Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.656
Filtrar
1.
Chem Biol Drug Des ; 104(3): e14612, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39237482

RESUMO

The Mycobacterium cell wall is a capsule-like structure comprising of various layers of biomolecules such as mycolic acid, peptidoglycans, and arabinogalactans, which provide the Mycobacteria a sort of cellular shield. Drugs like isoniazid, ethambutol, cycloserine, delamanid, and pretomanid inhibit cell wall synthesis by inhibiting one or the other enzymes involved in cell wall synthesis. Many enzymes present across these layers serve as potential targets for the design and development of newer anti-TB drugs. Some of these targets are currently being exploited as the most druggable targets like DprE1, InhA, and MmpL3. Many of the anti-TB agents present in clinical trials inhibit cell wall synthesis. The present article covers a systematic perspective of developing cell wall inhibitors targeting various enzymes involved in cell wall biosynthesis as potential drug candidates for treating Mtb infection.


Assuntos
Antituberculosos , Proteínas de Bactérias , Parede Celular , Mycobacterium tuberculosis , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Tuberculose/tratamento farmacológico , Oxirredutases/metabolismo , Oxirredutases/antagonistas & inibidores , Ácidos Micólicos/metabolismo , Oxirredutases do Álcool , Proteínas de Membrana Transportadoras
2.
Pestic Biochem Physiol ; 204: 106077, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277390

RESUMO

The discovery of new targets and lead compounds is the key to developing new pesticides. The herbicidal target of drupacine has been identified as shikimate dehydrogenase (SkDH). However, the mechanism of interaction between them remains unclear. This study found that drupacine specifically binds to SkDH with a dissociation equilibrium constant (KD) of 8.88 µM and a Kd value of 2.15 µM, as confirmed by surface plasmon resonance and microscale thermophoresis. Site-directed mutagenesis coupled with fluorescence quenching analysis indicated that residue THR431 was the key amino acid site for drupacine binding to SkDH. Nine compounds with the best binding ability to SkDH were identified by virtual screening from about 120,000 compounds. Among them, compound 8 showed the highest inhibition rate with values of 41.95% against SkDH, also exhibiting the strongest herbicidal activity. This research identifies a novel potential target SkDH and a candidate lead compound with high herbicidal activity for developing new herbicides.


Assuntos
Oxirredutases do Álcool , Herbicidas , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Herbicidas/farmacologia , Herbicidas/química , Mutagênese Sítio-Dirigida
3.
Commun Biol ; 7(1): 1174, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294274

RESUMO

Some patients with polycystic ovarian syndrome (PCOS) suffered from metabolic syndrome (MetS) including dyslipidemia, hyperinsulinism, but the underlying mechanism is unclear. Although C-terminal Binding Protein 1 (CTBP1) is a transcriptional co-repressor frequently involved in hormone secretion disorders and MetS-associated diseases, the role of CTBP1 in PCOS is rarely reported. In the present study, we found that CTBP1 expression was significantly elevated in primary granulosa cells (pGCs) derived from the PCOS with MetS patients and was positively associated with serum triglyceride, but negatively correlated with serum estradiol (E2) or high-density lipoprotein. Mechanistic study suggested that CTBP1 physically bound to the promoter II of cytochrome P450 family 19 subfamily A member 1 (CYP19A1) to inhibit the aromatase gene transcription and expression, resulting in the reduced E2 synthesis. Moreover, CTBP1 interacted with the phosphorylated SREBP1a at S396 in nuclei, leading to the FBXW7-dependent protein degradation, resulting in the reduced lipid droplets formation in pGCs. Therefore, we conclude that CTBP1 in GCs dysregulates the synthesis of steroid hormones and lipids through suppression of aromatase expression and promotion of SREBP1a protein degradation in PCOS patients, which may offer some fresh insights into the potential pathological mechanism for this tough disease.


