Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117.685
Filtrar
1.
Front Immunol ; 15: 1368118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756770

RESUMO

Frequencies and phenotypes of immune cells differ between neonates and adults in association with age-specific immune responses. Lymph nodes (LN) are critical tissue sites to quantify and define these differences. Advances in flow cytometry have enabled more multifaceted measurements of complex immune responses. Tissue processing can affect the immune cells under investigation that influence key findings. To understand the impact on immune cells in the LN after processing for single-cell suspension, we compared three dissociation protocols: enzymatic digestion, mechanical dissociation with DNase I treatment, and mechanical dissociation with density gradient separation. We analyzed cell yields, viability, phenotypic and maturation markers of immune cells from the lung-draining LN of neonatal and adult mice two days after intranasal respiratory syncytial virus (RSV) infection. While viability was consistent across age groups, the protocols influenced the yield of subsets defined by important phenotypic and activation markers. Moreover, enzymatic digestion did not show higher overall yields of conventional dendritic cells and macrophages from the LN. Together, our findings show that the three dissociation protocols have similar impacts on the number and viability of cells isolated from the neonatal and adult LN. However, enzymatic digestion impacts the mean fluorescence intensity of key lineage and activation markers that may influence experimental findings.


Assuntos
Animais Recém-Nascidos , Linfonodos , Linfócitos , Células Mieloides , Fenótipo , Infecções por Vírus Respiratório Sincicial , Animais , Linfonodos/imunologia , Linfonodos/citologia , Camundongos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Linfócitos/imunologia , Linfócitos/metabolismo , Células Mieloides/imunologia , Separação Celular/métodos , Citometria de Fluxo/métodos , Imunofenotipagem , Feminino , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Células Dendríticas/metabolismo
2.
Front Immunol ; 15: 1379798, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756777

RESUMO

Introduction: Cryptosporidiosis is a poorly controlled zoonosis caused by an intestinal parasite, Cryptosporidium parvum, with a high prevalence in livestock (cattle, sheep, and goats). Young animals are particularly susceptible to this infection due to the immaturity of their intestinal immune system. In a neonatal mouse model, we previously demonstrated the importance of the innate immunity and particularly of type 1 conventional dendritic cells (cDC1) among mononuclear phagocytes (MPs) in controlling the acute phase of C. parvum infection. These immune populations are well described in mice and humans, but their fine characterization in the intestine of young ruminants remained to be further explored. Methods: Immune cells of the small intestinal Peyer's patches and of the distal jejunum were isolated from naive lambs and calves at different ages. This was followed by their fine characterization by flow cytometry and transcriptomic analyses (q-RT-PCR and single cell RNAseq (lamb cells)). Newborn animals were infected with C. parvum, clinical signs and parasite burden were quantified, and isolated MP cells were characterized by flow cytometry in comparison with age matched control animals. Results: Here, we identified one population of macrophages and three subsets of cDC (cDC1, cDC2, and a minor cDC subset with migratory properties) in the intestine of lamb and calf by phenotypic and targeted gene expression analyses. Unsupervised single-cell transcriptomic analysis confirmed the identification of these four intestinal MP subpopulations in lamb, while highlighting a deeper diversity of cell subsets among monocytic and dendritic cells. We demonstrated a weak proportion of cDC1 in the intestine of highly susceptible newborn lambs together with an increase of these cells within the first days of life and in response to the infection. Discussion: Considering cDC1 importance for efficient parasite control in the mouse model, one may speculate that the cDC1/cDC2 ratio plays also a key role for the efficient control of C. parvum in young ruminants. In this study, we established the first fine characterization of intestinal MP subsets in young lambs and calves providing new insights for comparative immunology of the intestinal MP system across species and for future investigations on host-Cryptosporidium interactions in target species.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Homeostase , Animais , Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Cryptosporidium parvum/imunologia , Ovinos , Bovinos , Homeostase/imunologia , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Fagócitos/imunologia , Fagócitos/parasitologia , Animais Recém-Nascidos , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/imunologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Intestinos/parasitologia , Intestinos/imunologia , Ruminantes/parasitologia , Ruminantes/imunologia
3.
J Immunol Res ; 2024: 2765001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774603

