Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.290
Filtrar
1.
Commun Biol ; 7(1): 681, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831027

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH), previously called non-alcoholic steatohepatitis (NASH), is a growing concern worldwide, with liver fibrosis being a critical determinant of its prognosis. Monocyte-derived macrophages have been implicated in MASH-associated liver fibrosis, yet their precise roles and the underlying differentiation mechanisms remain elusive. In this study, we unveil a key orchestrator of this process: long chain saturated fatty acid-Egr2 pathway. Our findings identify the transcription factor Egr2 as the driving force behind monocyte differentiation into hepatic lipid-associated macrophages (hLAMs) within MASH liver. Notably, Egr2-deficiency reroutes monocyte differentiation towards a macrophage subset resembling resident Kupffer cells, hampering hLAM formation. This shift has a profound impact, suppressing the transition from benign steatosis to liver fibrosis, demonstrating the critical pro-fibrotic role played by hLAMs in MASH pathogenesis. Long-chain saturated fatty acids that accumulate in MASH liver emerge as potent inducers of Egr2 expression in macrophages, a process counteracted by unsaturated fatty acids. Furthermore, oral oleic acid administration effectively reduces hLAMs in MASH mice. In conclusion, our work not only elucidates the intricate interplay between saturated fatty acids, Egr2, and monocyte-derived macrophages but also highlights the therapeutic promise of targeting the saturated fatty acid-Egr2 axis in monocytes for MASH management.


Assuntos
Diferenciação Celular , Proteína 2 de Resposta de Crescimento Precoce , Cirrose Hepática , Macrófagos , Monócitos , Hepatopatia Gordurosa não Alcoólica , Animais , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Camundongos , Monócitos/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Fígado/metabolismo , Fígado/patologia , Antígenos Ly
2.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 14-20, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836687

RESUMO

Colorectal cancer (CRC) poses a significant global health challenge with high morbidity and mortality rates. This study investigates the role of LY6G6D, a member of the LY6/uPAR superfamily, in CRC. Employing a bioinformatic approach, we analyzed LY6G6D expression across different cancer types, compared it with known oncogenes in CRC, explored the involved genomic alterations, and assessed associated clinicopathological characteristics. LY6G6D exhibited aberrant expression, particularly elevated in CRC adenocarcinoma and highly specific to tumor tissues when compared with other oncogenes, despite its comparatively low frequency of genomic alteration. Subsequently, tumor immune infiltration analysis revealed distinct associations, primarily indicating a negative correlation, suggesting immune down-regulation. Survival analysis in context of LY6G6D was conducted with Kaplan-Meier (KM) curves, indicating a 10% risk of disease recurrence in the case of elevated expression. Additionally, we constructed a 3D protein model of LY6G6D through ab-inito approach. The protein model was validated, followed by conservation analysis and active site identification. Active site identification of LY6G6D's final predicted model revealed some similar sites that were estimated to be conserved. Target-guided drug molecules were collected and molecular docking was executed, proposing Cardigin (Digitoxin) and Manzamine A as potential therapeutic candidates. In conclusion, LY6G6D emerges as a significant biomarker for diagnostic and therapeutic applications in CRC, highlighting its multifaceted role in tumorigenesis. The proposed drugs present avenues for further investigations.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Simulação de Acoplamento Molecular , Antígenos Ly/metabolismo , Antígenos Ly/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética
3.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38876796

RESUMO

Innate lymphoid cells (ILCs) are critical for intestinal adaptation to microenvironmental challenges, and the gut mucosa is characterized by low oxygen. Adaptation to low oxygen is mediated by hypoxia-inducible transcription factors (HIFs), and the HIF-1α subunit shapes an ILC phenotype upon acute colitis that contributes to intestinal damage. However, the impact of HIF signaling in NKp46+ ILCs in the context of repetitive mucosal damage and chronic inflammation, as it typically occurs during inflammatory bowel disease, is unknown. In chronic colitis, mice lacking the HIF-1α isoform in NKp46+ ILCs show a decrease in NKp46+ ILC1s but a concomitant rise in neutrophils and Ly6Chigh macrophages. Single-nucleus RNA sequencing suggests enhanced interaction of mesenchymal cells with other cell compartments in the colon of HIF-1α KO mice and a loss of mucus-producing enterocytes and intestinal stem cells. This was, furthermore, associated with increased bone morphogenetic pathway-integrin signaling, expansion of fibroblast subsets, and intestinal fibrosis. In summary, this suggests that HIF-1α-mediated ILC1 activation, although detrimental upon acute colitis, protects against excessive inflammation and fibrosis during chronic intestinal damage.


