Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.458
Filtrar
1.
PLoS One ; 19(6): e0303964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843222

RESUMO

A Pickering emulsion was synergistically stabilised with zein nanoparticles (ZNPs) and starch nanocrystals (SNCs) to prepare it for menthol loading. After response surface optimisation of the emulsion preparation conditions, a Pickering emulsion prepared with a ZNPs:SNCs ratio of 1:1, a particle concentration of 2 wt% and a water:oil ratio of 1:1 provided the highest menthol encapsulation rate of the emulsions tested (83%) with good storage stability within 30 days. We examined the bilayer interface structure of the emulsion by optical microscopy, scanning electron microscopy, and confocal laser scanning microscopy. The results of simulated digestion experiments showed that the release rate of free fatty acid was 75.06 ± 1.23%, which ensured bioavailability. At the same time, the emulsions facilitated the slow release of menthol. Bacteriostatic studies revealed that the Pickering emulsion had a protective effect on menthol, with the most significant inhibitory effects on Escherichia coli and Staphylococcus aureus under the same conditions. Overall, this study proposes a novel approach for the application and development of l-menthol by combining it with Pickering emulsion.


Assuntos
Emulsões , Escherichia coli , Mentol , Nanopartículas , Staphylococcus aureus , Amido , Zeína , Mentol/química , Mentol/farmacologia , Emulsões/química , Nanopartículas/química , Zeína/química , Amido/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Tamanho da Partícula
2.
Carbohydr Polym ; 340: 122273, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858001

RESUMO

During home cooking or industrial food processing operations, starch granules usually undergo a process known as gelatinization. The starch gelatinization degree (DG) influences the structural organization and properties of starch, which in turn alters the physicochemical, organoleptic, and gastrointestinal properties of starchy foods. This review summarizes methods for measuring DG, as well as the impact of DG on the starch structure, properties, and applications. Enzymatic digestion, iodine colorimetry, and differential scanning calorimetry are the most common methods for evaluating the DG. As the DG increases, the structural organization of the molecules within starch granules is progressively disrupted, the particle size of the granules is altered due to swelling and then disruption, the crystallinity is decreased, the molecular weight is reduced, and the starch-lipid complexes are formed. The impact of DG on the starch structure and properties depends on the processing method, operating conditions, and starch source. The starch DG affects the quality of many foods, including baked goods, fried foods, alcoholic beverages, emulsified foods, and edible inks. Thus, a better understanding of the changes in starch structure and function caused by gelatinization could facilitate the development of foods with novel or improved properties.


Assuntos
Amido , Amido/química , Varredura Diferencial de Calorimetria , Tamanho da Partícula , Manipulação de Alimentos/métodos , Peso Molecular
3.
Carbohydr Polym ; 340: 122217, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38857997

RESUMO

Iodine (I2) as a broad-spectrum antiseptic has been widely used for treating bacterial infections. However, I2 has low water-solubility and sublimes under ambient conditions, which limits its practical antibacterial applications. The highly specific and sensitive reaction between I2 and starch discovered 200 years ago has been extensively applied in analytical chemistry, but the antibacterial activity of the I2-starch complex is rarely investigated. Herein, we develop a novel type of iodine-based antiseptics, iodine-soluble starch (I2-SS) cryogel, which can dissolve in water instantly and almost completely kill bacteria in 10 min at 2 µg/mL of I2. Although KI3 and the commercially available povidone­iodine (I2-PVP) solutions show similar antibacterial efficacy, the high affinity of I2 to SS largely enhances the shelf stability of the I2-SS solution with ∼73 % I2 left after one-week storage at room temperature. In sharp contrast, ∼8.5 % and âˆ¼2.5 % I2 are detected in KI3 and I2-PVP solutions, respectively. Mechanistic study reveals that the potent antibacterial effect of I2-SS originates from its attack on multiple bacterial targets. The outstanding antibacterial activity, capability of accelerating wound healing, and good biocompatibility of I2-SS are verified through further in vivo experiments. This work may promote the development of next-generation iodine-based antiseptics for clinical use.