RESUMO

ß-Glucan is the main component of the cell wall of pathogen-associated molecular patterns (PAMPs) including various yeast, fungi, or certain bacteria. Previous reports demonstrated that ß-glucan was widely investigated as a potent immunomodulators to stimulate innate and adaptive immune responses, which indicated that it could be recommended as an effective adjuvant in immunotherapy. However, the detailed effects of ß-glucan on neonatal immunity are still largely unknown. Here, we found that ß-glucan did not affect the frequencies and numbers of myeloid cells in the spleen and bone marrow from neonates. Functional assay revealed that ß-glucan from neonates compromised the immunosuppressive function of immature myeloid cells, which were myeloid-derived suppressor cells (MDSCs). Flow cytometry or gene expression analysis revealed that ß-glucan-derived polymorphonuclear (PMN)-MDSCs produced lower level of reactive oxygen species (ROS) and arginase-1 (Arg1) in neonatal mice. Furthermore, ß-glucan administration significantly decreased the frequency and ROS level of PMN-MDSCs in vitro. These observations suggest that ß-glucan facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.


Assuntos
Animais Recém-Nascidos , Arginase , Células Supressoras Mieloides , Espécies Reativas de Oxigênio , beta-Glucanas , beta-Glucanas/farmacologia , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Arginase/metabolismo , Células Mieloides/metabolismo , Células Mieloides/imunologia , Células Mieloides/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Baço/citologia , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Camundongos Endogâmicos C57BL
4.
Front Immunol ; 15: 1365174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774873

RESUMO

Introduction: Sepsis remains a major source of morbidity and mortality in neonates, and characterization of immune regulation in the neonatal septic response remains limited. HVEM is a checkpoint regulator which can both stimulate or inhibit immune responses and demonstrates altered expression after sepsis. We hypothesized that signaling via HVEM would be essential for the neonatal response to sepsis, and that therefore blockade of this pathway would improve survival to septic challenge. Methods: To explore this, neonatal mice were treated with cecal slurry (CS), CS with Anti-HVEM antibody (CS-Ab) or CS with isotype (CS-IT) and followed for 7-day survival. Mice from all treatment groups had thymus, lung, kidney and peritoneal fluid harvested, weighed, and stained for histologic evaluation, and changes in cardiac function were assessed with echocardiography. Results: Mortality was significantly higher for CS-Ab mice (72.2%) than for CS-IT mice (22.2%). CS resulted in dysregulated alveolar remodeling, but CS-Ab lungs demonstrated significantly less dysfunctional alveolar remodeling than CS alone (MCL 121.0 CS vs. 87.6 CS-Ab), as well as increased renal tubular vacuolization. No morphologic differences in alveolar septation or thymic karyorrhexis were found between CS-Ab and CS-IT. CS-Ab pups exhibited a marked decrease in heart rate (390.3 Sh vs. 342.1 CS-Ab), stroke volume (13.08 CS-IT vs. 8.83 CS-Ab) and ultimately cardiac output (4.90 Sh vs. 3.02 CS-Ab) as well as a significant increase in ejection fraction (73.74 Sh vs. 83.75 CS-Ab) and cardiac strain (40.74 Sh vs. 51.16 CS-Ab) as compared to CS-IT or Sham animals. Discussion: While receptor ligation of aspects of HVEM signaling, via antibody blockade, appears to mitigate aspects of lung injury and thymic involution, stimulatory signaling via HVEM still seems to be necessary for vascular and hemodynamic resilience and overall neonatal mouse survival in response to this experimental polymicrobial septic insult. This dissonance in the activity of anti-HVEM neutralizing antibody in neonatal animals speaks to the differences in how septic cardiac dysfunction should be considered and approached in the neonatal population.