Assuntos
Colite , Fibrose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Linfócitos , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Camundongos , Colite/metabolismo , Colite/genética , Linfócitos/metabolismo , Linfócitos/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Doença Crônica , Imunidade Inata , Transdução de Sinais , Modelos Animais de Doenças , Masculino , Intestinos/patologia , Antígenos Ly
4.
Cells ; 13(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891050

RESUMO

Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6G-Ly6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair.


Assuntos
Antígenos Ly , Diferenciação Celular , Inflamação , Macrófagos , Monócitos , Fosforilação Oxidativa , Monócitos/metabolismo , Animais , Macrófagos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Humanos , Camundongos , Antígenos Ly/metabolismo , Quimiotaxia , Camundongos Endogâmicos C57BL , Peritonite/metabolismo , Peritonite/induzido quimicamente , Peritonite/patologia , Zimosan/farmacologia , Mitocôndrias/metabolismo , Reprogramação Celular
5.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791382

RESUMO

The identification of targets that are expressed on the cell membrane is a main goal in cancer research. The Lymphocyte Antigen 6 Family Member G6D (LY6G6D) gene codes for a protein that is mainly present on the surface of colorectal cancer (CRC) cells. Therapeutic strategies against this protein like the development of T cell engagers (TCE) are currently in the early clinical stage. In the present work, we interrogated public genomic datasets including TCGA to evaluate the genomic and immunologic cell profile present in tumors with high expression of LY6G6D. We used data from TCGA, among others, and the Tumor Immune Estimation Resource (TIMER2.0) platform for immune cell estimations and Spearman correlation tests. LY6G6D expression was exclusively present in CRC, particularly in the microsatellite stable (MSS) subtype, and was associated with left-side tumors and the canonical genomic subgroup. Tumors with mutations of APC and p53 expressed elevated levels of LY6G6D. This protein was expressed in tumors with an inert immune microenvironment with an absence of immune cells and co-inhibitory molecules. In conclusion, we described clinical, genomic and immune-pathologic characteristics that can be used to optimize the clinical development of agents against this target. Future studies should be performed to confirm these findings and potentially explore the suggested clinical development options.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Feminino , Masculino , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Mutação , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Antígenos Ly/metabolismo , Antígenos Ly/genética , Antígenos B7/genética , Antígenos B7/metabolismo
6.
Reproduction ; 168(1)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718815

RESUMO

In brief: Progenitor cells with ovulation-related tissue repair activity were identified with defined markers (LGR5, EPCR, LY6A, and PDGFRA), but their potentials to form steroidogenic cells were not known. This study shows that the cells can generate progenies with different steroidogenic activities. Abstract: Adult mammalian ovaries contain stem/progenitor cells necessary for folliculogenesis and ovulation-related tissue rupture repair. Theca cells are recruited and developed from progenitors during the folliculogenesis. Theca cell progenitors were not well defined. The aim of current study is to compare the potentials of four ovarian progenitors with defined markers (LY6A, EPCR, LGR5, and PDGFRA) to form steroidogenic theca cells in vitro. The location of the progenitors with defined makers was determined by immunohistochemistry and immunofluorescence staining of ovarian sections of adult mice. Different progenitor populations were purified by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) techniques from ovarian cell preparation and were tested for their abilities to generate steroidogenic theca cells in vitro. The cells were differentiated with a medium containing LH, ITS, and DHH agonist for 12 days. The results showed that EPCR+ and LGR5+ cells primarily distributed along the ovarian surface epithelium (OSE), while LY6A+ cells distributed in both the OSE and parenchyma. However, PDGFRA+ cells were exclusively located in interstitial compartment. When the progenitors were purified by these markers and differentiated in vitro, LY6A+ and PDGFRA+ cells formed steroidogenic cells expressing both CYP11A1 and CYP17A1 and primarily producing androgens, showing characteristics of theca-like cells, while LGR5+ cells generated steroidogenic cells devoid of CYP17A1 expression and androgen production, showing a characteristic of progesterone-producing cells (granulosa- or lutea-like cells). In conclusion, progenitors from both OSE and parenchyma of adult mice are capable of generating steroidogenic cells with different steroidogenic capacities, showing a possible lineage preference.


