Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 588
Filtrar
1.
Hematology ; 29(1): 2343163, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38655690

RESUMO

BACKGROUND: Congenital dyserythropoietic anemia Ⅱ (CDA Ⅱ) is a rare inherited disorder of defective erythropoiesis caused by SEC23B gene mutation. CDA Ⅱ is often misdiagnosed as a more common type of clinically related anemia, or it remains undiagnosed due to phenotypic variability caused by the coexistence of inherited liver diseases, including Gilbert's syndrome (GS) and hereditary hemochromatosis. METHODS: We describe the case of a boy with genetically undetermined severe hemolytic anemia, hepatosplenomegaly, and gallstones whose diagnosis was achieved by targeted next generation sequencing. RESULTS: Molecular analysis revealed a maternally inherited novel intronic variant and a paternally inherited missense variant, c.[994-3C > T];[1831C > T] in the SEC23B gene, confirming diagnosis of CDA Ⅱ. cDNA analysis verified that the splice acceptor site variant results in two mutant transcripts, one with an exon 9 skip and one in which exons 9 and 10 are deleted. SEC23B mRNA levels in the patient were lower than those in healthy controls. The patient was also homozygous for the UGT1A1*6 allele, consistent with GS. CONCLUSION: Identification of the novel splice variant in this study further expands the spectrum of known SEC23B gene mutations. Molecular genetic approaches can lead to accurate diagnosis and management of CDA Ⅱ patients, particularly for those with GS coexisting.


Assuntos
Anemia Diseritropoética Congênita , Doença de Gilbert , Proteínas de Transporte Vesicular , Humanos , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/diagnóstico , Masculino , Proteínas de Transporte Vesicular/genética , Doença de Gilbert/genética , Doença de Gilbert/complicações , Doença de Gilbert/diagnóstico , Splicing de RNA , Mutação
3.
Blood Cells Mol Dis ; 106: 102838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413287

RESUMO

Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.


Assuntos
Anemia de Diamond-Blackfan , Anemia Diseritropoética Congênita , Anemia Macrocítica , Humanos , Anemia de Diamond-Blackfan/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Células Precursoras Eritroides/metabolismo , Mutação
5.
Int J Hematol ; 119(2): 210-214, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127226

RESUMO

Congenital dyserythropoietic anemia type II (CDA II) refers to a group of extremely rare heterozygous disorders characterized by ineffective erythropoiesis and morphological abnormalities of erythrocytes and bone marrow erythroblasts. Six types of CDA with differing heterogenous genetic mutations have been identified to date. Due to the genetic and clinical heterogeneity of CDA, accurate diagnosis can be very challenging, especially with the clinical overlap observed between CDA and other dyserythropoietic diseases. A 1-month-old infant girl, born to a non-consanguineous family, presented with severe normocytic anemia that required transfusions every 2 to 3 weeks since birth, as well as jaundice. Whole exome sequencing revealed a novel compound heterozygosity in the SEC23B gene, thus establishing the diagnosis of CDA II. Analysis by multiple bioinformatics tools predicted that the mutant proteins were deleterious. Here, we report a novel variation in SEC23B that extends the mutation spectrum of SEC23B in the diagnosis of CDA II.


Assuntos
Anemia Diseritropoética Congênita , Lactente , Recém-Nascido , Feminino , Humanos , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/genética , Mutação , Heterozigoto , Eritroblastos/metabolismo , Proteínas de Transporte Vesicular/genética
6.
Clin Dysmorphol ; 33(1): 27-30, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865862

RESUMO

LPIN2 -related Majeed syndrome (MIM# 609628) is a rare non-inflammasome autoinflammatory disease, caused due to biallelic variants in LPIN2 (MIM* 605519). To date, only 31 individuals from 18 families have been reported with this rare condition. Exome sequencing was done in two affected individuals from two unrelated families. Additionally, phenotypic, and genotypic information from the literature was reviewed. Two novel homozygous missense variants, c.2207G>A p. (Arg736His) and c.1157C>G p. (Ser386Ter) in LPIN2 , were identified in family 1 and family 2 respectively. Chronic recurrent osteomyelitis involving the lower extremities was the most common clinical presentation. LPIN2 -related Majeed syndrome should be considered as a differential diagnosis in an individual with clinical or radiological evidence of recurrent sterile osteomyelitis and chronic anaemia.


Assuntos
Anemia Diseritropoética Congênita , Síndromes de Imunodeficiência , Osteomielite , Humanos , Osteomielite/diagnóstico , Osteomielite/genética , Anemia Diseritropoética Congênita/diagnóstico , Síndrome , Proteínas Nucleares
9.
Ital J Pediatr ; 49(1): 84, 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455305

RESUMO

BACKGROUND: Congenital dyserythropoietic anemias (CDAs) are a very rare and heterogeneous group of disorders characterized by ineffective erythropoiesis. CDA II is caused by mutations in the SEC23B gene. The most common mutation reported in India is c.1385 A > G, p.Y462C. There is no simple and cost-effective confirmatory diagnostic test available for CDA, and therefore, many patients remain undiagnosed. High-resolution melting curve (HRM) analysis is a polymerase chain reaction (PCR) based technique applied to identify genetic differences and scan nucleic acid sequences. HRM can be used to rapidly screen the common mutation causing CDA II in the Indian population. Thus, we studied the use of High-Resolution Melting Curve Analysis to detect common mutation causing CDA II in the Indian population. METHOD: 11 patients having SEC23B (Y462C) mutation causing CDA II are considered for this study. HRM was used to check the presence of Y462C mutation. To verify the accuracy of the HRM analysis, we compared HRM results with the results of Sanger sequencing. This helped us to confirm the diagnosis. RESULTS: We have described the clinical, hematological, and genetic data of eleven patients suffering from CDAII. According to HRM and Sanger sequencing, a homozygous SEC23B (Y462C) mutation was present in all patients, whereas a heterozygous Y462C mutation was present in their parents. CONCLUSION: Our data showed that High-Resolution Melting (HRM) analysis could be used to rapidly screen common SEC23B mutation that causes CDA II in the Indian population.


Assuntos
Anemia Diseritropoética Congênita , Humanos , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/genética , Mutação , Reação em Cadeia da Polimerase , Proteínas de Transporte Vesicular/genética
10.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373084

RESUMO

Congenital dyserythropoietic anemia type II (CDA II) is an inherited autosomal recessive blood disorder which belongs to the wide group of ineffective erythropoiesis conditions. It is characterized by mild to severe normocytic anemia, jaundice, and splenomegaly owing to the hemolytic component. This often leads to liver iron overload and gallstones. CDA II is caused by biallelic mutations in the SEC23B gene. In this study, we report 9 new CDA II cases and identify 16 pathogenic variants, 6 of which are novel. The newly reported variants in SEC23B include three missenses (p.Thr445Arg, p.Tyr579Cys, and p.Arg701His), one frameshift (p.Asp693GlyfsTer2), and two splicing variants (c.1512-2A>G, and the complex intronic variant c.1512-3delinsTT linked to c.1512-16_1512-7delACTCTGGAAT in the same allele). Computational analyses of the missense variants indicated a loss of key residue interactions within the beta sheet and the helical and gelsolin domains, respectively. Analysis of SEC23B protein levels done in patient-derived lymphoblastoid cell lines (LCLs) showed a significant decrease in SEC23B protein expression, in the absence of SEC23A compensation. Reduced SEC23B mRNA expression was only detected in two probands carrying nonsense and frameshift variants; the remaining patients showed either higher gene expression levels or no expression changes at all. The skipping of exons 13 and 14 in the newly reported complex variant c.1512-3delinsTT/c.1512-16_1512-7delACTCTGGAAT results in a shorter protein isoform, as assessed by RT-PCR followed by Sanger sequencing. In this work, we summarize a comprehensive spectrum of SEC23B variants, describe nine new CDA II cases accounting for six previously unreported variants, and discuss innovative therapeutic approaches for CDA II.


Assuntos
Anemia Diseritropoética Congênita , Humanos , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Mutação , Mutação de Sentido Incorreto , Éxons , Alelos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
Blood ; 141(25): 3039-3054, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37084386

RESUMO

Red blood cell disorders can result in severe anemia. One such disease congenital dyserythropoietic anemia IV (CDA IV) is caused by the heterozygous mutation E325K in the transcription factor KLF1. However, studying the molecular basis of CDA IV is severely impeded by the paucity of suitable and adequate quantities of material from patients with anemia and the rarity of the disease. We, therefore, took a novel approach, creating a human cellular disease model system for CDA IV that accurately recapitulates the disease phenotype. Next, using comparative proteomics, we reveal extensive distortion of the proteome and a wide range of disordered biological processes in CDA IV erythroid cells. These include downregulated pathways the governing cell cycle, chromatin separation, DNA repair, cytokinesis, membrane trafficking, and global transcription, and upregulated networks governing mitochondrial biogenesis. The diversity of such pathways elucidates the spectrum of phenotypic abnormalities that occur with CDA IV and impairment to erythroid cell development and survival, collectively explaining the CDA IV disease phenotype. The data also reveal far more extensive involvement of KLF1 in previously assigned biological processes, along with novel roles in the regulation of intracellular processes not previously attributed to this transcription factor. Overall, the data demonstrate the power of such a model cellular system to unravel the molecular basis of disease and how studying the effects of a rare mutation can reveal fundamental biology.


Assuntos
Anemia Diseritropoética Congênita , Humanos , Anemia Diseritropoética Congênita/genética , Mutação , Regulação da Expressão Gênica , Fenótipo , Fatores de Transcrição/genética
15.
BMJ Case Rep ; 16(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750299

RESUMO

Congenital dyserythropoietic anaemia (CDA) type II is a rare disease characterised by inefficient erythropoiesis and mononuclear cytopenia. Patients generally present with extravascular haemolytic anaemia, jaundice and splenomegaly. A female patient in her mid-teens presented with severe anaemia and abdominal distention. Medical history was significant for the diagnosis of ß-thalassaemia intermedia made in her infancy. However, subsequent investigations showed normal reticulocyte counts that were disproportionate to the severity of her anaemia and a negative ß-thalassemia mutation analysis, leading to concerns about a specific lineage disorder. A bone marrow trephine showed features typical of CDA type II-erythroid hyperplasia with multiple binucleate erythrocytes. CDA type II has often been mistaken for other congenital or acquired forms of anaemia; this case report intends to raise awareness among clinicians to consider CDA type II as a rare but possible cause of severe anaemia in a teenager with a previous presumptive diagnosis of ß-thalassaemia .


Assuntos
Anemia Diseritropoética Congênita , Talassemia beta , Humanos , Adolescente , Feminino , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/genética , Eritrócitos , Medula Óssea
16.
Pediatr Blood Cancer ; 70(5): e30245, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36798023

RESUMO

Congenital dyserythropoietic anemia type IV (CDAIV) is a rare inherited hematological disorder, presenting with severe anemia due to altered erythropoiesis and hemolysis, with variable needs for recurrent transfusions. We present a case of a transfusion-dependent male newborn who presented at birth with severe hemolytic anemia, and required an intrauterine transfusion. Genetic testing rapidly identified a Kruppel-like factor 1 (KLF1) pathogenic variant (c.973G>A, p.E325K), known to be causative for CDAIV. This case highlights the advantages of next-generation sequencing testing for congenital hemolytic anemia: diagnostic speed, guidance on natural history, and optimized clinical management and anticipatory guidance for parents and clinicians. Additionally, we reviewed the literature for all CDAIV cases.


Assuntos
Anemia Diseritropoética Congênita , Anemia Hemolítica Congênita , Doenças Hematológicas , Recém-Nascido , Humanos , Masculino , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/terapia , Eritropoese
20.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291092

RESUMO

The GATA1 transcription factor is essential for normal erythropoiesis and megakaryocytic differentiation. Germline GATA1 pathogenic variants in the N-terminal zinc finger (N-ZF) are typically associated with X-linked thrombocytopenia, platelet dysfunction, and dyserythropoietic anemia. A few variants in the C-terminal ZF (C-ZF) domain are described with normal platelet count but altered platelet function as the main characteristic. Independently performed molecular genetic analysis identified a novel hemizygous variant (c.865C>T, p.H289Y) in the C-ZF region of GATA1 in a German patient and in a Spanish patient. We characterized the bleeding and platelet phenotype of these patients and compared these findings with the parameters of two German siblings carrying the likely pathogenic variant p.D218N in the GATA1 N-ZF domain. The main difference was profound thrombocytopenia in the brothers carrying the p.D218N variant compared to a normal platelet count in patients carrying the p.H289Y variant; only the Spanish patient occasionally developed mild thrombocytopenia. A functional platelet defect affecting αIIbß3 integrin activation and α-granule secretion was present in all patients. Additionally, mild anemia, anisocytosis, and poikilocytosis were observed in the patients with the C-ZF variant. Our data support the concept that GATA1 variants located in the different ZF regions can lead to clinically diverse manifestations.


Assuntos
Anemia Diseritropoética Congênita , Fator de Transcrição GATA1 , Doenças Genéticas Ligadas ao Cromossomo X , Variação Genética , Trombocitopenia , Dedos de Zinco , Humanos , Masculino , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Integrinas/metabolismo , Fenótipo , Trombocitopenia/genética , Dedos de Zinco/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Anemia Diseritropoética Congênita/genética , Plaquetas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...