Assuntos
Oxirredutases do Álcool , Aromatase , Proteínas de Ligação a DNA , Síndrome Metabólica , Síndrome do Ovário Policístico , Proteína de Ligação a Elemento Regulador de Esterol 1 , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Feminino , Humanos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Aromatase/metabolismo , Aromatase/genética , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/genética , Adulto , Células da Granulosa/metabolismo
4.
BMC Genomics ; 25(1): 816, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210247

RESUMO

BACKGROUND: CINNAMYL ALCOHOL DEHYDROGENASE (CAD) catalyzes the NADPH-dependent reduction of cinnamaldehydes into cinnamyl alcohols and is a key enzyme found at the final step of the monolignol pathway. Cinnamyl alcohols and their conjugates are subsequently polymerized in the secondary cell wall to form lignin. CAD genes are typically encoded by multi-gene families and thus traditionally organized into general classifications of functional relevance. RESULTS: In silico analysis of the hexaploid Triticum aestivum genome revealed 47 high confidence TaCAD copies, of which three were determined to be the most significant isoforms (class I) considered bone fide CADs. Class I CADs were expressed throughout development both in RNAseq data sets as well as via qRT-PCR analysis. Of the 37 class II TaCADs identified, two groups were observed to be significantly co-expressed with class I TaCADs in developing tissue and under chitin elicitation in RNAseq data sets. These co-expressed class II TaCADs were also found to be phylogenetically unrelated to a separate clade of class II TaCADs previously reported to be an influential resistance factor to pathogenic fungal infection. Lastly, two groups were phylogenetically identified as class III TaCADs, which possess distinct conserved gene structures. However, the lack of data supporting their catalytic activity for cinnamaldehydes and their bereft transcriptional presence in lignifying tissues challenges their designation and function as CADs. CONCLUSIONS: Taken together, our comprehensive transcriptomic analyses suggest that TaCAD genes contribute to overlapping but nonredundant functions during T. aestivum growth and development across a wide variety of agroecosystems and provide tolerance to various stressors.


Assuntos
Oxirredutases do Álcool , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Triticum , Triticum/genética , Triticum/enzimologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Int J Biol Macromol ; 277(Pt 3): 134296, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094888

RESUMO

Anthocyanidins and anthocyanins are one subclass of flavonoids in plants with diverse biological functions and have health-promoting effects. Dihydroflavonol 4-reductase (DFR) is one of the important enzymes involved in the biosynthesis of anthocyanidins and other flavonoids. Here, a new MOF-based nano-immobilized DFR enzyme acting as a nano-biocatalyst for the production of anthocyanidins in vitro was designed. We prepared UiO-66-NH2 MOF nano-carrier and recombinant DFR enzyme from genetic engineering. DFR@UiO-66-NH2 nano-immobilized enzyme was constructed based on covalent bonding under the optimum immobilization conditions of the enzyme/carrier ratio of 250 mg/g, 37 °C, pH 6.5 and fixation time of 10 min. DFR@UiO-66-NH2 was characterized and its catalytic function for the synthesis of anthocyanidins in vitro was testified using UPLC-QQQ-MS analysis. Compared with free DFR enzyme, the enzymatic reaction catalyzed by DFR@UiO-66-NH2 was more easily for manipulation in a wide range of reaction temperatures and pH values. DFR@UiO-66-NH2 had better thermal stability, enhanced adaptability, longer-term storage, outstanding tolerances to the influences of several organic reagents and Zn2+, Cu2+ and Fe2+ ions, and relatively good reusability. This work developed a new MOF-based nano-immobilized biocatalyst that had a good prospect of application in the green synthesis of anthocyanins in the future.


Assuntos
Antocianinas , Biocatálise , Enzimas Imobilizadas , Estruturas Metalorgânicas , Antocianinas/química , Antocianinas/biossíntese , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/química , Concentração de Íons de Hidrogênio , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Temperatura , Estabilidade Enzimática
6.
Eur J Pharm Biopharm ; 203: 114429, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097116

RESUMO

BACKGROUND: sepiapterine reductase deficiency (SRD) is a rare levodopa (L-dopa)-responsive disorder treated with a combination therapy of controlled-release L-dopa and carbidopa. The currently available formulation of controlled-release carbidopa/L-dopa does not entirely meet the requirements for the long-term therapy in pediatric patients. In fact, administration of a manufactured tablet at a dose intended for adults necessitates its adjustment to the child's needs, as the splitting of the tablet into smaller portions or its dilution in water. It's essential to emphasize that tablets must not be crushed, as this can compromise the controlled-release mechanism and affect the efficacy of the medication. At the moment, commercial liquid formulations are not available. Given these limitations, in house drug preparation in hospitals and community pharmacies is a valid option to ensure the proper therapeutic management of these patients. MATERIALS AND METHODS: we described sample preparation, physical and microbiological analyses, taste testing, and tolerability of a 1:10 ratio carbidopa/L-dopa flavored (mint, raspberry, cacao, berries) and unflavored oral formulation (no sweetening agents were added). We also reported long-term follow-up of two pediatric patients with SRD. RESULTS: we documented the stability for 28 days at 25 °C of the liquid solution. All formulations were well-tolerated, and no adverse events were observed during or after assessing taste and tolerability. The long-term follow up of two patients was characterized by effective symptom control and optimal treatment adherence and compliance. CONCLUSIONS: in-house liquid drug formulations can be a valid option for pediatric patients with SRD. Given the significant impact of taste on medication adherence, the use of flavoring agents in the development of liquid formulations of L-dopa/carbidopa results a very useful strategy to obtain optimal adherence in the pediatric population.


