Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101.452
Filtrar
1.
BMC Bioinformatics ; 25(1): 186, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730374

RESUMO

BACKGROUND: Commonly used next generation sequencing machines typically produce large amounts of short reads of a few hundred base-pairs in length. However, many downstream applications would generally benefit from longer reads. RESULTS: We present CAREx-an algorithm for the generation of pseudo-long reads from paired-end short-read Illumina data based on the concept of repeatedly computing multiple-sequence-alignments to extend a read until its partner is found. Our performance evaluation on both simulated data and real data shows that CAREx is able to connect significantly more read pairs (up to 99 % for simulated data) and to produce more error-free pseudo-long reads than previous approaches. When used prior to assembly it can achieve superior de novo assembly results. Furthermore, the GPU-accelerated version of CAREx exhibits the fastest execution times among all tested tools. CONCLUSION: CAREx is a new MSA-based algorithm and software for producing pseudo-long reads from paired-end short read data. It outperforms other state-of-the-art programs in terms of (i) percentage of connected read pairs, (ii) reduction of error rates of filled gaps, (iii) runtime, and (iv) downstream analysis using de novo assembly. CAREx is open-source software written in C++ (CPU version) and in CUDA/C++ (GPU version). It is licensed under GPLv3 and can be downloaded at ( https://github.com/fkallen/CAREx ).


Assuntos
Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Humanos , Alinhamento de Sequência/métodos
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38695119

RESUMO

Sequence similarity is of paramount importance in biology, as similar sequences tend to have similar function and share common ancestry. Scoring matrices, such as PAM or BLOSUM, play a crucial role in all bioinformatics algorithms for identifying similarities, but have the drawback that they are fixed, independent of context. We propose a new scoring method for amino acid similarity that remedies this weakness, being contextually dependent. It relies on recent advances in deep learning architectures that employ self-supervised learning in order to leverage the power of enormous amounts of unlabelled data to generate contextual embeddings, which are vector representations for words. These ideas have been applied to protein sequences, producing embedding vectors for protein residues. We propose the E-score between two residues as the cosine similarity between their embedding vector representations. Thorough testing on a wide variety of reference multiple sequence alignments indicate that the alignments produced using the new $E$-score method, especially ProtT5-score, are significantly better than those obtained using BLOSUM matrices. The new method proposes to change the way alignments are computed, with far-reaching implications in all areas of textual data that use sequence similarity. The program to compute alignments based on various $E$-scores is available as a web server at e-score.csd.uwo.ca. The source code is freely available for download from github.com/lucian-ilie/E-score.


Assuntos
Algoritmos , Biologia Computacional , Alinhamento de Sequência , Alinhamento de Sequência/métodos , Biologia Computacional/métodos , Software , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Proteínas/química , Proteínas/genética , Aprendizado Profundo , Bases de Dados de Proteínas
5.
Protein Sci ; 33(6): e5011, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747388

RESUMO

A protein sequence encodes its energy landscape-all the accessible conformations, energetics, and dynamics. The evolutionary relationship between sequence and landscape can be probed phylogenetically by compiling a multiple sequence alignment of homologous sequences and generating common ancestors via Ancestral Sequence Reconstruction or a consensus protein containing the most common amino acid at each position. Both ancestral and consensus proteins are often more stable than their extant homologs-questioning the differences between them and suggesting that both approaches serve as general methods to engineer thermostability. We used the Ribonuclease H family to compare these approaches and evaluate how the evolutionary relationship of the input sequences affects the properties of the resulting consensus protein. While the consensus protein derived from our full Ribonuclease H sequence alignment is structured and active, it neither shows properties of a well-folded protein nor has enhanced stability. In contrast, the consensus protein derived from a phylogenetically-restricted set of sequences is significantly more stable and cooperatively folded, suggesting that cooperativity may be encoded by different mechanisms in separate clades and lost when too many diverse clades are combined to generate a consensus protein. To explore this, we compared pairwise covariance scores using a Potts formalism as well as higher-order sequence correlations using singular value decomposition (SVD). We find the SVD coordinates of a stable consensus sequence are close to coordinates of the analogous ancestor sequence and its descendants, whereas the unstable consensus sequences are outliers in SVD space.