Assuntos
Animais Recém-Nascidos , Sepse Neonatal , Transdução de Sinais , Animais , Camundongos , Sepse Neonatal/imunologia , Sepse Neonatal/mortalidade , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Modelos Animais de Doenças , Feminino , Cardiopatias/etiologia , Cardiopatias/imunologia , Pulmão/imunologia , Pulmão/patologia , Sepse/imunologia , Sepse/metabolismo
5.
J Pineal Res ; 76(4): e12962, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775315

RESUMO

There is a need to develop therapies for neonatal encephalopathy (NE) in low- and middle-income countries (LMICs) where the burden of disease is greatest and therapeutic hypothermia (HT) is not effective. We aimed to assess the efficacy of melatonin following inflammation-amplified hypoxia-ischaemia (IA-HI) in the newborn piglet. The IA-HI model accounts for the contribution of infection/inflammation in this setting and HT is not cytoprotective. We hypothesised that intravenous melatonin (5% ethanol, at 20 mg/kg over 2 h at 1 h after HI + 10 mg/kg/12 h between 24 and 60 h) is safe and associated with: (i) reduction in magnetic resonance spectroscopy lactate/N-acetylaspartate (MRS Lac/sNAA); (ii) preservation of phosphorus MRS phosphocreatine/phosphate exchange pool (PCr/Epp); (iii) improved aEEG/EEG recovery and (iv) cytoprotection on immunohistochemistry. Male and female piglets underwent IA-HI by carotid artery occlusion and reduction in FiO2 to 6% at 4 h into Escherichia coli lipopolysaccharide sensitisation (2 µg/kg bolus + 1 µg/kg/h over 12 h). At 1 h after IA-HI, piglets were randomised to HI-saline (n = 12) or melatonin (n = 11). There were no differences in insult severity between groups. Target melatonin levels (15-30 mg/L) were achieved within 3 h and blood ethanol levels were <0.25 g/L. At 60 h, compared to HI-saline, melatonin was associated with a reduction of 0.197 log10 units (95% CrI [-0.366, -0.028], Pr(sup) 98.8%) in basal-ganglia and thalamic Lac/NAA, and 0.257 (95% CrI [-0.676, 0.164], Pr(sup) 89.3%) in white matter Lac/NAA. PCr/Epp was higher in melatonin versus HI-saline (Pr(sup) 97.6%). Melatonin was associated with earlier aEEG/EEG recovery from 19 to 24 h (Pr(sup) 95.4%). Compared to HI-saline, melatonin was associated with increased NeuN+ cell density (Pr(sup) 99.3%) across five of eight regions and reduction in TUNEL-positive cell death (Pr(sup) 89.7%). This study supports the translation of melatonin to early-phase clinical trials. Melatonin is protective following IA-HI where HT is not effective. These data guide the design of future dose-escalation studies in the next phase of the translational pipeline.


Assuntos
Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica , Melatonina , Animais , Melatonina/farmacologia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Suínos , Feminino , Masculino , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
6.
Stem Cell Res Ther ; 15(1): 134, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715091

RESUMO

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.


Assuntos
Administração Intranasal , Quimiocina CXCL10 , Hipóxia-Isquemia Encefálica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Camundongos , Feminino , Masculino , Animais Recém-Nascidos , Movimento Celular
7.
PLoS One ; 19(5): e0300751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717999

RESUMO

Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.


Assuntos
Animais Recém-Nascidos , Alvéolos Pulmonares , Animais , Camundongos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Feminino , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Masculino , Ácidos Graxos/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteínas Reguladoras de Apoptose
8.
PLoS Pathog ; 20(5): e1012111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718049