Assuntos
Antibacterianos , Anti-Infecciosos Locais , Criogéis , Iodo , Solubilidade , Amido , Água , Iodo/química , Iodo/farmacologia , Amido/química , Amido/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/química , Água/química , Criogéis/química , Animais , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Povidona-Iodo/química , Povidona-Iodo/farmacologia , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
4.
Carbohydr Polym ; 340: 122249, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858018

RESUMO

The recently characterized Limosilactobacillus reuteri N1 GtfB (LrN1 GtfB) from glycoside hydrolase family 70 is a novel 4,6-α-glucanotransferase acting on starch/maltooligosaccharides with high enzyme activity and soluble protein yield (in heterogenous system). In this study, the influence of the treatment by LrN1 GtfB on the fine structure and functional characteristics of three maize starches were furtherly investigated and elucidated. Due to the treatment of LrN1 GtfB, the starch molecules were transformed into reuterans containing linear and branched (α1 â†’ 6) linkages with notably smaller molecular weight and shorter chain length. Moreover, the (α1 â†’ 6) linkage ratios in the GtfB-modified high-amylose maize starch (GHMS)/normal maize starch (GNMS)/waxy maize starch (GWMS) increased by 18.3 %/12.6 %/9.0 % as compared to their corresponding controls. In vitro digestibility experiment revealed that the resistant starch content of GHMS, GNMS and GWMS increased by 16 %, 18 % and 25 % as compared to the starch substrates. Furthermore, the butyric acid yielded from GHMS, GNMS and GWMS in the in vitro fermentation experiments were 1.4, 1.5 and 1.4 times higher than those of commercial galactose oligosaccharides. These results indicated that the highly-branched short-clustered reuteran synthesized by LrN1 GtfB might serve as novel potential prebiotics, and provide insights for the synthesis of promising prebiotic dietary fiber from starch.


Assuntos
Limosilactobacillus reuteri , Prebióticos , Amido , Zea mays , Zea mays/química , Amido/química , Amido/metabolismo , Oligossacarídeos/química
5.
Carbohydr Polym ; 340: 122319, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858013

RESUMO

The survival rate of mesenchymal stem cells (MSC), a crucial factor in tissue engineering, is highly dependent on glucose supply. The purpose of this paper is to study the potential of starch foams as glucose suppliers. It is investigated through in vitro hydrolysis by amyloglucosidase in conditions that respect physiological constraints (37 °C and pH 7.4), including a duration of 21 days, and no stirring. Nine extruded starch foams with amylose contents ranging from 0 to 74 %, with various cell wall thicknesses (50 to 300 µm), and different crystallinities (0-30 %) were hydrolysed. These kinetics were fitted by a model which shows that the maximum rate of hydrolysis varies from 7 to 100 %, and which allows the rate of hydrolysis at 21 days to be calculated precisely. The results reveal the major role of amylose in glucose delivery kinetics, and the secondary roles of crystallinity and cell wall thickness of the foams. Additional hydrolysis of starch films revealed that thickness positively influences the amylose chain reorganisation during hydrolysis, which, in slows down and limits glucose delivery. A simple glucose delivery kinetics analysis procedure is proposed to select samples for testing as MSC glucose suppliers.


Assuntos
Amilose , Materiais Biocompatíveis , Glucose , Células-Tronco Mesenquimais , Amido , Hidrólise , Glucose/química , Amido/química , Materiais Biocompatíveis/química , Amilose/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Cinética , Glucana 1,4-alfa-Glucosidase/metabolismo , Glucana 1,4-alfa-Glucosidase/química
6.
Carbohydr Polym ; 340: 122303, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858024