Assuntos
Evolução Molecular , Ribonuclease H/química , Ribonuclease H/genética , Ribonuclease H/metabolismo , Sequência Consenso , Alinhamento de Sequência , Filogenia , Sequência de Aminoácidos , Modelos Moleculares , Dobramento de Proteína , Conformação Proteica
6.
Proc Natl Acad Sci U S A ; 121(21): e2400260121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743624

RESUMO

We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to evaluate structural models of a complex based on sequence coevolution and conservation involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing metrics for an interface to those obtained from randomly chosen residues. Since contacting residues are defined by the structural model, this obviates the need to account for indirect interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI can be implemented on a proteome-wide scale and is applied here to millions of structural models of dimeric complexes in the Escherichia coli and human interactomes found in the PrePPI database. PrePPI's scoring function is based primarily on the evaluation of protein-protein interfaces, and ZEPPI adds a new feature to this analysis through the incorporation of evolutionary information. ZEPPI performance is evaluated through applications to experimentally determined complexes and to decoys from the CASP-CAPRI experiment. As we discuss, the standard CAPRI scores used to evaluate docking models are based on model quality and not on the ability to give yes/no answers as to whether two proteins interact. ZEPPI is able to detect weak signals from PPI models that the CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low confidence by the current PrePPI scoring function. A number of examples that illustrate how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.


Assuntos
Proteoma , Proteoma/metabolismo , Humanos , Mapeamento de Interação de Proteínas/métodos , Modelos Moleculares , Escherichia coli/metabolismo , Escherichia coli/genética , Bases de Dados de Proteínas , Ligação Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas/química , Proteínas/metabolismo , Alinhamento de Sequência
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701418

RESUMO

Coverage quantification is required in many sequencing datasets within the field of genomics research. However, most existing tools fail to provide comprehensive statistical results and exhibit limited performance gains from multithreading. Here, we present PanDepth, an ultra-fast and efficient tool for calculating coverage and depth from sequencing alignments. PanDepth outperforms other tools in computation time and memory efficiency for both BAM and CRAM-format alignment files from sequencing data, regardless of read length. It employs chromosome parallel computation and optimized data structures, resulting in ultrafast computation speeds and memory efficiency. It accepts sorted or unsorted BAM and CRAM-format alignment files as well as GTF, GFF and BED-formatted interval files or a specific window size. When provided with a reference genome sequence and the option to enable GC content calculation, PanDepth includes GC content statistics, enhancing the accuracy and reliability of copy number variation analysis. Overall, PanDepth is a powerful tool that accelerates scientific discovery in genomics research.


Assuntos
Genômica , Software , Genômica/métodos , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Composição de Bases , Variações do Número de Cópias de DNA , Biologia Computacional/métodos , Algoritmos , Alinhamento de Sequência/métodos
11.
J Parasitol ; 110(3): 186-194, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700436

RESUMO

Leech specimens of the genus Pontobdella (Hirudinida: Piscicolidae) were found off the coast of the state of Oaxaca (Pacific) as well as in Veracruz and Tabasco (Gulf of Mexico), Mexico. Based on the specimens collected in Oaxaca, a redescription of Pontobdella californiana is provided, with emphasis on the differences in the reproductive organs with the original description of the species. In addition, leech cocoons assigned to P. californiana were found attached to items hauled by gillnets and studied using scanning electron microscopy and molecular approaches. Samples of Pontobdella macrothela were found in both Pacific and Atlantic oceans, representing new geographic records. The phylogenetic position of P. californiana is investigated for the first time, and with the addition of Mexican samples of both species, the phylogenetic relationships within Pontobdella are reinvestigated. Parsimony and maximum-likelihood phylogenetic analysis were based on mitochondrial (cytochrome oxidase subunit I [COI] and 12S rRNA) and nuclear (18S rRNA and 28S rRNA) DNA sequences. Based on our results, we confirm the monophyly of Pontobdella and the pantropical distribution of P. macrothela with a new record in the Tropical Eastern Pacific.


Assuntos
Sanguessugas , Microscopia Eletrônica de Varredura , Filogenia , Animais , Sanguessugas/classificação , Sanguessugas/genética , Sanguessugas/anatomia & histologia , México , Microscopia Eletrônica de Varredura/veterinária , Oceano Pacífico , Oceano Atlântico , DNA Ribossômico/química , RNA Ribossômico 28S/genética , Doenças dos Peixes/parasitologia , Golfo do México/epidemiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ectoparasitoses/parasitologia , Ectoparasitoses/veterinária , RNA Ribossômico 18S/genética , Dados de Sequência Molecular , Alinhamento de Sequência/veterinária , Funções Verossimilhança , Peixes/parasitologia
13.
Comput Biol Med ; 175: 108542, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714048