RESUMO

Infants are highly susceptible to invasive respiratory and gastrointestinal infections. To elucidate the age-dependent mechanism(s) that drive bacterial spread from the mucosa, we developed an infant mouse model using the prevalent pediatric respiratory pathogen, Streptococcus pneumoniae (Spn). Despite similar upper respiratory tract (URT) colonization levels, the survival rate of Spn-infected infant mice was significantly decreased compared to adults and corresponded with Spn dissemination to the bloodstream. An increased rate of pneumococcal bacteremia in early life beyond the newborn period was attributed to increased bacterial translocation across the URT barrier. Bacterial dissemination in infant mice was independent of URT monocyte or neutrophil infiltration, phagocyte-derived ROS or RNS, inflammation mediated by toll-like receptor 2 or interleukin 1 receptor signaling, or the pore-forming toxin pneumolysin. Using molecular barcoding of Spn, we found that only a minority of bacterial clones in the nasopharynx disseminated to the blood in infant mice, indicating the absence of robust URT barrier breakdown. Rather, transcriptional profiling of the URT epithelium revealed a failure of infant mice to upregulate genes involved in the tight junction pathway. Expression of many such genes was also decreased in early life in humans. Infant mice also showed increased URT barrier permeability and delayed mucociliary clearance during the first two weeks of life, which corresponded with tighter attachment of bacteria to the respiratory epithelium. Together, these results demonstrate a window of vulnerability during postnatal development when altered mucosal barrier function facilitates bacterial dissemination.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/imunologia , Camundongos , Humanos , Animais Recém-Nascidos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mucosa Respiratória/microbiologia , Mucosa Respiratória/metabolismo , Feminino , Nasofaringe/microbiologia
9.
Science ; 384(6696): 652-660, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723089

RESUMO

Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.


Assuntos
Córtex Somatossensorial , Vibrissas , Animais , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Camundongos , Vibrissas/fisiologia , Animais Recém-Nascidos , Odorantes , Olfato/fisiologia , Córtex Olfatório/fisiologia , Camundongos Endogâmicos C57BL , Privação Sensorial/fisiologia , Nariz/fisiologia , Nariz/anatomia & histologia
10.
Front Immunol ; 15: 1395030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736885

RESUMO

Introduction: The end of gestation, ensuing parturition, and the neonatal period represent highly dynamic phases for immunological changes in both mother and offspring. The regulation of innate immune cells at the maternal-fetal interface during late term pregnancy, after birth, and during microbial colonization of the neonatal gut and other mucosal surfaces, is crucial for controlling inflammation and maintaining homeostasis. Innate immune cells and mucosal epithelial cells express antileukoproteinase (SLPI), which has anti-inflammatory and anti-protease activity that can regulate cellular activation. Methods: Here, we developed and validated new monoclonal antibodies (mAbs) to characterize SLPI for the first time in horses. Peripheral blood and mucosal samples were collected from healthy adults horses and a cohort of mares and their foals directly following parturition to assess this crucial stage. Results: First, we defined the cell types producing SLPI in peripheral blood by flow cytometry, highlighting the neutrophils and a subset of the CD14+ monocytes as SLPI secreting immune cells. A fluorescent bead-based assay was developed with the new SLPI mAbs and used to establish baseline concentrations for secreted SLPI in serum and secretion samples from mucosal surfaces, including saliva, nasal secretion, colostrum, and milk. This demonstrated constitutive secretion of SLPI in a variety of equine tissues, including high colostrum concentrations. Using immunofluorescence, we identified production of SLPI in mucosal tissue. Finally, longitudinal sampling of clinically healthy mares and foals allowed monitoring of serum SLPI concentrations. In neonates and postpartum mares, SLPI peaked on the day of parturition, with mares returning to the adult normal within a week and foals maintaining significantly higher SLPI secretion until three months of age. Conclusion: This demonstrated a physiological systemic change in SLPI in both mares and their foals, particularly at the time around birth, likely contributing to the regulation of innate immune responses during this critical period.


Assuntos
Animais Recém-Nascidos , Animais , Cavalos/imunologia , Feminino , Gravidez , Regulação para Cima , Anticorpos Monoclonais/imunologia , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Colostro/imunologia , Imunidade Inata
11.
J Neuroinflammation ; 21(1): 121, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720368

RESUMO

BACKGROUND: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS: Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS: In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS: UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.


Assuntos
Volume de Ventilação Pulmonar , Animais , Ovinos , Feminino , Humanos , Volume de Ventilação Pulmonar/fisiologia , Sangue Fetal/citologia , Gravidez , Citocinas/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Respiração Artificial/métodos , Respiração Artificial/efeitos adversos , Animais Recém-Nascidos
12.
CNS Neurosci Ther ; 30(5): e14739, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38702935

RESUMO

AIMS: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.


