenic Campylobacter species, suggesting the need for proper treatment of the wastewaters to eliminate the organisms in the effluents before discharge the final effluent to the receiving watershed.


Assuntos
Antibacterianos , Campylobacter , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Águas Residuárias , Águas Residuárias/microbiologia , Campylobacter/efeitos dos fármacos , Campylobacter/isolamento & purificação , África do Sul/epidemiologia , Antibacterianos/farmacologia , Prevalência , Saúde Pública , Humanos , Fatores de Virulência/genética
13.
Hum Genomics ; 18(1): 48, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769549

RESUMO

BACKGROUND: After the occurrence of the COVID-19 pandemic, detection of other disseminated respiratory viruses using highly sensitive molecular methods was declared essential for monitoring the spread of health-threatening viruses in communities. The development of multiplex molecular assays are essential for the simultaneous detection of such viruses even at low concentrations. In the present study, a highly sensitive and specific multiplex one-step droplet digital PCR (RT-ddPCR) assay was developed for the simultaneous detection and absolute quantification of influenza A (IAV), influenza B (IBV), respiratory syncytial virus (RSV), and beta-2-microglobulin transcript as an endogenous internal control (IC B2M). RESULTS: The assay was first evaluated for analytical sensitivity and specificity, linearity, reproducibility, and recovery rates with excellent performance characteristics and then applied to 37 wastewater samples previously evaluated with commercially available and in-house quantitative real-time reverse transcription PCR (RT-qPCR) assays. IAV was detected in 16/37 (43%), IBV in 19/37 (51%), and RSV in 10/37 (27%) of the wastewater samples. Direct comparison of the developed assay with real-time RT-qPCR assays showed statistically significant high agreement in the detection of IAV (kappa Cohen's correlation coefficient: 0.834, p = 0.001) and RSV (kappa: 0.773, p = 0.001) viruses between the two assays, while the results for the detection of IBV (kappa: 0.355, p = 0.27) showed good agreement without statistical significance. CONCLUSIONS: Overall, the developed one-step multiplex ddPCR assay is cost-effective, highly sensitive and specific, and can simultaneously detect three common respiratory viruses in the complex matrix of wastewater samples even at low concentrations. Due to its high sensitivity and resistance to PCR inhibitors, the developed assay could be further used as an early warning system for wastewater monitoring.


Assuntos
Vírus da Influenza A , Vírus da Influenza B , Reação em Cadeia da Polimerase Multiplex , Águas Residuárias , Águas Residuárias/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Humanos , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/isolamento & purificação , Reprodutibilidade dos Testes , Influenza Humana/diagnóstico , Influenza Humana/virologia , Influenza Humana/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
14.
Anal Chim Acta ; 1311: 342714, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38816153

RESUMO

BACKGROUND: Antibiotics residues can accelerate the growth of drug-resistant bacteria and harm the ecological environment. Under the effect of enrichment and biomagnification, the emergence of drug-resistant pathogenic bacteria may eventually lead to humans being ineffective to drugs in the face of bacterial or fungal disease infections in the future. It is urgent to develop an efficient separation medium and analytical method for simultaneous extraction and determination of antibiotics in the water environment. RESULTS: This work doped 2,6-Di-O-methyl-ß-cyclodextrin, randomly methyl-ß-cyclodextrin, 2-hydroxypropyl-ß-cyclodextrin with thymol:fatty acid respectively to construct non-covalent interaction-dominated pH-responsive ternary supramolecular deep eutectic solvents (SUPRADESs), which can undergo a hydrophilic/hydrophobic transition with aqueous phase to achieve an efficient microextraction. Semi-empirical method illustrated that SUPRADESs have a wide range of hydrogen bond receptor sites. We developed a SUPRADES-based analytical method combined with liquid chromatography-triple quadrupole mass spectrometry for the extraction and determination of trace quinolones and sulfonamides in wastewater. The overall limits of detection of the method were 0.0021-0.0334 ng mL-1 and the limits of quantification were 0.0073-0.1114 ng mL-1. The linearity maintained good in the spiked level of 0.01-100 ng mL-1 (R2 > 0.99). The overall enrichment factors of the method were 157-201 with lower standard deviations (≤8.7). SIGNIFICANCE: The method gave an extraction recovery of 70.1-115.3 % for 28 antibiotics in livestock farming wastewater samples from Zhejiang, China, at trace levels (minimum 0.5 ng mL-1). The results demonstrated that inducing the phase transition between SUPRADES and aqueous phase by adjusting pH for extraction is a novel and efficient pretreatment strategy. To our knowledge, this is the first application of cyclodextrin-based ternary SUPRADESs with pH-responsive reversible hydrophobicity-hydrophilicity transition behavior in wastewater analysis.