Assuntos
Carbidopa , Combinação de Medicamentos , Levodopa , Carbidopa/administração & dosagem , Levodopa/administração & dosagem , Humanos , Administração Oral , Masculino , Oxirredutases do Álcool/metabolismo , Feminino , Composição de Medicamentos/métodos , Criança , Pré-Escolar , Preparações de Ação Retardada/administração & dosagem , Química Farmacêutica/métodos , Paladar/efeitos dos fármacos , Soluções Farmacêuticas/administração & dosagem
7.
Int J Immunopathol Pharmacol ; 38: 3946320241276336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39180753

RESUMO

Background: Spinal cord glioma (SCG), a rare subset of central nervous system (CNS) glioma, represents a complex challenge in neuro-oncology. There has been research showing that Retinol Dehydrogenase 10 (RDH10) may be a tumor promoting factor in brain glioma, but the biological effects of RDH10 remain undefined in SCG. Methods: We performed gene set enrichment analysis (GSEA) and unsupervised clustering analysis to investigate the roles of EMT (epithelial-mesenchymal transition) in glioma. DEG (differently expressed gene) screening and correlation analysis were conducted to filter the candidate genes which were closely associated with EMT process in SCG. Enrichment analysis and GSVA (Gene Set Variation Analysis) were conducted to investigate the potential mechanism of RDH10 for SCG. Trans-well and healing assay were performed to explore the role of RDH10 in the invasion of SCG. Western blotting was performed to evaluate the levels of markers in PI3K-AKT and EMT pathway. In vivo tests were conducted to verify the role of RDH10 in EMT process. Results: Bioinformatic analysis demonstrated the EMT pathway was associated with dismal prognosis of glioma. Further analysis demonstrated that RDH10 showed the strongest correlation with the EMT process. Retinol Dehydrogenase 10 expression was significantly increased in SCG tissues, correlating with advanced tumor grade and unfavorable prognosis. Functional analysis indicated that decreasing RDH10 levels impeded the invasive and migratory abilities of SCG cells, whereas increasing RDH10 levels augmented them. Enrichment analysis and western blot revealed that RDH10 regulated EMT process of SCG by PI3K-AKT pathway. We observed that the enhanced invasion ability and increased EMT-related protein induced by RDH10 overexpression can be suppressed by PI3K-AKT pathway inhibitor (LY294002). Conclusion: Our research found that RDH10 was an effective biomarker associated with tumor grade and prognosis of SCG. RDH10 could regulate EMT process of SCG through PI3K-AKT pathway.


Assuntos
Oxirredutases do Álcool , Transição Epitelial-Mesenquimal , Glioma , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Medula Espinal/patologia , Neoplasias da Medula Espinal/genética , Neoplasias da Medula Espinal/metabolismo
8.
PLoS One ; 19(8): e0305837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39196921

RESUMO

BACKGROUND: Flavonoids, an important class of specialized metabolites, are synthesized from phenylalanine and present in almost all plant species. Different branches of flavonoid biosynthesis lead to products like flavones, flavonols, anthocyanins, and proanthocyanidins. Dihydroflavonols form the branching point towards the production of non-colored flavonols via flavonol synthase (FLS) and colored anthocyanins via dihydroflavonol 4-reductase (DFR). Despite the wealth of publicly accessible data, there remains a gap in understanding the mechanisms that mitigate competition between FLS and DFR for the shared substrate, dihydroflavonols. RESULTS: An angiosperm-wide comparison of FLS and DFR sequences revealed the amino acids at positions associated with the substrate specificity in both enzymes. A global analysis of the phylogenetic distribution of these amino acid residues revealed that monocots generally possess FLS with Y132 (FLSY) and DFR with N133 (DFRN). In contrast, dicots generally possess FLSH and DFRN, DFRD, and DFRA. DFRA, which restricts substrate preference to dihydrokaempferol, previously believed to be unique to strawberry species, is found to be more widespread in angiosperms and has evolved independently multiple times. Generally, angiosperm FLS appears to prefer dihydrokaempferol, whereas DFR appears to favor dihydroquercetin or dihydromyricetin. Moreover, in the FLS-DFR competition, the dominance of one over the other is observed, with typically only one gene being expressed at any given time. CONCLUSION: This study illustrates how almost mutually exclusive gene expression and substrate-preference determining residues could mitigate competition between FLS and DFR, delineates the evolution of these enzymes, and provides insights into mechanisms directing the metabolic flux of the flavonoid biosynthesis, with potential implications for ornamental plants and molecular breeding strategies.