Assuntos
Diferenciação Celular , Receptores Acoplados a Proteínas G , Células-Tronco , Células Tecais , Animais , Feminino , Células Tecais/metabolismo , Células Tecais/citologia , Camundongos , Células-Tronco/metabolismo , Células-Tronco/citologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Antígenos Ly/metabolismo , Células Cultivadas , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Ovário/citologia , Ovário/metabolismo , Camundongos Endogâmicos C57BL , Biomarcadores/metabolismo
7.
Cells ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38786041

RESUMO

Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice.


Assuntos
Receptor 1 de Quimiocina CX3C , Citometria de Fluxo , Monócitos , Receptores CCR2 , Animais , Receptores CCR2/metabolismo , Receptores CCR2/genética , Monócitos/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Camundongos , Anticorpos/imunologia , Genes Reporter , Fenótipo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Fluorescência Verde/metabolismo , Antígenos Ly/metabolismo , Antígenos Ly/genética
8.
Front Immunol ; 15: 1368099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665923

RESUMO

Early increase in the level of endothelial progenitor cells (EPCs) in the systemic circulation occurs in patients with septic infection/sepsis. The significance and underlying mechanisms of this response remain unclear. This study investigated the bone marrow EPC response in adult mice with septic infection induced by intravenous injection (i.v.) of Escherichia coli. For in vitro experiments, sorted marrow stem/progenitor cells (SPCs) including lineage(lin)-stem cell factor receptor (c-kit)+stem cell antigen-1 (Sca-1)-, lin-c-kit+, and lin- cells were cultured with or without lipopolysaccharides (LPSs) and recombinant murine vascular endothelial growth factor (VEGF) in the absence and presence of anti-Sca-1 crosslinking antibodies. In a separate set of experiments, marrow lin-c-kit+ cells from green fluorescence protein (GFP)+ mice, i.v. challenged with heat-inactivated E. coli or saline for 24 h, were subcutaneously implanted in Matrigel plugs for 5 weeks. Marrow lin-c-kit+ cells from Sca-1 knockout (KO) mice challenged with heat-inactivated E. coli for 24 h were cultured in the Matrigel medium for 8 weeks. The marrow pool of EPCs bearing the lin-c-kit+Sca-1+VEGF receptor 2 (VEGFR2)+ (LKS VEGFR2+) and LKS CD133+VEGFR2+ surface markers expanded rapidly following septic infection, which was supported by both proliferative activation and phenotypic conversion of marrow stem/progenitor cells. Increase in marrow EPCs and their reprogramming for enhancing angiogenic activity correlated with cell-marked upregulation of Sca-1 expression. Sca-1 was coupled with Ras-related C3 botulinum toxin substrate 2 (Rac2) in signaling the marrow EPC response. Septic infection caused a substantial increase in plasma levels of IFN-γ, VEGF, G-CSF, and SDF-1. The early increase in circulating EPCs was accompanied by their active homing and incorporation into pulmonary microvasculature. These results demonstrate that the marrow EPC response is a critical component of the host defense system. Sca-1 signaling plays a pivotal role in the regulation of EPC response in mice with septic infection.


Assuntos
Células Progenitoras Endoteliais , Proteínas de Membrana , Sepse , Animais , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/imunologia , Sepse/imunologia , Sepse/metabolismo , Camundongos , Camundongos Knockout , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos Ly/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/imunologia , Células Cultivadas , Masculino
9.
Skin Res Technol ; 30(2): e13572, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38279596

RESUMO

BACKGROUND: Psoriasis is a chronic, inflammatory skin disease that is common and relapses easily. While the importance of keratinocyte proliferation in psoriasis development is well-documented, the specific functional subpopulations of epidermal keratinocytes associated with this disease remain enigmatic. MATERIALS AND METHODS: Therefore, in our analysis of single-cell transcriptome data from both normal and psoriatic skin tissues, we observed significant increases in certain keratinocytes in the stratum corneum (KC) and stratum granulosum (KG) within psoriatic skin. Furthermore, we identified upregulated expression of specific secreted factors known to promote inflammatory responses. Additionally, we conducted a KEGG pathway enrichment analysis on these identified subsets. RESULTS: In the stratum corneum, the expression of FTL was upregulated in HIST1H1C+ KC. S100P+ KC displayed a significant increase in the expression of both S100P and S100A10, whereas PRR9+ KC showed upregulated expression of DEFB4B, S100A8, and S100A12. SLURP1+ KC was characterized by elevated expression levels of IL-36G, SLURP1, and S100A12. Meanwhile, in the stratum granulosum, KRT1+ KG highly expressed SLURP1, S100A7, S100A8, and S100A9, while DEFB4B expression was upregulated in PI3+ KG. Our findings indicated that subsets within the stratum corneum primarily participate in pathways related to MAPK, NOD-like receptors, HIF-1, cell senescence, and other crucial processes. In contrast, subsets in the stratum granulosum were predominantly associated with pathways involving MAPK, NOD-like receptors, HIF-1, Hippo, mTOR, and IL-17. CONCLUSION: These findings not only uncover the keratinocyte subsets linked to psoriasis but also unveil the molecular mechanisms and related signaling pathways that drive psoriasis development. This knowledge opens new horizons for the development of innovative clinical treatment strategies for psoriasis.