RESUMO

The genomics landscape has undergone a revolutionary transformation with the emergence of third-generation sequencing technologies. Fueled by the exponential surge in sequencing data, there is an urgent demand for accurate and rapid algorithms to effectively handle this burgeoning influx. Under such circumstances, we developed a parallelized, yet accuracy-lossless algorithm for maximal exact match (MEM) retrieval to strategically address the computational bottleneck of uLTRA, a leading spliced alignment algorithm known for its precision in handling long RNA sequencing (RNA-seq) reads. The design of the algorithm incorporates a multi-threaded strategy, enabling the concurrent processing of multiple reads simultaneously. Additionally, we implemented the serialization of index required for MEM retrieval to facilitate its reuse, resulting in accelerated startup for practical tasks. Extensive experiments demonstrate that our parallel algorithm achieves significant improvements in runtime, speedup, throughput, and memory usage. When applied to the largest human dataset, the algorithm achieves an impressive speedup of 10.78 × , significantly improving throughput on a large scale. Moreover, the integration of the parallel MEM retrieval algorithm into the uLTRA pipeline introduces a dual-layered parallel capability, consistently yielding a speedup of 4.99 × compared to the multi-process and single-threaded execution of uLTRA. The thorough analysis of experimental results underscores the adept utilization of parallel processing capabilities and its advantageous performance in handling large datasets. This study provides a showcase of parallelized strategies for MEM retrieval within the context of spliced alignment algorithm, effectively facilitating the process of RNA-seq data analysis. The code is available at https://github.com/RongxingWong/AcceleratingSplicedAlignment.


Assuntos
Algoritmos , Análise de Sequência de RNA , Humanos , Análise de Sequência de RNA/métodos , Splicing de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Software
14.
Int J Biol Macromol ; 267(Pt 1): 131311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599417

RESUMO

In the rapidly evolving field of computational biology, accurate prediction of protein secondary structures is crucial for understanding protein functions, facilitating drug discovery, and advancing disease diagnostics. In this paper, we propose MFTrans, a deep learning-based multi-feature fusion network aimed at enhancing the precision and efficiency of Protein Secondary Structure Prediction (PSSP). This model employs a Multiple Sequence Alignment (MSA) Transformer in combination with a multi-view deep learning architecture to effectively capture both global and local features of protein sequences. MFTrans integrates diverse features generated by protein sequences, including MSA, sequence information, evolutionary information, and hidden state information, using a multi-feature fusion strategy. The MSA Transformer is utilized to interleave row and column attention across the input MSA, while a Transformer encoder and decoder are introduced to enhance the extracted high-level features. A hybrid network architecture, combining a convolutional neural network with a bidirectional Gated Recurrent Unit (BiGRU) network, is used to further extract high-level features after feature fusion. In independent tests, our experimental results show that MFTrans has superior generalization ability, outperforming other state-of-the-art PSSP models by 3 % on average on public benchmarks including CASP12, CASP13, CASP14, TEST2016, TEST2018, and CB513. Case studies further highlight its advanced performance in predicting mutation sites. MFTrans contributes significantly to the protein science field, opening new avenues for drug discovery, disease diagnosis, and protein.


Assuntos
Biologia Computacional , Estrutura Secundária de Proteína , Proteínas , Proteínas/química , Biologia Computacional/métodos , Aprendizado Profundo , Redes Neurais de Computação , Algoritmos , Alinhamento de Sequência , Análise de Sequência de Proteína/métodos
15.
17.
J Proteome Res ; 23(5): 1593-1602, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38626392

RESUMO

With the rapid expansion of sequencing of genomes, the functional annotation of proteins becomes a bottleneck in understanding proteomes. The Chromosome-centric Human Proteome Project (C-HPP) aims to identify all proteins encoded by the human genome and find functional annotations for them. However, until now there are still 1137 identified human proteins without functional annotation, called uPE1 proteins. Sequence alignment was insufficient to predict their functions, and the crystal structures of most proteins were unavailable. In this study, we demonstrated a new functional annotation strategy, AlphaFun, based on structural alignment using deep-learning-predicted protein structures. Using this strategy, we functionally annotated 99% of the human proteome, including the uPE1 proteins and missing proteins, which have not been identified yet. The accuracy of the functional annotations was validated using the known-function proteins. The uPE1 proteins shared similar functions to the known-function PE1 proteins and tend to express only in very limited tissues. They are evolutionally young genes and thus should conduct functions only in specific tissues and conditions, limiting their occurrence in commonly studied biological models. Such functional annotations provide hints for functional investigations on the uPE1 proteins. This proteome-wide-scale functional annotation strategy is also applicable to any other species.