Assuntos
Oxirredutases do Álcool , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Flavonoides/metabolismo , Flavonoides/biossíntese , Magnoliopsida/genética , Magnoliopsida/enzimologia , Magnoliopsida/metabolismo , Oxirredutases , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato
9.
ACS Infect Dis ; 10(9): 3320-3331, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39150887

RESUMO

Benzothiazole-bearing compounds have emerged as potential noncovalent DprE1 (decaprenylphosphoryl-ß-d-ribose-2'-epimerase) inhibitors active against Mycobacterium tuberculosis. Based on structure-based virtual screening (PDB ID: 4KW5), a focused library of thirty-one skeletally diverse benzothiazole amides was prepared, and the compounds were assessed for their antitubercular activity against M.tb H37Ra. Most potent compounds 3b and 3n were further evaluated against the M.tb H37Rv strain by the microdilution assay method. Among the compounds evaluated, bis-benzothiazole amide 3n emerged as a hit molecule and demonstrated promising antitubercular activity with minimum inhibitory concentration (MIC) values of 0.45 µg/mL and 8.0 µg/mL against H37Ra and H37Rv, respectively. Based on the preliminary hit molecule (3n), a focused library of 12 more bis-benzothiazole amide derivatives was further prepared by varying the substituents on either side to obtain new leads and generate a structure-activity relationship (SAR). Among these compounds, 6a, 6c, and 6d demonstrated remarkable antitubercular activity with MIC values of 0.5 µg/mL against H37Ra and 1.0, 2.0, and 8.0 µg/mL against H37Rv, respectively. The most active compound, 6a, also displayed significant efficacy against four drug-resistant tuberculosis strains. Compound 6a was assessed for in vitro cytotoxicity against the HepG2 cell line, and it displayed insignificant cytotoxicity. Furthermore, time-kill kinetic studies demonstrated time- and dose-dependent bactericidal activity of this compound. The GFP release assay revealed that compound 6a targets the inhibition of a cell wall component. SNPs in dprE-1 gene assessment revealed that compound 6a binds to tyrosine at position 314 of DprE1 and replaces it with histidine, causing resistance similar to that of standard TCA1. In silico docking studies further suggest that the strong noncovalent interactions of these compounds may lead to the development of potent noncovalent DprE1 inhibitors.


Assuntos
Antituberculosos , Proteínas de Bactérias , Benzotiazóis , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Benzotiazóis/farmacologia , Benzotiazóis/química , Humanos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Oxirredutases do Álcool
10.
Anal Bioanal Chem ; 416(24): 5303-5316, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134727

RESUMO

Herein we introduce a novel water-based graphite ink modified with multiwalled carbon nanotubes, designed for the development of the first wearable self-powered biosensor enabling alcohol abuse detection through sweat analysis. The stencil-printed graphite (SPG) electrodes, printed onto a flexible substrate, were modified by casting multiwalled carbon nanotubes (MWCNTs), electrodepositing polymethylene blue (pMB) at the anode to serve as a catalyst for nicotinamide adenine dinucleotide (NADH) oxidation, and hemin at the cathode as a selective catalyst for H2O2 reduction. Notably, alcohol dehydrogenase (ADH) was additionally physisorbed onto the anodic electrode, and alcohol oxidase (AOx) onto the cathodic electrode. The self-powered biosensor was assembled using the ADH/pMB-MWCNTs/SPG||AOx/Hemin-MWCNTs/SPG configuration, enabling the detection of ethanol as an analytical target, both at the anodic and cathodic electrodes. Its performance was assessed by measuring polarization curves with gradually increasing ethanol concentrations ranging from 0 to 50 mM. The biosensor demonstrated a linear detection range from 0.01 to 0.3 mM, with a detection limit (LOD) of 3 ± 1 µM and a sensitivity of 64 ± 2 µW mM-1, with a correlation coefficient of 0.98 (RSD 8.1%, n = 10 electrode pairs). It exhibited robust operational stability (over 2800 s with continuous ethanol turnover) and excellent storage stability (approximately 93% of initial signal retained after 90 days). Finally, the biosensor array was integrated into a wristband and successfully evaluated for continuous alcohol abuse monitoring. This proposed system displays promising attributes for use as a flexible and wearable biosensor employing biocompatible water-based inks, offering potential applications in forensic contexts.