Assuntos
Psoríase , Proteína S100A12 , Humanos , Proteína S100A12/metabolismo , Análise da Expressão Gênica de Célula Única , Queratinócitos/metabolismo , Psoríase/genética , Proteínas NLR/metabolismo , Antígenos Ly/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
10.
J Invest Dermatol ; 144(3): 520-530.e2, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37739337

RESUMO

The roles of innate immune cells, including eosinophils, basophils, and group 2 innate lymphoid cells, in atopic dermatitis (AD) have been well-documented, whereas that of monocytes, another component of the innate immunity, remains rather poorly understood, thus necessitating the topic of this study. In addition, cytokines and cellular pathways needed for the resolution of type 2 inflammation in AD need further investigation. Using a murine AD model, we report here that (i) Ly6Chi monocytes were rapidly recruited to the AD lesion in a CCR2-dependent manner, blockade of which exacerbated AD; (ii) type I IFN production is profoundly involved in this suppression because the blockade of it by genetic depletion or antibody neutralization exacerbated AD; and (iii) Ly6Chi monocytes operate through the production of type I IFN because Ly6Chi monocytes from Irf7-null mice, which lack type I IFN production, failed to rescue Ccr2-/- mice from severe AD upon adoptive transfer. In addition, in vitro studies demonstrated type I IFN suppressed basophil expansion from bone marrow progenitor cells and survival of mature basophils. Collectively, our work suggests that Ly6Chi monocytes are the first and dominant inflammatory cells reaching AD lesions that negatively regulate type 2 inflammation through the production of type I IFN.


Assuntos
Dermatite Atópica , Monócitos , Camundongos , Animais , Dermatite Atópica/patologia , Imunidade Inata , Modelos Animais de Doenças , Linfócitos/metabolismo , Inflamação/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Antígenos Ly/metabolismo
11.
BMJ Open Ophthalmol ; 8(Suppl 2): A13, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37604555

RESUMO

PURPOSE: We evaluated the suitability of 2% human platelet lysate (2%HPL) to replace 2% fetal bovine serum containing medium (2%FBS) for the xeno-free organ culture of human donor corneas. METHODS: 32 human corneas unsuitable for transplantation from 16 human donors (age 69.3±15.7years) were collected 38.5±17.1 hours after death. They were first cultured in 2%FBS containing medium for 3 days (time point TP1), then evaluated by phase contrast microscopy (endothelial cell density (ECD) and cell morphology. Following an additional 25-days culture period (time point TP2) in either 2%FBS or 2%HPL medium the pairs were again compared by phase contrast microscopy (ECD and morphology), stroma and Descemet membrane/endothelium (DmE) were processed for next generation sequencing (NGS). RESULTS: ECD did not differ between the 2%HPL and 2%FBS group at TP1 (p=0.87). At TP2 the ECD was higher in the 2%HPL group (2179±288cells/mm2) compared to 2%FBS (2113±331cells/mm2; p=0.03), and endothelial cell loss was lower (ECL hPL=-0.7% vs. FBS=-3.8%; p=0.01). There were no significant differences in cell morphology, neither between TP1 and 2 nor between 2%HPL and 2%FBS. NGS showed the differential expression of 1644 genes in endothelial and 217 genes in stromal cells. 2%HPL led to the upregulation of cytoprotective, anti-inflammatory and anti-fibrotic genes (e.g. HMOX1, SERPINE1, ANGPTL4, LEFTY2, GADD45B, PLIN2, PTX3, GFRA1/2) and the downregulation of pro-inflammatory/apoptotic genes (e.g. CXCL14, SIK1B, PLK5, PPP2R3B, SLURP1, FABP5, MAL, GATA3). CONCLUSION: 2%HPL is a suitable xeno-free substitution for 2%FBS in human cornea organ culture, inducing less ECL and potentially beneficial alterations in gene expression.