RESUMO

The objective of this work was to study the effects of heat-moisture treatment (HMT) of freshly harvested mature high-amylose maize (HAM) kernels on its starch structure, properties, and digestibility. Freshly harvested HAM kernels were sealed in Pyrex glass bottles and treated at 80 °C, 100 °C, or 120 °C. HMT of HAM kernels had no impact on its starch X-ray diffraction pattern but increased the relative crystallinity. This result together with the increased starch gelatinization temperatures and enthalpy change indicated starch molecules reorganization forming long-chain double-helical crystalline structure during HMT of HAM kernels. The aggregation of starch granules were observed after HMT, indicating interaction of starch granules and other components. This interaction and the high-temperature crystalline structure led to reductions in the starch digestibility, swelling power, solubility, and pasting viscosity of the HAM flours. Some starch granules remained intact and showed strong birefringence after the HAM flours were precooked at 100 °C for 20 min and followed by enzymatic hydrolysis, and the amount of undigested starch granules increased with increasing HMT temperatures. This result further supported that HMT of HAM kernels with high moisture level could increase the starch thermal stability and enzymatic resistance.


Assuntos
Amilose , Temperatura Alta , Amido , Zea mays , Zea mays/química , Amilose/química , Amido/química , Hidrólise , Viscosidade , Solubilidade , Água/química , Difração de Raios X , Farinha/análise
7.
Int J Biol Macromol ; 272(Pt 1): 132779, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825268

RESUMO

The effects of high-resistant starch (RS) content rice flour, psyllium husk powder (PHP), and psyllium powder (PP) on the edible quality and starch digestibility of rice noodles were investigated in this study. High-RS rice noodles showed lower digestibility but poor edible quality. With the addition of PHP and PP, high-RS rice noodles' cooking and texture quality were improved significantly, especially the breakage rates, cooking losses, and chewiness (P < 0.05). Compared to traditional white rice noodle's estimated glycemic index (eGI) of 86.69, the eGI values for 5PHP-RN and 5PHP-2PP-RN were significantly decreased to 66.74 and 65.77, achieving a medium GI status (P < 0.05). This resulted from the high amylose and lipid content in the modified rice flour and psyllium, leading to increase of starch crystallinity. Besides, based on the analysis of Pearson's correlation, it can be found that PHP rich in insoluble dietary fiber (IDF) could improve high-RS noodle cooking and texture quality better, while PP rich in soluble dietary fiber (SDF) can further reduce the RDS content and its starch digestibility. Therefore, utilizing modified rice flour with an appropriate addition of PHP and PP can be considered an effective strategy for producing superior-quality lower glycemic index rice noodles.


Assuntos
Fibras na Dieta , Farinha , Oryza , Psyllium , Amido , Oryza/química , Psyllium/química , Farinha/análise , Amido/química , Fibras na Dieta/análise , Índice Glicêmico , Culinária/métodos , Amilose/análise , Amilose/química , Amido Resistente/análise
8.
Int J Biol Macromol ; 272(Pt 1): 132738, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825269

RESUMO

Piperine (PIP) has been known for its pharmacological activities with low water solubility and poor dissolution, which limits its nutritional application. The purpose of this research was to enhance PIP stability, dispersibility and biological activity by preparing PIP nanoparticles using the wet-media milling approach combined with nanosuspension solidification methods of spray/freeze drying. Octenyl succinic anhydride (OSA)-modified waxy maize starch was applied as the stabilizer to suppress aggregation of PIP nanoparticles. The particle size, redispersibility, storage stability and in vitro release behavior of PIP nanoparticles were measured. The regulating effect on adipocyte differentiation was evaluated using 3T3-L1 cell model. Results showed that PIP nanoparticles had a reduced particle size of 60 ± 1 nm, increased release rate in the simulated gastric (SGF) and intestinal fluids (SIF) and enhanced inhibition effect on adipogenesis in 3T3-L1 cells compared with free PIP, indicating that PIP-loaded nanoparticles with improved stability and anti-adipogenic property were developed successfully by combining wet-media milling and drying methods.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Alcaloides , Benzodioxóis , Nanopartículas , Piperidinas , Alcamidas Poli-Insaturadas , Amido , Animais , Camundongos , Nanopartículas/química , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Benzodioxóis/farmacologia , Benzodioxóis/química , Piperidinas/farmacologia , Piperidinas/química , Adipogenia/efeitos dos fármacos , Alcaloides/química , Alcaloides/farmacologia , Adipócitos/efeitos dos fármacos , Amido/química , Amido/análogos & derivados , Tamanho da Partícula , Liberação Controlada de Fármacos , Diferenciação Celular/efeitos dos fármacos
9.
Pharmacol Res ; 205: 107232, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825157