Assuntos
Ciclodextrinas , Solventes Eutéticos Profundos , Quinolonas , Sulfonamidas , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Águas Residuárias/análise , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Sulfonamidas/química , Sulfonamidas/análise , Sulfonamidas/isolamento & purificação , Quinolonas/química , Quinolonas/isolamento & purificação , Quinolonas/análise , Ciclodextrinas/química , Solventes Eutéticos Profundos/química
15.
Anal Chim Acta ; 1311: 342725, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38816162

RESUMO

BACKGROUND: The introduction of white analytical chemistry encourages the development of methods characterized by a balance among greenness, productivity/feasibility and analytical performances. In the environmental analysis of emerging contaminants (ECs), for which high sensitivity and specificity are mandatory, the use of green and sustainable sample preparation needs to be coupled to a reliable analytical determination. Herein, an extraction method based on the use of a biodegradable polymeric film (Mater-Bi) and coupled to LC-MS/MS analysis was developed for the sensitive determination of ECs in wastewater. RESULTS: The interaction among a range of ECs and the Mater-Bi film (a commercially available patented blend of polybutylene-terephthalate, starch and fatty acids) was investigated by two sequential experimental designs, to simultaneously study several factors and optimize extraction efficiency. The final method, resembling a fabric phase sorptive extraction, involved pH and ionic strength modification of the sample, 1h extraction and desorption in ethanol. Satisfactory recoveries from real wastewater were obtained for sixteen analytes (56-116 %), as well as excellent precision (inter-day relative standard deviations below 10 % for most compounds). Matrix effect was in the range 88-116 % at the lower pre-concentration factor, but also acceptable in most cases at the higher pre-concentration factor. LODs in matrix, from 0.004 to 0.159 µg L-1, were lower than or comparable to those from recent studies employing green extraction procedures. The method demonstrated its applicability to samples from wastewater treatment plants, allowing quantification of pharmaceuticals and UV filters at the µg L-1 and ng L-1 levels, respectively. SIGNIFICANCE: For the first time, the synthetic biopolymer Mater-Bi, so far unexplored for the use in analytical chemistry, was exploited for a green, simple and extremely cheap extraction protocol. The optimized method is suitable for several ECs, guaranteeing very good accuracy, precision and specificity, also thanks to the LC-MS/MS analysis. The evaluation by green and white analytical chemistry metrics highlighted its superiority to conventional extraction methods.


Assuntos
Polímeros , Espectrometria de Massas em Tandem , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Polímeros/química , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/análise , Águas Residuárias/química , Cromatografia Líquida/métodos
16.
Water Environ Res ; 96(6): e11059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812097

RESUMO

The effective treatment of cadmium (Cd) in smelting wastewater is of great industrial importance. This study investigates the efficient removal of Cd from real industrial smelting wastewater via chemical precipitation using a series of experiments. In particular, the effects of different precipitants, agitation conditions, and the addition of NaOCl on Cd removal and pH variation are investigated. CaO (3.75 g/L), NaOH (3.50 g/L), and Ca(OH)2 (3.75 g/L) are found to be effective in elevating the wastewater pH and achieving high Cd removal rates (>99.9%), while the use of NaOH as a precipitant maintains a high Cd removal rate even at low agitation intensities. The properties of the produced sludge and supernatant are also determined using moisture content, particle size, and sludge leaching analyses due to the importance of economic and environmental sustainability in filtration, dewatering, and waste disposal processes. In addition, the addition of 2% NaOCl is tested, revealing that it can improve the Cd removal efficiency of Ca(OH)2, thus potentially reducing processing costs and enhancing the environmental benefits. Overall, these findings offer valuable insights into the removal of Cd from smelting wastewater, with potential implications for both environmental sustainability and economic viability. PRACTITIONER POINTS: CaO, NaOH, and Ca(OH)2 effectively remove Cd (>99.9%) from smelting wastewater. The use of NaOH leads to high Cd removal rates even at low agitation speeds. Adding 2% NaOCl can reduce the Ca(OH)2 dose for more economical Cd removal.


Assuntos
Cádmio , Precipitação Química , Resíduos Industriais , Oxirredução , Águas Residuárias , Poluentes Químicos da Água , Cádmio/química , Poluentes Químicos da Água/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Hidróxido de Cálcio/química
17.
Sci Rep ; 14(1): 12482, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816525

RESUMO

Wastewater surveillance is an effective tool for monitoring community spread of COVID-19 and other diseases. Quantitative PCR (qPCR) analysis for wastewater surveillance is more susceptible to mutations in target genome regions than binary PCR analysis for clinical surveillance. The SARS-CoV-2 concentrations in wastewater estimated by N1 and N2 qPCR assays started to diverge around July 2022 in data from different sampling sites, analytical methods, and analytical laboratories in Japan. On the basis of clinical genomic surveillance data and experimental data, we demonstrate that the divergence is due to two mutations in the N1 probe region, which can cause underestimation of viral concentrations. We further show that this inaccuracy can be alleviated if the qPCR data are analyzed with the second derivative method or the Cy0 method instead of the crossing point method.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , COVID-19/virologia , COVID-19/epidemiologia , Japão/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , RNA Viral/genética , Genoma Viral
18.
Hum Genomics ; 18(1): 54, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816866