Assuntos
Técnicas Biossensoriais , Eletrodos , Etanol , Limite de Detecção , Nanotubos de Carbono , Suor , Dispositivos Eletrônicos Vestíveis , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Etanol/análise , Suor/química , Humanos , Álcool Desidrogenase/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Grafite/química , Oxirredutases do Álcool/química
11.
Molecules ; 29(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203012

RESUMO

2,3-butanediol (2,3-BD) is a versatile bio-based platform chemical. An artificial four-enzyme synthetic biosystem composed of ethanol dehydrogenase, NADH oxidase, formolase and 2,3-butanediol dehydrogenase was designed for upgrading ethanol to 2,3-BD in our previous study. However, a key challenge in developing in vitro enzymatic systems for 2,3-BD synthesis is the relatively sluggish catalytic efficiency of formolase, which catalyzes the rate-limiting step in such systems. Herein, this study reports how engineering the tunnel and substrate binding pocket of FLS improved its catalytic performance. A series of single-point and combinatorial variants were successfully obtained which displayed both higher catalytic efficiency and better substrate tolerance than wild-type FLS. Subsequently, a cell-free biosystem based on the FLS:I28V/L482E enzyme was implemented for upgrading ethanol to 2,3-BD. Ultimately, this system achieved efficient production of 2,3-BD from ethanol by the fed-batch method, reaching a concentration of 1.39 M (124.83 g/L) of the product and providing both excellent productivity and yield values of 5.94 g/L/h and 92.7%, respectively. Taken together, this modified enzymatic catalysis system provides a highly promising alternative approach for sustainable and cost-competitive production of 2,3-BD.


Assuntos
Oxirredutases do Álcool , Butileno Glicóis , Etanol , Butileno Glicóis/metabolismo , Butileno Glicóis/química , Etanol/metabolismo , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , NADH NADPH Oxirredutases/metabolismo , NADH NADPH Oxirredutases/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/química
13.
Int J Biol Macromol ; 276(Pt 1): 133873, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013505

RESUMO

In this study, based on the self-assembly strategy, we fused CipA with carbonyl reductase LXCARS154Y derived from Leifsonia xyli by gene coding, and successfully performed the carrier-free immobilization of LXCARS154Y. The immobilized enzyme was then characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR). Compared with the free enzyme, the immobilized LXCARS154Y exhibited a 2.3-fold improvement in the catalytic efficiency kcat/km for the synthesis of a chiral pharmaceutical intermediate (R)-3,5-bis(trifluoromethyl)phenyl ethanol ((R)-BTPE) by reducing 3,5-bis(trifluoromethyl)acetophenone (BTAP). Moreover, the immobilized enzyme showed the enhanced stability while maintaining over 61 % relative activity after 18 cycles of batch reaction. Further, when CipA-fused carbonyl reductase was employed for (R)-BTPE production in a continuous flow reaction, almost complete yield (97.0 %) was achieved within 7 h at 2 M (512.3 g/L) of BTAP concentration, with a space-time yield of 1717.1 g·L-1·d-1. Notably, we observed the retention of cofactor NADH by CipA-based enzyme aggregates, resulting in a higher total turnover number (TTN) of 4815 to facilitate this bioreductive process. This research developed a concise strategy for efficient preparation of chiral intermediate with cofactor self-sufficiency via continuous flow biocatalysis, and the relevant mechanism was also explored.