Assuntos
Anotação de Sequência Molecular , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteoma/análise , Proteoma/química , Aprendizado Profundo , Alinhamento de Sequência , Genoma Humano , Proteômica/métodos , Bases de Dados de Proteínas
18.
Nature ; 629(8010): 136-145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570684

RESUMO

Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.


Assuntos
Centrômero , Evolução Molecular , Variação Genética , Animais , Humanos , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Metilação de DNA/genética , DNA Satélite/genética , Cinetocoros/metabolismo , Macaca/genética , Pan troglodytes/genética , Polimorfismo de Nucleotídeo Único/genética , Pongo/genética , Masculino , Feminino , Padrões de Referência , Imunoprecipitação da Cromatina , Haplótipos , Mutação , Amplificação de Genes , Alinhamento de Sequência , Cromatina/genética , Cromatina/metabolismo , Especificidade da Espécie
19.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38608190

RESUMO

MOTIVATION: Deep-learning models are transforming biological research, including many bioinformatics and comparative genomics algorithms, such as sequence alignments, phylogenetic tree inference, and automatic classification of protein functions. Among these deep-learning algorithms, models for processing natural languages, developed in the natural language processing (NLP) community, were recently applied to biological sequences. However, biological sequences are different from natural languages, such as English, and French, in which segmentation of the text to separate words is relatively straightforward. Moreover, biological sequences are characterized by extremely long sentences, which hamper their processing by current machine-learning models, notably the transformer architecture. In NLP, one of the first processing steps is to transform the raw text to a list of tokens. Deep-learning applications to biological sequence data mostly segment proteins and DNA to single characters. In this work, we study the effect of alternative tokenization algorithms on eight different tasks in biology, from predicting the function of proteins and their stability, through nucleotide sequence alignment, to classifying proteins to specific families. RESULTS: We demonstrate that applying alternative tokenization algorithms can increase accuracy and at the same time, substantially reduce the input length compared to the trivial tokenizer in which each character is a token. Furthermore, applying these tokenization algorithms allows interpreting trained models, taking into account dependencies among positions. Finally, we trained these tokenizers on a large dataset of protein sequences containing more than 400 billion amino acids, which resulted in over a 3-fold decrease in the number of tokens. We then tested these tokenizers trained on large-scale data on the above specific tasks and showed that for some tasks it is highly beneficial to train database-specific tokenizers. Our study suggests that tokenizers are likely to be a critical component in future deep-network analysis of biological sequence data. AVAILABILITY AND IMPLEMENTATION: Code, data, and trained tokenizers are available on https://github.com/technion-cs-nlp/BiologicalTokenizers.


Assuntos
Algoritmos , Biologia Computacional , Aprendizado Profundo , Processamento de Linguagem Natural , Biologia Computacional/métodos , Proteínas/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos
20.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38597887

RESUMO

MOTIVATION: Discovering disease causative pathogens, particularly viruses without reference genomes, poses a technical challenge as they are often unidentifiable through sequence alignment. Machine learning prediction of patient high-throughput sequences unmappable to human and pathogen genomes may reveal sequences originating from uncharacterized viruses. Currently, there is a lack of software specifically designed for accurately predicting such viral sequences in human data. RESULTS: We developed a fast XGBoost method and software VirusPredictor leveraging an in-house viral genome database. Our two-step XGBoost models first classify each query sequence into one of three groups: infectious virus, endogenous retrovirus (ERV) or non-ERV human. The prediction accuracies increased as the sequences became longer, i.e. 0.76, 0.93, and 0.98 for 150-350 (Illumina short reads), 850-950 (Sanger sequencing data), and 2000-5000 bp sequences, respectively. Then, sequences predicted to be from infectious viruses are further classified into one of six virus taxonomic subgroups, and the accuracies increased from 0.92 to >0.98 when query sequences increased from 150-350 to >850 bp. The results suggest that Illumina short reads should be de novo assembled into contigs (e.g. ∼1000 bp or longer) before prediction whenever possible. We applied VirusPredictor to multiple real genomic and metagenomic datasets and obtained high accuracies. VirusPredictor, a user-friendly open-source Python software, is useful for predicting the origins of patients' unmappable sequences. This study is the first to classify ERVs in infectious viral sequence prediction. This is also the first study combining virus sub-group predictions. AVAILABILITY AND IMPLEMENTATION: www.dllab.org/software/VirusPredictor.html.


Assuntos
Genoma Viral , Software , Humanos , Vírus/genética , Análise de Sequência de DNA/métodos , Alinhamento de Sequência/métodos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...