Assuntos
Antipsicóticos , Aripiprazol , Modelos Animais de Doenças , Maleato de Dizocilpina , Hipocampo , Hipercinese , Esquizofrenia , Animais , Aripiprazol/farmacologia , Aripiprazol/uso terapêutico , Esquizofrenia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Maleato de Dizocilpina/farmacologia , Camundongos , Hipercinese/tratamento farmacológico , Masculino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos , Neurônios/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia
13.
BMC Vet Res ; 20(1): 170, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702674

RESUMO

BACKGROUND: Blood sampling from neonatal piglets is related to multiple disadvantages. Therefore, a new, alternative matrix is required to assess piglets' early immune status efficiently. The present study aimed to assess the usefulness of processing fluid for determining selected piglets' immune parameters. 264 pigs - 31 sows, 146 male piglets, and 87 female piglets from commercial indoor farrow-to-finish pig herd were included in this study. 264 serum, 31 colostrum, and 146 processing fluid samples were collected. Serum was collected from all animals, colostrum was collected from sows, and processing fluid was collected from male piglets only. Using commercial ELISA tests, the concentration of various immunoglobulins, cytokines, and acute phase proteins was assessed in each matrix. Statistical analyses were employed to determine differences in the concentration of measured indices between piglets' serum and processing fluid and correlations in the concentration of tested indices between particular sets of matrices. RESULTS: Statistical analyses did not reveal significant differences in the IgG, IgA, IL-1ß, IL-4, IL-6, and IFN-γ concentration between piglets' serum and processing fluid (p > 0.05). A positive correlation (p < 0.05) regarding the concentration of some indices between processing fluid and samples collected from sows was also observed. CONCLUSIONS: Processing fluid can be considered a promising alternative to blood for assessing some immunological indices in piglets, such as IgG, IgA, IL-1ß, IL-4, IL-6, and IFN-γ, and, possibly, in the indirect assessment of some indices in lactating sows, including IgA, IL-1ß, IL-4, IL-6, IL-8, IFN-γ, or Pig-MAP.


Assuntos
Colostro , Citocinas , Imunoglobulinas , Animais , Colostro/química , Colostro/imunologia , Feminino , Masculino , Suínos/sangue , Citocinas/sangue , Citocinas/análise , Imunoglobulinas/sangue , Imunoglobulinas/análise , Animais Recém-Nascidos/imunologia , Animais Recém-Nascidos/sangue , Animais Lactentes/imunologia , Animais Lactentes/sangue , Proteínas de Fase Aguda/análise , Proteínas de Fase Aguda/metabolismo
14.
Reprod Toxicol ; 1232024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38706688

RESUMO

Exposure to gestational diabetes mellitus (GDM) during pregnancy has significant consequences for the unborn baby and newborn infant. However, whether and how GDM exposure induces the development of neonatal brain hypoxia/ischemia-sensitive phenotype and the underlying molecular mechanisms remain unclear. In this study, we used a late GDM rat model induced by administration of streptozotocin (STZ) on gestational day 12 and investigated its effects of GDM on neonatal brain development. The pregnant rats exhibited increased blood glucose levels in a dose-dependent manner after STZ administration. STZ-induced maternal hyperglycemia led to reduced blood glucose levels in neonatal offspring, resulting in growth restriction and an increased brain to body weight ratio. Importantly, GDM exposure increased susceptibility to hypoxia/ischemia (HI)-induced brain infarct sizes compared to the controls in both male and female neonatal offspring. Further molecular analysis revealed alterations in the PTEN/AKT/mTOR/autophagy signaling pathway in neonatal male offspring brains, along with increased ROS production and autophagy-related proteins (Atg5 and LC3-II). Treatment with the PTEN inhibitor bisperoxovanadate (BPV) eliminated the differences in HI-induced brain infarct sizes between the GDM-exposed and the control groups. These findings provide novel evidence of the development of a brain hypoxia/ischemia-sensitive phenotype in response to GDM exposure and highlight the role of the PTEN/AKT/mTOR/autophagy signaling pathway in this process.