RESUMO

This study evaluated ten nucleic acid extraction protocols (EP1 to EP10) for measuring five endogenous antibiotic resistance genes (ARGs) in four aircraft wastewater samples (AWW1 to AWW4). The targeted ARGs, including blaCTX-M, blaNDM-1, ermB, qnrS, and tetA, encompassed highly and minimally abundant ARGs. TetA and ermB were consistently detected across four aircraft wastewater samples using the DNeasy Blood and Tissue Kit and the AllPrep PowerViral DNA/RNA kit. QnrS displayed high detection rates with specific extraction protocols and aliquot volumes. Concentrations of ARGs varied across aircraft wastewater samples, with differing extraction protocols influencing quantitative results. The concentrations of tetA, ermB, and qnrS in AWW1 were distinct, while AWW2 to AWW4 exhibited a broader range for tetA, ermB, qnrS, blaCTX-M, and blaNDM-1. EP1 consistently produced the highest concentrations for several ARGs. Collective data analysis revealed varying ARG concentrations across the ten extraction protocols, suggesting the importance of careful extraction protocol selection in ARG monitoring in aircraft wastewater samples. Based on the results, we suggest that a small sample volume (as low as 0.2 mL) may be sufficient for ARG characterization in aircraft wastewater samples. The findings also emphasize the need for considering toilet paper removal without compromising nucleic acid extraction efficiency. The study highlights promising prospects for aircraft wastewater monitoring of ARGs, calling for further investigation into the import and spread of unique ARGs through transport hubs.


Assuntos
Aeronaves , Águas Residuárias , Águas Residuárias/microbiologia , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Humanos , Ácidos Nucleicos/genética , Ácidos Nucleicos/isolamento & purificação , Farmacorresistência Bacteriana/genética , Antibacterianos
19.
Nat Commun ; 15(1): 4545, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806450

RESUMO

Wastewater surveillance for SARS-CoV-2 provides early warnings of emerging variants of concerns and can be used to screen for novel cryptic linked-read mutations, which are co-occurring single nucleotide mutations that are rare, or entirely missing, in existing SARS-CoV-2 databases. While previous approaches have focused on specific regions of the SARS-CoV-2 genome, there is a need for computational tools capable of efficiently tracking cryptic mutations across the entire genome and investigating their potential origin. We present Crykey, a tool for rapidly identifying rare linked-read mutations across the genome of SARS-CoV-2. We evaluated the utility of Crykey on over 3,000 wastewater and over 22,000 clinical samples; our findings are three-fold: i) we identify hundreds of cryptic mutations that cover the entire SARS-CoV-2 genome, ii) we track the presence of these cryptic mutations across multiple wastewater treatment plants and over three years of sampling in Houston, and iii) we find a handful of cryptic mutations in wastewater mirror cryptic mutations in clinical samples and investigate their potential to represent real cryptic lineages. In summary, Crykey enables large-scale detection of cryptic mutations in wastewater that represent potential circulating cryptic lineages, serving as a new computational tool for wastewater surveillance of SARS-CoV-2.


Assuntos
COVID-19 , Genoma Viral , Mutação , SARS-CoV-2 , Águas Residuárias , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Águas Residuárias/virologia , COVID-19/virologia , COVID-19/epidemiologia , COVID-19/diagnóstico , Humanos , Genoma Viral/genética , Biologia Computacional/métodos
20.
Sci Rep ; 14(1): 12187, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806581

RESUMO

This was the first longitudinal study to analyze dental clinic wastewater to estimate asymptomatic SARS-CoV-2 infection trends in children. We monitored wastewater over a 14-month period, spanning three major COVID-19 waves driven by the Alpha, Delta, and Omicron variants. Each Saturday, wastewater was sampled at the Pediatric Dental Clinic of the only dental hospital in Japan's Saitama Prefecture. The relationship between the weekly number of cases in Saitama Prefecture among residents aged < 10 years (exposure) and wastewater SARS-CoV-2 RNA detection (outcome) was examined. The number of cases was significantly associated with wastewater SARS-CoV-2 RNA positivity (risk ratio, 5.36; 95% confidence interval, 1.72-16.67; Fisher's exact test, p = 0.0005). A sample from Week 8 of 2022 harbored the Omicron variant. Compared to sporadic individual testing, this approach allows continuous population-level surveillance, which is less affected by healthcare seeking and test availability. Since wastewater from pediatric dental clinics originates from the oral cavities of asymptomatic children, such testing can provide important information regarding asymptomatic COVID-19 in children, complementing clinical pediatric data.


Assuntos
COVID-19 , Clínicas Odontológicas , SARS-CoV-2 , Águas Residuárias , Humanos , COVID-19/epidemiologia , COVID-19/diagnóstico , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Águas Residuárias/virologia , Criança , Pré-Escolar , Japão/epidemiologia , Feminino , Masculino , Estudos Longitudinais , RNA Viral/genética , RNA Viral/análise , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...