Assuntos
Oxirredutases do Álcool , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Reatores Biológicos , Cinética , Álcoois/química , Biocatálise , Coenzimas/química , Coenzimas/metabolismo , Estereoisomerismo
14.
New Phytol ; 243(6): 2157-2174, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39072753

RESUMO

The genetic control underlying natural variation in lignin content and composition in trees is not fully understood. We performed a systems genetic analysis to uncover the genetic regulation of lignin biosynthesis in a natural 'SwAsp' population of aspen (Populus tremula) trees. We analyzed gene expression by RNA sequencing (RNA-seq) in differentiating xylem tissues, and lignin content and composition using Pyrolysis-GC-MS in mature wood of 268 trees from 99 genotypes. Abundant variation was observed for lignin content and composition, and genome-wide association study identified proteins in the pentose phosphate pathway and arabinogalactan protein glycosylation among the top-ranked genes that are associated with these traits. Variation in gene expression and the associated genetic polymorphism was revealed through the identification of 312 705 local and 292 003 distant expression quantitative trait loci (eQTL). A co-expression network analysis suggested modularization of lignin biosynthesis and novel functions for the lignin-biosynthetic CINNAMYL ALCOHOL DEHYDROGENASE 2 and CAFFEOYL-CoA O-METHYLTRANSFERASE 3. PHENYLALANINE AMMONIA LYASE 3 was co-expressed with HOMEOBOX PROTEIN 5 (HB5), and the role of HB5 in stimulating lignification was demonstrated in transgenic trees. The systems genetic approach allowed linking natural variation in lignin biosynthesis to trees´ responses to external cues such as mechanical stimulus and nutrient availability.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Lignina , Populus , Locos de Características Quantitativas , Lignina/biossíntese , Lignina/metabolismo , Populus/genética , Populus/metabolismo , Locos de Características Quantitativas/genética , Xilema/metabolismo , Xilema/genética , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Vias Biossintéticas/genética , Redes Reguladoras de Genes , Biologia de Sistemas , Oxirredutases do Álcool , Mucoproteínas
15.
Curr Biol ; 34(15): 3342-3353.e6, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981477

RESUMO

Capture of a photon by an opsin visual pigment isomerizes its 11-cis-retinaldehyde (11cRAL) chromophore to all-trans-retinaldehyde (atRAL), which subsequently dissociates. To restore light sensitivity, the unliganded apo-opsin combines with another 11cRAL to make a new visual pigment. Two enzyme pathways supply chromophore to photoreceptors. The canonical visual cycle in retinal pigment epithelial cells supplies 11cRAL at low rates. The photic visual cycle in Müller cells supplies cones with 11-cis-retinol (11cROL) chromophore precursor at high rates. Although rods can only use 11cRAL to regenerate rhodopsin, cones can use 11cRAL or 11cROL to regenerate cone visual pigments. We performed a screen in zebrafish retinas and identified ZCRDH as a candidate for the enzyme that converts 11cROL to 11cRAL in cone inner segments. Retinoid analysis of eyes from Zcrdh-mutant zebrafish showed reduced 11cRAL and increased 11cROL levels, suggesting impaired conversion of 11cROL to 11cRAL. By microspectrophotometry, isolated Zcrdh-mutant cones lost the capacity to regenerate visual pigments from 11cROL. ZCRDH therefore possesses all predicted properties of the cone 11cROL dehydrogenase. The human protein most similar to ZCRDH is RDH12. By immunocytochemistry, ZCRDH was abundantly present in cone inner segments, similar to the reported distribution of RDH12. Finally, RDH12 was the only mammalian candidate protein to exhibit 11cROL-oxidase catalytic activity. These observations suggest that RDH12 in mammals is the functional ortholog of ZCRDH, which allows cones, but not rods, to regenerate visual pigments from 11cROL provided by Müller cells. This capacity permits cones to escape competition from rods for visual chromophore in daylight-exposed retinas.


Assuntos
Oxirredutases do Álcool , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Peixe-Zebra , Animais , Humanos , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Opsinas/metabolismo , Opsinas/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Pigmentos da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Retinaldeído/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
16.
Anal Chem ; 96(28): 11549-11556, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38958207