Assuntos
Córnea , Doadores de Tecidos , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Regulação para Baixo , Células Endoteliais , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos Ly , Ativador de Plasminogênio Tipo Uroquinase , Proteínas de Ligação a Ácido Graxo
12.
BMC Med Genomics ; 16(1): 152, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393290

RESUMO

BACKGROUND: Mal de Meleda is an autosomal recessive palmoplantar keratoderma, with SLURP1 identified as the pathogenic gene responsible. Although over 20 mutations in SLURP1 have been reported, only the mutation c.256G > A (p.G87R) has been detected in Chinese patients. Here, we report a novel heterozygous SLURP1 mutation in a Chinese family. METHODS: We assessed the clinical manifestations of two Chinese patients with Mal de Meleda and collected specimens from the patients and other family members for whole-exome and Sanger sequencing. We used algorithms (MutationTaster, SIFT, PolyPhen-2, PROVEAN, PANTHER, FATHMM, mCSM, SDM and DUET) to predict the pathogenetic potential of the mutation detected. We also employed AlphaFold2 and PyMOL for protein structure analysis. RESULTS: Both patients displayed the typical manifestation of palmoplantar keratoderma. In Proband 1, we detected a novel compound heterozygous mutation (c.243C > A and c.256G > A) in exon 3 of SLURP1. Proband 2 was an adult female born to a consanguineous family and carried a homozygous mutation (c.211C > T). Algorithms indicated both mutations to be probably disease causing. We used AlphaFold2 to predict the protein structure of these mutations and found that they cause instability, as shown by PyMOL. CONCLUSIONS: Our study identified a novel compound heterozygous mutation (c.243C > A and c.256G > A) in a Chinese patient with Mal de Meleda that has the potential to cause instability in protein structure. Moreover, this study expands on the existing knowledge of SLURP1 mutations and contributes to knowledge of Mal de Meleda.


Assuntos
Antígenos Ly , População do Leste Asiático , Ceratodermia Palmar e Plantar , Ativador de Plasminogênio Tipo Uroquinase , Adulto , Feminino , Humanos , Algoritmos , Antígenos Ly/genética , Ceratodermia Palmar e Plantar/genética , Mutação , Ativador de Plasminogênio Tipo Uroquinase/genética
13.
J Virol ; 97(6): e0017423, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199615

RESUMO

Unbiased in vivo selections of diverse capsid libraries can yield engineered capsids that overcome gene therapy delivery challenges like traversing the blood-brain barrier (BBB), but little is known about the parameters of capsid-receptor interactions that govern their improved activity. This hampers broader efforts in precision capsid engineering and is a practical impediment to ensuring the translatability of capsid properties between preclinical animal models and human clinical trials. In this work, we utilize the adeno-associated virus (AAV)-PHP.B-Ly6a model system to better understand the targeted delivery and BBB penetration properties of AAV vectors. This model offers a defined capsid-receptor pair that can be used to systematically define relationships between target receptor affinity and in vivo activity of engineered AAV vectors. Here, we report a high-throughput method for quantifying capsid-receptor affinity and demonstrate that direct binding assays can be used to organize a vector library into families with varied affinity for their target receptor. Our data indicate that efficient central nervous system transduction requires high levels of target receptor expression at the BBB, but it is not a requirement for receptor expression to be limited to the target tissue. We observed that enhanced receptor affinity leads to reduced transduction of off-target tissues but can negatively impact on-target cellular transduction and penetration of endothelial barriers. Together, this work provides a set of tools for defining vector-receptor affinities and demonstrates how receptor expression and affinity interact to impact the performance of engineered AAV vectors in targeting the central nervous system. IMPORTANCE Novel methods for measuring adeno-associated virus (AAV)-receptor affinities, especially in relation to vector performance in vivo, would be useful to capsid engineers as they develop AAV vectors for gene therapy applications and characterize their interactions with native or engineered receptors. Here, we use the AAV-PHP.B-Ly6a model system to assess the impact of receptor affinity on the systemic delivery and endothelial penetration properties of AAV-PHP.B vectors. We discuss how receptor affinity analysis can be used to isolate vectors with optimized properties, improve the interpretation of library selections, and ultimately translate vector activities between preclinical animal models and humans.


Assuntos
Capsídeo , Dependovirus , Vetores Genéticos , Receptores Virais , Humanos , Antígenos Ly/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Receptores Virais/metabolismo , Ligação Proteica/genética , Peptídeos/genética , Biblioteca de Peptídeos , Transgenes/genética , Expressão Gênica , Células HEK293 , Endotélio/metabolismo
14.
Sci Signal ; 16(780): eabq0752, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37040441

RESUMO

Natural killer (NK) cells recognize virally infected cells and tumors. NK cell function depends on balanced signaling from activating receptors, recognizing products from tumors or viruses, and inhibitory receptors (such as KIR/Ly49), which recognize major histocompatibility complex class I (MHC-I) molecules. KIR/Ly49 signaling preserves tolerance to self but also conveys reactivity toward MHC-I-low target cells in a process known as NK cell education. Here, we found that NK cell tolerance and education were determined by the subcellular localization of the tyrosine phosphatase SHP-1. In mice lacking MHC-I molecules, uneducated, self-tolerant Ly49A+ NK cells showed accumulation of SHP-1 in the activating immune synapse, where it colocalized with F-actin and the signaling adaptor protein SLP-76. Education of Ly49A+ NK cells by the MHC-I molecule H2Dd led to reduced synaptic accumulation of SHP-1, accompanied by augmented signaling from activating receptors. Education was also linked to reduced transcription of Ptpn6, which encodes SHP-1. Moreover, synaptic SHP-1 accumulation was reduced in NK cells carrying the H2Dd-educated receptor Ly49G2 but not in those carrying the noneducating receptor Ly49I. Colocalization of Ly49A and SHP-1 outside of the synapse was more frequent in educated compared with uneducated NK cells, suggesting a role for Ly49A in preventing synaptic SHP-1 accumulation in NK cell education. Thus, distinct patterning of SHP-1 in the activating NK cell synapse may determine NK cell tolerance.


Assuntos
Antígenos Ly , Células Matadoras Naturais , Camundongos , Animais , Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos Ly/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Sinapses/metabolismo
15.
Cancer Med ; 12(11): 12593-12607, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076981

RESUMO

BACKGROUND: Lymphocyte antigen 6 complex locus K (LY6K), a glycosylphosphatidylinositol-anchored protein, plays a dynamic role in cancer metastasis. In the current study, we deciphered the effects of LY6K on transforming growth factor-ß (TGF-ß) and epidermal growth factor (EGF) signaling through clathrin- and caveolin-1 (CAV-1)-mediated endocytosis. METHODS: Analysis of the TCGA and GTEx dataset were performed to explore the expression and survival of LY6K in cancer patients. Short interfering RNA (siRNA) was used to knockdown the expression of LY6K in human cervical cancer patients. The effect of lack of LY6K on cell proliferation, migration, and invasion was performed, and RT-qPCR and immunoblotting were performed to identify LY6K-affected TGF-ß and EGF signaling pathways. Additionally, Immunofluorescence (IF) and transmission electron microscope (TEM) were performed to identify the role of LY6K in CAV-1- and Clathrin-mediated endocytosis. RESULTS: Lymphocyte antigen 6 complex locus K expression level is elevated in higher grade cervical cancer patients correlating with poor overall survival, progression-free survival, and disease-free survival. LY6K-depletion in HeLa and SiHa cancer cells suppressed EGF-induced proliferation and TGF-ß-enhanced migration and invasion. Both TGF-ß receptor-I (TßRI) and EGF receptor (EGFR) localized at the plasma membrane regardless of LY6K expression, and LY6K bound TßRI irrespective of the presence of TGF-ß; however, LY6K did not bind EGFR. LY6K-depleted cells showed impaired Smad2 phosphorylation upon TGF-ß treatment and lower proliferation rates following long-term treatment with EGF. We revealed the atypical movement of TßRI and EGFR from plasma membrane upon ligand stimulation in LY6K-depleted cells and an impaired movement of the endocytic proteins clathrin and CAV-1. CONCLUSIONS: Our study demonstrates the key role of LY6K in both clathrin- and CAV-1-mediated endocytic pathways regulated by TGF-ß and EGF, and it suggests a correlation between LY6K overexpression in cervical cancer cells and poor overall survival.


Assuntos
Fator de Crescimento Epidérmico , Neoplasias do Colo do Útero , Feminino , Humanos , Fator de Crescimento Transformador beta , Neoplasias do Colo do Útero/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Clatrina/metabolismo , Antígenos Ly , Proteínas Ligadas por GPI
16.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902453

RESUMO

Ly108 (SLAMF6) is a homophilic cell surface molecule that binds SLAM-associated protein (SAP), an intracellular adapter protein that modulates humoral immune responses. Furthermore, Ly108 is crucial for the development of natural killer T (NKT) cells and CTL cytotoxicity. Significant attention has been paid towards expression and function of Ly108 since multiple isoforms were identified, i.e., Ly108-1, Ly108-2, Ly108-3, and Ly108-H1, some of which are differentially expressed in several mouse strains. Surprisingly, Ly108-H1 appeared to protect against disease in a congenic mouse model of Lupus. Here, we use cell lines to further define Ly108-H1 function in comparison with other isoforms. We show that Ly108-H1 inhibits IL-2 production while having little effect upon cell death. With a refined method, we could detect phosphorylation of Ly108-H1 and show that SAP binding is retained. We propose that Ly108-H1 may regulate signaling at two levels by retaining the capability to bind its extracellular as well as intracellular ligands, possibly inhibiting downstream pathways. In addition, we detected Ly108-3 in primary cells and show that this isoform is also differentially expressed between mouse strains. The presence of additional binding motifs and a non-synonymous SNP in Ly108-3 further extends the diversity between murine strains. This work highlights the importance of isoform awareness, as inherent homology can present a challenge when interpreting mRNA and protein expression data, especially as alternatively splicing potentially affects function.


Assuntos
Antígenos Ly , Transdução de Sinais , Animais , Camundongos , Antígenos Ly/genética , Linhagem Celular , Fosforilação , Isoformas de Proteínas/genética
17.
Cancer Lett ; 558: 216094, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805500

RESUMO

Lymphocyte antigen 6K (LY6K) is a small GPI-linked protein that is normally expressed in testes. Increased expression of LY6K is significantly associated with poor survival outcomes in many solid cancers, including cancers of the breast, ovary, gastrointestinal tract, head and neck, brain, bladder, and lung. LY6K is required for ERK-AKT and TGF-ß pathways in cancer cells and is required for in vivo tumor growth. In this report, we describe a novel role for LY6K in mitosis and cytokinesis through aurora B kinase and its substrate histone H3 signaling axis. Further, we describe the structural basis of the molecular interaction of small molecule NSC243928 with LY6K protein and the disruption of LY6K-aurora B signaling in cell cycle progression due to LY6K-NSC243928 interaction. Overall, disruption of LY6K function via NSC243928 led to failed cytokinesis, multinucleated cells, DNA damage, senescence, and apoptosis of cancer cells. LY6K is not required for vital organ function, thus inhibition of LY6K signaling is an ideal therapeutic approach for hard-to-treat cancers that lack targeted therapy such as triple-negative breast cancer.


Assuntos
Neoplasias , Feminino , Humanos , Antígenos Ly , Aurora Quinase B , Aurora Quinases , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Proteínas Ligadas por GPI , Linfócitos
18.
Prog Mol Biol Transl Sci ; 194: 377-393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36631199

RESUMO

Lipid metabolism plays a very important role as the central metabolic process of the body. Lipid metabolism interruptions may cause many chronic diseases, for example, non-alcoholic fatty liver disease (NAFLD), diabetes, and obesity. Secreted Frizzled Related Protein 5 (SFRP5) and Frizzled receptors (FZD) are two newly discovered adipokines that are involved in lipid metabolism as well as lipogenesis. Both of these adipokines affect lipid metabolism and adipogenesis through three WNT signaling pathways (WNTSP): WNT/ß-catenin, WNT/Ca2+, and WNT/JNK. FZD consists of 10 species, which have a cysteine-rich domain (CRD) to bind to the WNT protein for signal transduction. Depending on the type of ligand or co-receptor, they can stimulate or inhibit adipogenesis. In lipid metabolism, they play a role in recognizing fatty acids. In obesity, gene expression of the WNT/FZD receptors is significantly increased. In contrast, SFPR5 serves as an antagonist that can compete with FZD for inhibition of WNTSP. It is believed to have anti-inflammatory potential in obesity and diseases related to abnormal lipid metabolism. In these cases, the expression of SFRP5 is found to be very low leading to the promoted production of proinflammatory cytokines (PICS). Some methods that include using recombinant SFRP5 to improve non-alcoholic steatohepatitis (NASH), using secreted Ly-6/uPAR-related protein 1 (Slurp1) to regulate fat accumulation in the liver through SFRP5, and dietary and lifestyle interventions to improve overweight/obesity have been studied. However, understandings of the molecular mechanisms of these two adipokines and their interactions are very limited. Therefore, more in-depth studies are needed in the future.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Receptores Frizzled , Metabolismo dos Lipídeos , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipocinas/metabolismo , Antígenos Ly/metabolismo , Receptores Frizzled/metabolismo , Obesidade , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Via de Sinalização Wnt
19.
Biomater Sci ; 11(3): 873-893, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36515218

RESUMO

Psoriasis is a refractory and difficult-to-treat skin disorder. The neutrophil-targeting approach represents a promising option for psoriasis therapy. This study developed and examined NIMP-R14-conjugated immunonanoparticles for specific targeting to neutrophils associated with psoriasiform dermatitis. In the process, roflumilast (RFL), as a phosphodiesterase (PDE) 4 inhibitor, was encapsulated in the nanocarriers to assess the anti-inflammatory capability against primary neutrophil activation and murine psoriasiform lesion. The average size and surface charge of the immunonanocarriers were 305 ± 36 nm and -18 ± 6 mV, respectively. The monovalent antibody-conjugated nanoparticles offered precise uptake by both human and mouse neutrophils but failed to exhibit this effect in monocytes and lymphocytes. The intracellular RFL concentration of the immunonanocarriers was five-fold superior to that of the passive counterparts. The immunonanocarriers specifically recognized the neutrophils through the Ly6 antigen with no apparent cytotoxicity. The antibody-conjugated nanoparticles mitigated superoxide anion production and migration of the activated human neutrophils. The in vivo biodistribution in the psoriasiform mice, found using an in vivo imaging system (IVIS) and liquid chromatography (LC)-mass-mass analysis, showed that the antibody conjugation increased the nanoparticle residence in systemic circulation after intravenous administration. On the other hand, most of the nanoparticles were accumulated in the lesional skin after subcutaneous injection. The actively-targeted nanocarriers were better than the free RFL and unfunctionalized nanoparticles in suppressing psoriasiform inflammation. The immunonanocarriers reduced neutrophil recruitment and epidermal hyperplasia in the plaque. Intravenous and subcutaneous treatments with the immunonanocarriers significantly reduced the overexpressed cytokines and chemokines in the inflamed skin, demonstrating that the nanosystems could both systematically and locally alleviate inflammation. The results indicated that the NIMP-R14-conjugated RFL-loaded nanoparticles have potential as an anti-autoimmune disease delivery system for neutrophil targeting.


Assuntos
Antígenos Ly , Dermatite , Psoríase , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Dermatite/patologia , Modelos Animais de Doenças , Inflamação/patologia , Neutrófilos , Psoríase/tratamento farmacológico , Psoríase/patologia , Distribuição Tecidual
20.
Cells ; 11(21)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359801

RESUMO

Neutrophils are crucial innate immune cells but also play key roles in various diseases, such as cancer, where they can perform both pro- and anti-tumorigenic functions. To study the function of neutrophils in vivo, these cells are often depleted using Ly-6G or Gr-1 depleting antibodies or genetic "knockout" models. However, these methods have several limitations, being only partially effective, effective for a short term, and lacking specificity or the ability to conditionally deplete neutrophils. Here, we describe the use of a novel murinized Ly-6G (1A8) antibody. The murinized Ly-6G antibody is of the mouse IgG2a isotype, which is the only isotype that can bind all murine Fcγ receptors and C1q and is, therefore, able to activate antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) pathways. We show that this mouse-Ly-6G antibody shows efficient, long-term, and near-complete (>90%) neutrophil depletion in the peripheral blood of C57Bl6/J, Balb/c, NXG and SCID mice for up to at least four weeks, using a standardized neutrophil depletion strategy. In addition, we show that neutrophils are efficiently depleted in the blood and tumor tissue of IMR32 tumor-bearing SCID mice, analyzed six weeks after the start of the treatment.


Assuntos
Antígenos Ly , Neutrófilos , Camundongos , Animais , Neutrófilos/metabolismo , Antígenos Ly/metabolismo , Camundongos SCID , Anticorpos Monoclonais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...