Assuntos
Animais Recém-Nascidos , Autofagia , Encéfalo , Diabetes Gestacional , Hipóxia-Isquemia Encefálica , PTEN Fosfo-Hidrolase , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Estreptozocina , Serina-Treonina Quinases TOR , Animais , Feminino , Gravidez , Hipóxia-Isquemia Encefálica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Diabetes Gestacional/induzido quimicamente , Diabetes Gestacional/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , PTEN Fosfo-Hidrolase/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Efeitos Tardios da Exposição Pré-Natal , Glicemia , Ratos
15.
Pediatr Surg Int ; 40(1): 126, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717494

RESUMO

BACKGROUND: Neonatal necrotizing enterocolitis (NEC) is a common gastrointestinal emergency in neonates. MiRNA-192-5p was found associated with ulcerative colitis (UC) progression, also with aberrant expression in intestinal cancer tissue. However, the effects of miRNA-192-5p on NEC have not been reported. METHODS: Based on the bioinformatics analysis of the GEO dataset, miR-192-5p was identified as the differentially expressed miRNA in NEC, and activated leukocyte cell adhesion molecule (ALCAM) was predicted as its target. After that, in vitro, rat intestinal epithelial cell-6 (IEC-6) were stimulated with LPS to construct a cell model of NEC. IEC-6 cells were transfected with miRNA-192-5p mimics, miRNA-192-5p inhibitors, or miRNA-192-5p inhibitors + sh-ALCAM, and relevant negative control. In vivo, SD rats were treated with artificial feeding, hypoxic reoxygenation, cold stimulation, and LPS gavage to induce NEC, followed by injection of agomiR-NC or agomiRNA-192-5p. Then effects of miRNA-192-5p on NEC model IEC-6 cell viability, apoptosis, ALCAM expression, Interleukin (IL)-1ß and IL-6 levels, intestinal injury, intestinal permeability were detected. RESULTS: MiRNA-192-5p expression was downregulated in NEC IEC-6 cells, whose overexpression increased IEC-6 cell viability. MiRNA-192-5p inhibitors increased IL-1ß, IL-6 levels and promoted IEC-6 cell apoptosis. MiRNA-192-5p targeting of ALCAM decreased ALCAM expression, IL-1ß, and IL-6 levels. AgomiRNA-192-5p decreased ALCAM, IL-1ß, and IL-6 levels in intestinal tissue and pathological damage and increased miRNA-192-5p levels. CONCLUSION: MiR-192-5p protects against intestinal injury by inhibiting ALCAM-mediated inflammation and intestinal epithelial cells, which would provide a new idea for NEC treatment.


Assuntos
Modelos Animais de Doenças , Enterocolite Necrosante , MicroRNAs , Ratos Sprague-Dawley , Enterocolite Necrosante/genética , Enterocolite Necrosante/metabolismo , MicroRNAs/genética , Animais , Ratos , Humanos , Recém-Nascido , Animais Recém-Nascidos , Apoptose/genética , Inflamação
16.
Can Vet J ; 65(5): 481-487, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694739

RESUMO

Background: An adequate supply of trace elements is very important for equine neonates, as deficiencies can lead to health problems and even death. Objective: This study investigated serum concentrations of selenium (Se), copper (Cu), and zinc (Zn) in neonatal foals up to the 8th day of life. The influences of disease, age, and failure of passive transfer (FPT) on these concentrations were analyzed. Animals and procedure: Serum concentrations of Se, Cu, and Zn were determined from blood samples of 93 foals by means of inductively coupled plasma mass spectrometry. The foals were divided into 2 groups based on health status: clinically sick (n = 51) and clinically healthy (n = 42). The latter group was further divided into foals with FPT (n = 20) and those without (n = 22). Results: Mean serum concentrations for Se, Cu, and Zn were 60 ± 40 µg/L, 0.25 ± 0.22 mg/L, and 605 ± 285 µg/L, respectively. A significant influence of age on serum Cu concentration was observed (P < 0.0001). No differences were observed between any of the serum concentrations in clinically sick and clinically healthy foals on the 1st day of life. The FPT status was not associated with reduced serum concentrations of Se, Cu, or Zn. Conclusion and clinical relevance: It is not necessary to supplement trace elements in all foals with FPT.