RESUMO

Human-borne acetone is a potent marker of lipid metabolism. Here, an enzyme immobilization method for secondary alcohol dehydrogenase (S-ADH), which is suitable for highly sensitive and selective biosensing of acetone, was developed, and then its applicability was demonstrated for spatiotemporal imaging of concentration distribution. After various investigations, S-ADH-immobilized meshes could be prepared with less than 5% variation by cross-linking S-ADH with glutaraldehyde on a cotton mesh at 40 °C for 15 min. Furthermore, high activity was obtained by adjusting the concentration of the coenzyme nicotinamide adenine dinucleotide (NADH) solution added to the S-ADH-immobilized mesh to 500 µM and the solvent to a potassium phosphate buffer solution at pH 6.5. The gas imaging system using the S-ADH-immobilized mesh was able to image the decrease in NADH fluorescence (ex 340 nm, fl 490 nm) caused by the catalytic reaction of S-ADH and the acetone distribution in the concentration range of 0.1-10 ppm-v, including the breath concentration of healthy people at rest. The exhaled breath of two healthy subjects at 6 h of fasting was quantified as 377 and 673 ppb-v, which were consistent with the values quantified by gas chromatography-mass spectrometry.


Assuntos
Acetona , Testes Respiratórios , Enzimas Imobilizadas , Acetona/análise , Acetona/química , Humanos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Técnicas Biossensoriais , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Gases/química , Gases/análise , Expiração , NAD/análise , NAD/química , NAD/metabolismo
17.
Biochemistry ; 63(14): 1808-1823, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38962820

RESUMO

Theoretical concepts linking the structure, function, and evolution of a protein, while often intuitive, necessitate validation through investigations in real-world systems. Our study empirically explores the evolutionary implications of multiple gene copies in an organism by shedding light on the structure-function modulations observed in Pseudomonas aeruginosa's second copy of ketopantoate reductase (PaKPR2). We demonstrated with two apo structures that the typical active site cleft of the protein transforms into a two-sided pocket where a molecular gate made up of two residues controls the substrate entry site, resulting in its inactivity toward the natural substrate ketopantoate. Strikingly, this structural modification made the protein active against several important α-keto-acid substrates with varied efficiency. Structural constraints at the binding site for this altered functional trait were analyzed with two binary complexes that show the conserved residue microenvironment faces restricted movements due to domain closure. Finally, its mechanistic highlights gathered from a ternary complex structure help in delineating the molecular perspectives behind its kinetic cooperativity toward these broad range of substrates. Detailed structural characteristics of the protein presented here also identified four key amino acid residues responsible for its versatile α-keto-acid reductase activity, which can be further modified to improve its functional properties through protein engineering.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Evolução Molecular , Domínio Catalítico , Especificidade por Substrato , Modelos Moleculares , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Cristalografia por Raios X , Conformação Proteica , Cinética
18.
mBio ; 15(8): e0152424, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38953632

RESUMO

The hydroxyacid glycolate is a highly abundant carbon source in the environment. Glycolate is produced by unicellular photosynthetic organisms and excreted at petagram scales to the environment, where it serves as growth substrate for heterotrophic bacteria. In microbial metabolism, glycolate is first oxidized to glyoxylate by the enzyme glycolate oxidase. The recently described ß-hydroxyaspartate cycle (BHAC) subsequently mediates the carbon-neutral assimilation of glyoxylate into central metabolism in ubiquitous Alpha- and Gammaproteobacteria. Although the reaction sequence of the BHAC was elucidated in Paracoccus denitrificans, little is known about the regulation of glycolate and glyoxylate assimilation in this relevant alphaproteobacterial model organism. Here, we show that regulation of glycolate metabolism in P. denitrificans is surprisingly complex, involving two regulators, the IclR-type transcription factor BhcR that acts as an activator for the BHAC gene cluster, and the GntR-type transcriptional regulator GlcR, a previously unidentified repressor that controls the production of glycolate oxidase. Furthermore, an additional layer of regulation is exerted at the global level, which involves the transcriptional regulator CceR that controls the switch between glycolysis and gluconeogenesis in P. denitrificans. Together, these regulators control glycolate metabolism in P. denitrificans, allowing the organism to assimilate glycolate together with other carbon substrates in a simultaneous fashion, rather than sequentially. Our results show that the metabolic network of Alphaproteobacteria shows a high degree of flexibility to react to the availability of multiple substrates in the environment.IMPORTANCEAlgae perform ca. 50% of the photosynthetic carbon dioxide fixation on our planet. In the process, they release the two-carbon molecule glycolate. Due to the abundance of algae, massive amounts of glycolate are released. Therefore, this molecule is available as a source of carbon for bacteria in the environment. Here, we describe the regulation of glycolate metabolism in the model organism Paracoccus denitrificans. This bacterium uses the recently characterized ß-hydroxyaspartate cycle to assimilate glycolate in a carbon- and energy-efficient manner. We found that glycolate assimilation is dynamically controlled by three different transcriptional regulators: GlcR, BhcR, and CceR. This allows P. denitrificans to assimilate glycolate together with other carbon substrates in a simultaneous fashion. Overall, this flexible and multi-layered regulation of glycolate metabolism in P. denitrificans represents a resource-efficient strategy to make optimal use of this globally abundant molecule under fluctuating environmental conditions.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Glicolatos , Paracoccus denitrificans , Paracoccus denitrificans/metabolismo , Paracoccus denitrificans/genética , Glicolatos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Redes e Vias Metabólicas/genética , Glioxilatos/metabolismo , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Família Multigênica
19.
Appl Environ Microbiol ; 90(7): e0101424, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38953370