RESUMO

Type 3 resistant starch from Canna edulis (Ce-RS3) is an insoluble dietary fiber which could improve blood lipids in animals, but clinically robust evidence is still lacking. We performed a double-blind randomized controlled trial to assess the effects of Ce-RS3 on lipids in mild hyperlipidemia. One hundred and fifteen patients were included followed the recruitment criteria, and were randomly allocated to receive Ce-RS3 or placebo (native starch from Canna edulis) for 12 weeks (20 g/day). In addition to serum lipids, complete blood counts, serum inflammatory factors, antioxidant indexes, and dietary survey, 16 S rRNA sequencing technique was utilized to analyze the gut microbiota alterations. Targeted quantitative metabolomics (TQM) was used to detect metabolite changes. Compared with the placebo, Ce- RS3 significantly decreased levels of total cholesterol, lowdensity lipoprotein cholesterol, and non-high-density lipoprotein cholesterol, and increased the glutathione peroxidase. Based on the 16 S rRNA sequencing, TQM, the correlation analysis, as well as the Kyoto Encyclopedia of Genes (KEGG) and Genomes and Human Metabolome Database (HMDB) analysis, we found that Ce-RS3 could increase the abundances of genera Faecalibacterium and Agathobacter, while reduce the abundances of genera norank_f_Ruminococcaceae and Christensenellaceae_R-7_ group to regulate phenylalanine metabolism, which could reduce the fatty acid biosynthesis and fatty acid elongation in the mitochondria to lower blood lipids. Conclusively, we firstly confirmed the feasibility of Ce-RS3 for clinical application, which presents a novel, effective therapy for the mild hyperlipidemia. (Chictr. org. cn. Clinical study on anti-mild hyperlipidemia of Canna edulis RS3 resistant starch, ID Number: ChiCTR2200062871).


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Método Duplo-Cego , Masculino , Pessoa de Meia-Idade , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/sangue , Hiperlipidemias/microbiologia , Feminino , Adulto , Lipídeos/sangue , Amido Resistente , Amido , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacologia , Idoso
10.
Food Res Int ; 189: 114533, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876603

RESUMO

Glutinous rice is extensively consumed due to its nutritious content and wonderful flavor. However, glutinous rice flour has a high glycemic index, and the storage deterioration of sweet dumplingsissevere. Transglutaminase (TG) was used to cross-link glutinous rice protein and improve the characteristics of glutinous rice products. The findings demonstrated that TG significantly catalysed protein cross-linking to form a dense protein network, reduced the viscosity of glutinous rice paste and improved the thermal stability. The protein network may physically block the access of starch granules to digestive enzymes to lower the digestion rate of starch, and attenuate the damage of ice crystal molecules to the starch structure to improve the freezing stability of starch gels. The cracking rate and water loss of sweet dumplings prepared using glutinous rice flour with TG treated for 60 min reduced significantly. In conclusion, this study broadened the application of TG in starch products.


Assuntos
Digestão , Farinha , Manipulação de Alimentos , Oryza , Amido , Transglutaminases , Oryza/química , Transglutaminases/metabolismo , Amido/metabolismo , Amido/química , Farinha/análise , Manipulação de Alimentos/métodos , Viscosidade , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química
11.
Clin Nutr ESPEN ; 62: 1-9, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901928

RESUMO

BACKGROUND & AIMS: Resistant starch (RS) is a prebiotic fiber that has been scientifically shown to control the development of obesity. Prebiotic role of RS has also seen to be very important as it helps gut bacteria to regulate fermentation and fatty acid production. This study aimed to check the different levels of RS on glycemic index, oxidative stress and mineral absorption rate in healthy rat models. To evaluate these objectives, the trial was conducted for 40 days of follow up; 10 days were the adjustment period and the collection period over 30 days. METHODS: Thirty-six healthy female Wistar rats were divided into 4 groups of (9 animals each) NC (Normal Control: without resistant starch), RS0.20 (resistant starch: 0.20 g/kg body weight), RS0.30 (resistant starch: 0.30 g/kg body weight), RS0.40 (resistant starch: 0.40 g/kg body weight). All the diets were isocaloric and isonitroginous. RESULTS: The impact of different levels of RS on the dry-matter intake (DMI) presented statistically significant results (p ≤ 0.05): DMI was reduced in RS (0.02) fed rats as compared to NC rats in first 3 weeks; and after 4th and 5th weeks, there was a DMI reduction of 28% in RS (0.04) fed rats. Moreover, there was no significant increase in the nutrient intake in all RS diets. The dry-matter (DM) digestibility was statistically significantly (P ≤ 0·05), which increased in all rats fed with different level of RS. The weight loss showed statistically significant results: RS (0.04) exhibited 19 g reduction in weight as compared with NC rats. Significant increase was observed in total oxidant status (TOS), in all the RS fed rats when compared with NC rats. The levels of Mg, Ca, Fe and Zn were shown to be decrease in feces analysis, which proves their better absorbance in gut. Statistically significant increase was observed in antioxidant capacity, whereas significant decrease was observed in the total weight of the animals, showing the role of RS in controlling obesity. CONCLUSIONS: Overall, significant results were found in all dosage level of RS but long term administration of the higher dosage level (RS0.40) may need to be studied for enhanced results. RS can help improve insulin sensitivity in overweight adults.


Assuntos
Índice Glicêmico , Estresse Oxidativo , Ratos Wistar , Amido , Animais , Feminino , Ratos , Minerais/metabolismo , Fibras na Dieta , Amido Resistente , Prebióticos , Absorção Intestinal , Dieta
12.
J Environ Manage ; 364: 121323, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889645

RESUMO

Herein, the novel double Z-scheme Ag-Ag3O4/CuO-CuFe2O4 magnetic nanophotocatalyst with nanosphere-on-nanosheet-like morphology was synthesized via the corona-plasma-assisted starch-templated microwave-combustion-precipitation method to remove the dye pollutants. The CuO-CuFe2O4 meso/macroporous nanophotocatalyst was synthesized using a one-pot-stage combustion-microwave process with/without starch as a hard-template. Subsequently, surface modification was carried out by DC corona-plasma discharge technology at various voltages, namely 500, 1000 and 1500 V. Then, the Ag3O4 photocatalyst was deposited on the CuO-CuFe2O4 fabricated with starch-hard-template and treated with 1000 V corona-plasma (denoted as: Ag-Ag3O4/CuO-CuFe2O4 (Starch) 1000 P). The properties of the synthesized nanophotocatalysts were analyzed using various techniques, including X-ray diffraction (XRD), Diffuse reflectance spectroscopy (DRS), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller and Barrett-Joyner-Halenda (BET-BJH), Vibrating Sample Manetometer (VSM), and Photoluminescence (PL). The XRD analysis corroborated the presence of CuO, CuFe2O4 and Ag3O4 in the structure of all samples. The BET-BJH analysis indicates that the specific surface area of the Ag-Ag3O4/CuO-CuFe2O4 (Starch) 1000 P nanophotocatalyst as the best sample is 2 m2/g, higher than other samples. Additionally, the DRS analysis revealed that the band gap of the Ag-Ag3O4/CuO-CuFe2O4 (Starch) 1000 P nanophotocatalyst is about 1.68 eV with the surface plasmon resonance. The performance of the ternary heterostructured Ag-Ag3O4/CuO-CuFe2O4 (Starch) 1000 P nanophotocatalyst was 96.2% and 89.1% in the degradation of the crystal violet (10 mg/L) and acid orange 7 (10 mg/L), respectively, proving its outstanding degradation capacity.


Assuntos
Corantes , Micro-Ondas , Amido , Corantes/química , Catálise , Amido/química , Prata/química , Cobre/química , Difração de Raios X , Gases em Plasma/química
13.
Carbohydr Polym ; 339: 122264, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823928

RESUMO

Normal rice starch consists of amylopectin and amylose, whose relative amounts and chain-length distributions (CLDs) are major determinants of the digestibility and rheology of cooked rice, and are related to metabolic health and consumer preference. Here, the mechanism of how molecular structural features of pure amylopectin (waxy) starches affect starch properties was explored. Following debranching, chain-length distributions of seven waxy varieties were measured using size-exclusion chromatography, and parameterized using biosynthesis-based models, which involve breaking up the chain-length distribution into contributions from five enzyme sets covering overlapping ranges of chain length; structure-property correlations involving the fifth set were found to be statistically significant. Digestibility was measured in vitro, and parameters for the slower and longer digestion phase quantified using non-linear least-squares fitting. The coefficient for the significant correlation involving amylopectin fine structure for the fifth set was -0.903, while the amounts of amylopectin short and long chains were found to dominate breakdown viscosity (correlation coefficients 0.801 and - 0.911, respectively). This provides a methodology for finding or developing healthier starch in terms of lower digestion rate, while also having acceptable palatability. As rice breeders can to some extent control CLDs, this can help the development of waxy rices with improved properties.


Assuntos
Amilopectina , Amilose , Oryza , Oryza/química , Amilopectina/química , Viscosidade , Amilose/química , Amilose/análise , Amido/química , Digestão , Reologia
14.
BMC Plant Biol ; 24(1): 490, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825718

RESUMO

The aim of the experiment was to evaluate the potential of promising summer maize genotypes and optimal stage of harvesting these genotypes for ensiling in terms of dry matter (DM), starch, and crude protein (CP) yields, silage fermentation quality, nutrients profile, total digestible nutrients, metabolizable energy (ME) content, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate (CHO) subfractions composition, in vitro DM digestibility (DMD) and in situ starch degradation characteristics. Six maize genotypes were chosen for the study: DK9108 from Monsanto, P30Y87, P3939 from Pioneer, QPM-300 (quality protein maize) and W94 from the International Maize and Wheat Improvement Center (CIMMYT), and a local cultivar, Afgoii, from the Cereal Research Institute (Persabaq, KP). A total of 72 plots (8 m × 10 m) were blocked in three replicate fields, and within each field, each genotype was sown in four replicate plots according to a randomized complete block design. For the data analysis, the Proc-Mixed procedure of Statistical Analysis System with repeated measure analysis of variance was used. The DM yield was strongly influenced (P < 0.001) by maize genotypes, varying from 12.6 to 17.0 tons/ha. Except for total CHO and ammonia nitrogen (NH3-N), the contents of all measured chemical components varied (P < 0.001) among the genotypes. Further comparison revealed that, genotype P3939 had a higher (P < 0.05) content of CP (7.27 vs. 6.92%), starch (36.7 vs. 27.9%), DMD (65.4 vs. 60.0%), ME (2.51 vs. 2.30 Mcal/kg) and lactic acid (5.32 vs. 4.83%) and lowest content of NDF (37.3 vs. 43.1%), pH (3.7 vs. 4.10) compared to the local cultivar (Afgoii). Advancement of post-flowering maturity from 25 to 35% DM (23 to 41 days after flowering (DAF)) increased (P < 0.05) the DM yield (10.4 to 17.8 tons/ha), starch content (29.1 to 35.0%), DMD (65.3 to 67.3%) and ME (2.34 to 2.47 Mcal/kg), and decreased (P < 0.001) the contents of CP (7.42-6.73%), NDF (48.8-38.5%), pH (4.10 to 3.60), NH3-N (8.93-7.80%N) and effective degradability of starch (95.4 to 89.4). Results showed that for higher yields and silage nutritional and fermentation quality, maize crops should be harvested at whole crop DM content of 30-35% (34 to 41 DAF). It was further concluded that genotype P3939 is the most suitable summer maize genotype for silage production in terms of yields and silage nutritional and fermentation quality under the hot environmental conditions of the tropics.


Assuntos
Silagem , Zea mays , Zea mays/genética , Genótipo , Clima Tropical , Fermentação , Amido , Carboidratos , Proteínas de Plantas , Paquistão , Agricultura
15.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849759

RESUMO

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Assuntos
Luz , Phaseolus , Phaseolus/fisiologia , Phaseolus/metabolismo , Phaseolus/enzimologia , Fosforilação , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Temperatura Baixa , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Via de Pentose Fosfato/fisiologia , Ativação Enzimática , Fotossíntese/fisiologia , Estresse Fisiológico , Proteínas Serina-Treonina Quinases/metabolismo
16.
Sci Rep ; 14(1): 12682, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830978

RESUMO

In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), ß-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 µmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with ß-glucosidase for 24 h.


Assuntos
Anoxybacillus , Detergentes , Soro do Leite , alfa-Amilases , alfa-Amilases/metabolismo , alfa-Amilases/química , Soro do Leite/metabolismo , Soro do Leite/química , Anoxybacillus/enzimologia , Anoxybacillus/genética , Detergentes/química , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Amido/metabolismo , Amido/química , Temperatura
17.
Food Res Int ; 189: 114563, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876595

RESUMO

The digestibility of ungelatinized, short-term retrograded and long-term retrograded starch from foxtail millet was investigated and correlated with starch chain length distributions (CLDs). Some variations in starch CLDs of different varieties were obtained. Huangjingu and Zhonggu 9 had higher average chain lengths of debranched starch and lower average chain length ratios of amylopectin and amylose than Dajinmiao and Jigu 168. Compared to ungelatinized starch, retrogradation significantly increased the estimated glycemic index (eGI), whereas significantly decreased the resistant starch (RS). In contrast, long-term retrograded starches have lower eGI (93.33-97.37) and higher RS (8.04-14.55%) than short-term retrograded starch. PCA and correlation analysis showed that amylopectin with higher amounts of long chains and longer long chains contributed to reduced digestibility in ungelatinized starch. Both amylose and amylopectin CLDs were important for the digestibility of retrograded starch. This study helps a better understanding of the interaction of starch CLDs and digestibility during retrogradation.


Assuntos
Amilopectina , Amilose , Digestão , Setaria (Planta) , Amido , Setaria (Planta)/química , Setaria (Planta)/metabolismo , Amido/química , Amido/metabolismo , Amilopectina/química , Amilose/química , Índice Glicêmico
18.
Food Res Int ; 189: 114561, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876594

RESUMO

The aim of this study was to investigate the effects of Premna microphylla turcz polysaccharide (PMP) on the rheological, gelling, and structural properties of mung bean starch (MBS) and their potential interaction mechanism. Results showed that the addition of PMP significantly improved the pasting properties, rheological properties, water holding capacity, and thermostability of MBS. The texture tests showed a decrease in hardness, gumminess and chewiness, indicating the retrogradation of MBS was inhibited. Scanning electron microscopy (SEM) suggested the MBS-PMP composite gels expressed a denser microstructure with obvious folds and tears. Moreover, the results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and interaction force tests revealed the main forces between MBS and PMP were hydrogen bonds and hydrophobic interactions to form composite gels with great gelling properties. These results facilitate the practical application of MBS and PMP, and provide some references for understanding the interaction mechanism between starch and polysaccharide.


Assuntos
Géis , Polissacarídeos , Reologia , Amido , Vigna , Amido/química , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vigna/química , Difração de Raios X , Microscopia Eletrônica de Varredura , Interações Hidrofóbicas e Hidrofílicas , Água/química , Ligação de Hidrogênio
19.
Food Res Int ; 189: 114572, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876610

RESUMO

One approach to controlling type 2 diabetes (T2D) is to lower postprandialglucose spikesby slowing down the digestion of carbohydrates and the absorption of glucose in the small intestine. The consumption of walnuts is associated with a reduced risk of chronic diseases such as T2D, suggested to be partly due to the high content of (poly)phenols. This study evaluated, for the first time, the inhibitory effect of a (poly)phenol-rich walnut extract on human carbohydrate digesting enzymes (salivary and pancreatic α-amylases, brush border sucrase-isomaltase) and on glucose transport across fully differentiated human intestinal Caco-2/TC7 monolayers. The walnut extract was rich in multiple (poly)phenols (70 % w/w) as analysed by Folin-Ciocalteau and by LCMS. It exhibited potent inhibition of both human salivary (IC50: 32.2 ± 2.5 µg walnut (poly)phenols (WP)/mL) and pancreatic (IC50: 56.7 ± 1.7 µg WP/mL) α-amylases, with weaker effects on human sucrase (IC50: 990 ± 20 µg WP/mL), maltase (IC50: 1300 ± 80 µg WP/mL), and isomaltase (IC25: 830 ± 60 µg WP/mL) activities. Selected individual walnut (poly)phenols inhibited human salivary α-amylase in the order: 1,3,4,6-tetragalloylglucose > ellagic acid pentoside > 1,2,6-tri-O-galloyl-ß-D-glucopyranose, with no inhibition by ellagic acid, gallic acid and 4-O-methylgallic acid. The (poly)phenol-rich walnut extract also attenuated (up to 59 %) the transfer of 2-deoxy-D-glucose across differentiated Caco-2/TC7 cell monolayers. This is the first report on the effect of (poly)phenol-rich extracts from any commonly-consumed nut kernel on any human starch-digesting enzyme, and suggests a mechanism through which walnut consumption may lower postprandial glucose spikes and contribute to their proposed health benefits.


Assuntos
Glucose , Juglans , Extratos Vegetais , Polifenóis , Humanos , Polifenóis/farmacologia , Juglans/química , Células CACO-2 , Glucose/metabolismo , Extratos Vegetais/farmacologia , Digestão/efeitos dos fármacos , Nozes/química , Amido/metabolismo , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Transporte Biológico , Complexo Sacarase-Isomaltase/metabolismo
20.
Carbohydr Polym ; 341: 122321, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876723

RESUMO

Starch-based biofilms are biodegradable, but their application is limited by lower mechanical strength and absence of antimicrobial properties. In this context, the present study attempted to unleash the potential of nanotechnology for synthesizing nano-starch (NS) and tannic acid-coated nano-starch (T-NS) for augmenting the tensile strength and antimicrobial properties of starch-based biofilms. Moreover, this study reports one of the first such attempts to improve the commercial viability of starch extracted from the corms of Amorphophallus paeoniifolius. In this study, NS and T-NS samples were first synthesized by the physical and chemical modification of the native starch (S) molecules. The NS and T-NS samples showed significantly smaller granule size, lower moisture content, and swelling power. Further, amendments with NS and T-NS samples (25 % and 50 %) to the native starch molecules were performed to obtain biofilm samples. The NSB (NS amended) and T-NSB (T-NS amended) biofilms showed comparatively higher tensile strength than SB films (100 % starch-based). The T-NSB showed greater antimicrobial activity against gram-positive and gram-negative bacteria. All the biofilms showed almost complete biodegradation in soil (in 10 days). Therefore, it can be concluded that additives like NS and T-NS can improve starch-based biofilms' mechanical strength and antimicrobial properties with considerable biodegradability.


Assuntos
Antibacterianos , Biofilmes , Amido , Taninos , Resistência à Tração , Amido/química , Taninos/química , Taninos/farmacologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Nanopartículas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...