Concentrations sériques de sélénium, de cuivre et de zinc chez les poulains nouveau-nés : influence de l'échec du transfert passif et des changements liés à l'âge. Contexte: Un apport suffisant en oligo-éléments est très important pour les nouveau-nés équins, car des carences peuvent entraîner des problèmes de santé, voire la mort. Objectif: Cette étude a examiné les concentrations sériques de sélénium (Se), de cuivre (Cu) et de zinc (Zn) chez les poulains nouveau-nés jusqu'au 8ème jour de vie. Les influences de maladies, de l'âge et de l'échec du transfert passif (FPT) sur ces concentrations ont été analysées. Animaux et procédure: Les concentrations sériques de Se, Cu et Zn ont été déterminées à partir d'échantillons de sang de 93 poulains au moyen d'une spectrométrie de masse à plasma à couplage inductif. Les poulains ont été divisés en 2 groupes en fonction de leur état de santé: cliniquement malades (n = 51) et cliniquement sains (n = 42). Ce dernier groupe a été divisé en poulains avec FPT (n = 20) et ceux sans (n = 22). Résultats: Les concentrations sériques moyennes de Se, Cu et Zn étaient respectivement de 60 ± 40 µg/L, 0,25 ± 0,22 mg/L et 605 ± 285 µg/L. Une influence significative de l'âge sur la concentration sérique de Cu a été observée (P < 0,0001). Aucune différence n'a été observée entre les concentrations sériques chez les poulains cliniquement malades et cliniquement sains au premier jour de leur vie. Le statut FPT n'était pas associé à une réduction des concentrations sériques de Se, Cu ou Zn. Conclusion et pertinence clinique: Il n'est pas nécessaire de supplémenter tous les poulains en oligo-éléments avec FPT.(Traduit par Dr Serge Messier).


Assuntos
Animais Recém-Nascidos , Cobre , Doenças dos Cavalos , Selênio , Zinco , Animais , Cavalos/sangue , Selênio/sangue , Cobre/sangue , Zinco/sangue , Animais Recém-Nascidos/sangue , Doenças dos Cavalos/sangue , Feminino , Masculino , Envelhecimento/sangue , Imunidade Materno-Adquirida , Oligoelementos/sangue
17.
Front Immunol ; 15: 1361240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698868

RESUMO

N-glycosylation influences the effectiveness of immune globulin G (IgG) and thus the immunological downstream responses of immune cells. This impact arises from the presence of N-glycans within the Fc region, which not only alters the conformation of IgG but also influences its steric hindrance. Consequently, these modifications affect the interaction between IgG and its binding partners within the immune system. Moreover, this posttranslational modification vary according to the physiological condition of each individual. In this study, we examined the N-glycosylation of IgG in pigs from birth to five months of age. Our analysis identified a total of 48 distinct N-glycan structures. Remarkably, we observed defined changes in the composition of these N-glycans during postnatal development. The presence of agalactosylated and sialylated structures increases in relation to the number of N-glycans terminated by galactose residues during the first months of life. This shift may indicate a transition from passively transferred antibodies from the colostrum of the sow to the active production of endogenous IgG by the pig's own immune system.


Assuntos
Imunoglobulina G , Polissacarídeos , Animais , Glicosilação , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Suínos , Polissacarídeos/metabolismo , Polissacarídeos/imunologia , Processamento de Proteína Pós-Traducional , Animais Recém-Nascidos , Feminino
18.
J Neuroinflammation ; 21(1): 114, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698428

RESUMO

Maternal immunoglobulin (Ig)G is present in breast milk and has been shown to contribute to the development of the immune system in infants. In contrast, maternal IgG has no known effect on early childhood brain development. We found maternal IgG immunoreactivity in microglia, which are resident macrophages of the central nervous system of the pup brain, peaking at postnatal one week. Strong IgG immunoreactivity was observed in microglia in the corpus callosum and cerebellar white matter. IgG stimulation of primary cultured microglia activated the type I interferon feedback loop by Syk. Analysis of neonatal Fc receptor knockout (FcRn KO) mice that could not take up IgG from their mothers revealed abnormalities in the proliferation and/or survival of microglia, oligodendrocytes, and some types of interneurons. Moreover, FcRn KO mice also exhibited abnormalities in social behavior and lower locomotor activity in their home cages. Thus, changes in the mother-derived IgG levels affect brain development in offsprings.


Assuntos
Animais Recém-Nascidos , Encéfalo , Imunoglobulina G , Camundongos Knockout , Animais , Camundongos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Gravidez , Células Cultivadas , Microglia/metabolismo , Receptores Fc/metabolismo , Receptores Fc/genética
19.
Vet Q ; 44(1): 1-9, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38733121

RESUMO

The gut microbiota (GM) is essential for mammalian health. Although the association between infant GM and breast milk (BM) composition has been well established in humans, such a relationship has not been investigated in horses. Hence, this study was conducted to analyze the GM formation of foals during lactation and determine the presence of low-molecular-weight metabolites in mares' BM and their role in shaping foals' GM. The fecal and BM samples from six pairs of foals and mares were subjected to 16S ribosomal RNA metagenomic and metabolomic analyses, respectively. The composition of foal GM changed during lactation time; hierarchical cluster analysis divided the fetal GM into three groups corresponding to different time points in foal development. The level of most metabolites in milk decreased over time with increasing milk yield, while threonic acid and ascorbic acid increased. Further analyses revealed gut bacteria that correlated with changes in milk metabolites; for instance, there was a positive correlation between Bacteroidaceae in the foal's gut microbiota and serine/glycine in the mother's milk. These findings help improve the rearing environment of lactating horses and establish artificial feeding methods for foals.


Assuntos
Animais Recém-Nascidos , Fezes , Microbioma Gastrointestinal , Lactação , Leite , RNA Ribossômico 16S , Animais , Microbioma Gastrointestinal/fisiologia , Cavalos , Feminino , Leite/química , Leite/microbiologia , Fezes/microbiologia , Fezes/química , Animais Recém-Nascidos/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise
20.
Sci Rep ; 14(1): 11444, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769383

RESUMO

Neonatal sepsis is a major cause of childhood mortality. Limited diagnostic tools and mechanistic insights have hampered our abilities to develop prophylactic or therapeutic interventions. Biomarkers in human neonatal sepsis have been repeatedly identified as associated with dysregulation of angiopoietin signaling and altered arachidonic acid metabolism. We here provide the mechanistic evidence in support of the relevance for these observations. Angiopoetin-1 (Ang-1), which promotes vascular integrity, was decreased in blood plasma of human and murine septic newborns. In preclinical models, administration of Ang-1 provided prophylactic protection from septic death. Arachidonic acid metabolism appears to be functionally connected to Ang-1 via reactive oxygen species (ROS) with a direct role of nitric oxide (NO). Strengthening this intersection via oral administration of arachidonic acid and/or the NO donor L-arginine provided prophylactic as well as therapeutic protection from septic death while also increasing plasma Ang-1 levels among septic newborns. Our data highlight that targeting angiogenesis-associated pathways with interventions that increase Ang-1 activity directly or indirectly through ROS/eNOS provide promising avenues to prevent and/or treat severe neonatal sepsis.


Assuntos
Angiopoietina-1 , Sepse Neonatal , Óxido Nítrico , Espécies Reativas de Oxigênio , Humanos , Animais , Recém-Nascido , Angiopoietina-1/sangue , Angiopoietina-1/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/sangue , Ácido Araquidônico/metabolismo , Ácido Araquidônico/sangue , Feminino , Masculino , Arginina/sangue , Arginina/metabolismo , Transdução de Sinais , Óxido Nítrico Sintase Tipo III/metabolismo , Neovascularização Patológica/metabolismo , Biomarcadores/sangue , Modelos Animais de Doenças , Animais Recém-Nascidos , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...