RESUMO

Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored. In the present study, phylogenetic analysis guided the selection of six AA5_2 members from diverse fungi for recombinant expression in Komagataella pfaffii (syn. Pichia pastoris) and biochemical characterization in vitro. Five of the targets displayed predominant galactose 6-oxidase activity (EC 1.1.3.9), and one was a broad-specificity aryl alcohol oxidase (EC 1.1.3.7) with maximum activity on the platform chemical 5-hydroxymethyl furfural (EC 1.1.3.47). Sequence alignment comparing previously characterized AA5_2 members to those from this study indicated various amino acid substitutions at active site positions implicated in the modulation of specificity.IMPORTANCEEnzyme discovery and characterization underpin advances in microbial biology and the application of biocatalysts in industrial processes. On one hand, oxidative processes are central to fungal saprotrophy and pathogenesis. On the other hand, controlled oxidation of small molecules and (bio)polymers valorizes these compounds and introduces versatile functional groups for further modification. The biochemical characterization of six new copper radical oxidases further illuminates the catalytic diversity of these enzymes, which will inform future biological studies and biotechnological applications.


Assuntos
Cobre , Oxirredutases , Filogenia , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases/química , Cobre/metabolismo , Saccharomycetales/genética , Saccharomycetales/enzimologia , Especificidade por Substrato , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Galactose Oxidase/genética , Galactose Oxidase/metabolismo , Galactose Oxidase/química , Alinhamento de Sequência , Sequência de Aminoácidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Domínio Catalítico
20.
Appl Microbiol Biotechnol ; 108(1): 410, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976076

RESUMO

We characterise a reversible bacterial zinc-containing benzyl alcohol dehydrogenase (BaDH) accepting either NAD+ or NADP+ as a redox cofactor. Remarkably, its redox cofactor specificity is pH-dependent with the phosphorylated cofactors favored at lower and the dephospho-forms at higher pH. BaDH also shows different steady-state kinetic behavior with the two cofactor forms. From a structural model, the pH-dependent shift may affect the charge of a histidine in the 2'-phosphate-binding pocket of the redox cofactor binding site. The enzyme is phylogenetically affiliated to a new subbranch of the Zn-containing alcohol dehydrogenases, which share this conserved residue. BaDH appears to have some specificity for its substrate, but also turns over many substituted benzyl alcohol and benzaldehyde variants, as well as compounds containing a conjugated C=C double bond with the aldehyde carbonyl group. However, compounds with an sp3-hybridised C next to the alcohol/aldehyde group are not or only weakly turned over. The enzyme appears to contain a Zn in its catalytic site and a mixture of Zn and Fe in its structural metal-binding site. Moreover, we demonstrate the use of BaDH in an enzyme cascade reaction with an acid-reducing tungsten enzyme to reduce benzoate to benzyl alcohol. KEY POINTS: •Zn-containing BaDH has activity with either NAD + or NADP+ at different pH optima. •BaDH converts a broad range of substrates. •BaDH is used in a cascade reaction for the reduction of benzoate to benzyl alcohol.


Assuntos
Oxirredutases do Álcool , Álcool Benzílico , Coenzimas , NADP , Oxirredução , Zinco , Concentração de Íons de Hidrogênio , NADP/metabolismo , Especificidade por Substrato , Álcool Benzílico/metabolismo , Álcool Benzílico/química , Cinética , Zinco/metabolismo , Coenzimas/metabolismo , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , NAD/metabolismo , Benzaldeídos/metabolismo , Benzaldeídos/química , Domínio Catalítico , Sítios de Ligação , Filogenia , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA