Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.463
Filtrar
1.
J Environ Manage ; 359: 121048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723498

RESUMO

The microbially induced calcium carbonate precipitation (MICP) technology is an emerging novel and sustainable technique for soil stabilization and remediation. MICP, a microorganism-mediated biomineralization process, has attracted interest for its potential to enhance soil characteristics. The inclusion of biochar, a carbon-rich substance formed by biomass pyrolysis, adds another degree of intricacy to this process. The study highlights the impact of the combination of biochar and MICP together, using a bacterium, Sporosarcina ureae, on soil improvement. This blend of MICP and biochar improved the soil in terms of its geotechnical properties and also enabled the sequestering of carbon safely. It was observed that addition of 4% biochar significantly increased the soil's shear strength parameters (c and φ) as well as its stiffness after 21 treatment cycles. This improvement was because the calcium carbonate precipitate, which acts as a crucial binding agent, increased significantly due to microbial action in the soil-biochar mixture compared to the pure soil sample. The excess carbonate precipitation on account of biochar addition was verified through SEM-EDAX analysis where the images showed noteworthy carbonate precipitation on the surface of particles and increment in the calcium mass at the same treatment cycles when compared with untreated sand. The collaboration between MICP and biochar effectively increased the carbon sequestration within the sand sample. It was observed that at 21 cycles of treatment, the carbon storage within the sand sample increased by almost 3 times at 4% biochar compared to sand without any biochar. The statistical analysis further affirmed that strength depends on both biochar and the number of treatment cycles, whereas carbon sequestration potential is primarily influenced by the biochar content alone. This strategy, as a sustainable and environmentally friendly approach, has the potential to reform soil improvement practices and contribute to both soil strength enhancement and climate change mitigation, supporting the maintenance of ecological balance.


Assuntos
Carbonato de Cálcio , Carvão Vegetal , Solo , Sporosarcina , Carbonato de Cálcio/química , Carvão Vegetal/química , Solo/química , Areia/química
2.
Water Environ Res ; 96(5): e11037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726833

RESUMO

Microbial pollution of recreational waters leads to millions of skin, respiratory, and gastrointestinal illnesses globally. Fecal indicator bacteria (FIB) are monitored to assess recreational waters but may not reflect the presence of Staphylococcus aureus, a global leader in bacterial fatalities. Since many community-acquired S. aureus skin infections are associated with high recreational water usage, this study measured and modeled S. aureus, methicillin-resistant S. aureus (MRSA), and FIB (Enterococcus spp., Clostridium perfringens) concentrations in seawater and sand at six beaches in Hilo, Hawai'i, USA, over 37 sample dates from July 2016 to February 2019 using culturing techniques. Generalized linear models predicted bacterial concentrations with physicochemical and environmental data. Beach visitors were also surveyed on their preferred activities. S. aureus and FIB concentrations were roughly 6-78 times higher at beaches with freshwater discharge than at those without. Seawater concentrations of Enterococcus spp. were positively associated with MRSA but not S. aureus. Elevated S. aureus was associated with lower tidal heights, higher freshwater discharge, onsite sewage disposal system density, and turbidity. Regular monitoring of beaches with freshwater input, utilizing real-time water quality measurements with robust modeling techniques, and raising awareness among recreational water users may mitigate exposure to S. aureus, MRSA, and FIB. PRACTITIONER POINTS: Staphylococcus aureus and fecal bacteria concentrations were higher in seawater and sand at beaches with freshwater discharge. In seawater, Enterococcus spp. positively correlated with MRSA, but not S. aureus. Freshwater discharge, OSDS density, water turbidity, and tides significantly predicted bacterial concentrations in seawater and sand. Predictive bacterial models based upon physicochemical and environmental data developed in this study are readily available for user-friendly application.


Assuntos
Fezes , Água do Mar , Staphylococcus aureus , Água do Mar/microbiologia , Staphylococcus aureus/isolamento & purificação , Havaí , Fezes/microbiologia , Praias , Monitoramento Ambiental , Areia/microbiologia , Microbiologia da Água , Enterococcus/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação
3.
Radiat Environ Biophys ; 63(2): 195-202, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709277

RESUMO

This study investigated natural sand thermoluminescence (TL) response as a possible option for retrospective high-dose gamma dosimetry. The natural sand under investigation was collected from six locations with selection criteria for sampling sites covering the highest probability of exposure to unexpected radiation on the Egyptian coast. Dose-response, glow curve, chemical composition, linearity, and fading rate for different sand samples were studied. Energy Dispersive X-ray Spectroscopy (EDX) analysis revealed differences in chemical composition among the various geological sites, leading to variations in TL glow curve intensity. Sand samples collected from Ras Sedr, Taba, Suez, and Enshas showed similar TL patterns, although with different TL intensities. Beach sands of Matrouh and North Coastal with a high calcite content did not show a clear linear response to the TL technique, in the dose range of 10 Gy up to 30 kGy. The results show that most sand samples are suitable as a radiation dosimeter at accidental levels of exposure. It is proposed here that for high-dose gamma dosimetry with doses ranging from 3 to 10 kGy, a single calibration factor might be enough for TL measurements using sand samples. However, proper calibration might allow dose assessment for doses even up to 30 kGy. Most of the investigated sand samples had nearly stable fading rates after seven days of storage. The Ras Sedr sands sample was the most reliable for retrospective dose reconstruction.


Assuntos
Areia , Dosimetria Termoluminescente , Raios gama , Doses de Radiação , Calibragem
4.
PLoS One ; 19(5): e0300849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753707

RESUMO

The improvement of sandy soils with poor seismic properties to modify their dynamic characteristics is of great importance in seismic design for engineering sites. In this study, a series of dynamic tests on sandy soils sandy soils with poor seismic conditions were conducted using the GCTS resonant column system to investigate the improvements effects of different cement contents on dynamic characteristic parameters. The research findings are as follows: The cement content has certain influences on the dynamic shear modulus, dynamic shear modulus ratio, the maximum dynamic shear modulus, and the damping ratio of sandy soils with poor seismic properties. Among them, the influence on dynamic shear modulus is limited, while the damping ratio is significantly affected. The addition of cement to seismic-poor sandy soils significantly enhances their dynamic characteristics. The most noticeable improvement is observed when the cement content is 8%. Through curve fitting analysis, a relationship equation is established between the maximum dynamic shear modulus and the cement content, and the relevant parameters are provided. A comparative test between the improved soils and the remolded soils reveals that the addition of cement significantly improves the seismic performance of the poor soils. The recommended values for the range of variation of the dynamic shear modulus ratio and damping ratio are provided, considering the effect of improvement. These research findings provide reference guidelines for seismic design and engineering sites.


Assuntos
Materiais de Construção , Terremotos , Solo , Solo/química , Materiais de Construção/análise , Areia/química , Resistência ao Cisalhamento
5.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690765

RESUMO

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Assuntos
Coloides , Recuperação e Remediação Ambiental , Água Subterrânea , Água Subterrânea/química , Coloides/química , Recuperação e Remediação Ambiental/métodos , Polímeros/química , Carvão Vegetal/química , Areia/química , Poluentes Químicos da Água/química , Carbono/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-38787370

RESUMO

A Gram-stain-positive, aerobic, non-mobile and spherical strain, designated ZS9-10T, belonging to the genus Deinococcus was isolated from soil sampled at the Chinese Zhong Shan Station, Antarctica. Growth was observed in the presence of 0-4 % (w/v) NaCl, at pH 7.0-8.0 and at 4-25 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZS9-10T formed a lineage in the genus Deinococcus. It exhibited highest sequence similarity (97.4 %) to Deinococcus marmoris DSM 12784T. The major phospholipids of ZS9-10T were unidentified phosphoglycolipid, unidentified glycolipids and unidentified lipids. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C16 : 1 ω7c. MK-8 was the predominant respiratory quinone. The digital DNA-DNA hybridization and average nucleotide identity values between strain ZS9-10T and its close relative D. marmoris DSM 12784T were 27.4 and 83.9 %, respectively. Based on phenotypic, phylogenetic and genotypic data, a novel species, named Deinococcus arenicola sp. nov., is proposed. The type strain iis ZS9-10T (=CCTCC AB 2019392T=KCTC43192T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Deinococcus , Ácidos Graxos , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Regiões Antárticas , RNA Ribossômico 16S/genética , Deinococcus/genética , Deinococcus/classificação , Deinococcus/isolamento & purificação , Ácidos Graxos/análise , Ácidos Graxos/química , DNA Bacteriano/genética , Fosfolipídeos/análise , Fosfolipídeos/química , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Vitamina K 2/química , Areia/microbiologia
7.
Chemosphere ; 358: 142076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670506

RESUMO

Much of the toxicity in oil sands process-affected water in Athabasca oil sands tailings has been attributed to naphthenic acids (NAs) and associated naphthenic acid fraction compounds (NAFCs). Previous work has characterized the environmental behaviour and fate of these compounds, particularly in the context of constructed treatment wetlands. There is evidence that wetlands can attenuate NAFCs in natural and engineered contexts, but relative contributions of chemical, biotic, and physical adsorption with sequestration require deconvolution. In this work, the objective was to evaluate the extent to which prospective wetland substrate material may adsorb NAFCs using a peat-mineral mix (PMM) sourced from the Athabasca Oil Sands Region (AOSR). The PMM and NAFCs were first mixed and then equilibrated across a range of NAFC concentrations (5-500 mg/L) with moderate ionic strength and hardness (∼200 ppm combined Ca2+ and Mg2+) that approximate wetland water chemistry. Under these experimental conditions, low sorption of NAFCs to PMM was observed, where sorbed concentrations of NAFCs were approximately zero mg/kg at equilibrium. When NAFCs and PMM were mixed and equilibrated together at environmentally relevant concentrations, formula diversity increased more than could be explained by combining constituent spectra. The TOC present in this PMM was largely cellulose-derived, with low levels of thermally recalcitrant carbon (e.g., lignin, black carbon). The apparent enhancement of the concentration and diversity of components in PMM/NAFCs mixtures are likely related to aqueous solubility of some PMM-derived organic materials, as post-hoc combination of dissolved components from PMM and NAFCs cannot replicate enhanced complexity observed when the two components are agitated and equilibrated together.


Assuntos
Ácidos Carboxílicos , Campos de Petróleo e Gás , Solo , Áreas Alagadas , Adsorção , Ácidos Carboxílicos/química , Solo/química , Minerais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Areia/química
8.
Sci Total Environ ; 931: 172831, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38685424

RESUMO

Urban runoff from impermeable surfaces contains various pollutants. Stormwater samples were collected for one year from car parks on the campus of Newcastle University, located in northeast England, to monitor seasonal variation in stormwater properties and leachate quality following stormwater percolation through pilot-scale, outdoor permeable pavements. The pilot study compared an innovative 'pollution munching' permeable pavement with 2 % activated carbon (AC) amendment in the sand base with a conventional, un-amended sand base permeable pavement. Faecal coliforms were detected in stormwater at an average value of 3.75 ± 0.79 log10 CFUs per 100 mL. The permeable pavements without and with AC had mean log removal values of 0.81 ± 0.35 and 0.70 ± 0.35 for these faecal bacteria. The absence of genetic markers for human host associated Bacteroides (HF183) in eleven out of twelve stormwater samples showed that the faecal bacteria were mainly from animal sources. 16S rRNA gene sequencing results confirmed the presence of nitrifying bacteria from the genera Nitrosomonas, Nitrobacter, Nitrosococcus, Nitrospira, and Nitrosospira in stormwater. Nitrification and nitrate leaching was more notable for the conventional permeable pavement and may pose a groundwater pollution risk. Two percent AC amendment of the sand base reduced nitrate and total nitrogen leaching significantly compared with the conventional permeable pavement, by 57 ± 15 % and 40 ± 20 %, respectively. The AC amendment also resulted in significantly reduced Cu and DOC leaching, and lesser accumulation of PAHs by passive samplers embedded in the permeable pavement base. Hydraulic tests showed that the AC amended base layer still met the design specifications for permeable pavements, making it a promising proposition for pollution reduction in Sustainable Drainage Systems (SuDS).


Assuntos
Nitratos , Nitrogênio , Areia , Poluentes Químicos da Água , Nitrogênio/análise , Inglaterra , Poluentes Químicos da Água/análise , Nitratos/análise , Carvão Vegetal/química , Monitoramento Ambiental
9.
PLoS One ; 19(4): e0301296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574046

RESUMO

In this study, the complex interactions between soil types, compaction, and moisture on nitrogen (N) transformation processes such as ammonia (NH3) volatilization, ammonification, nitrification, and denitrification were examined over a 30-day period using a simulated column approach. Two soil types: loam, and sandy loam, were subjected to three compaction treatments-control, surface, and sub-surface compaction-and two moisture regimes, dry and wet. Liquid urea ammonium nitrate (32-0-0) was used as the N fertilizer source at a rate of 200 kg N ha-1. Key indicators of N transformations were measured, including residual concentrations of ammonium (NH4-N) and nitrate (NO3-N), NO3-N leaching, NH3 volatilization, and nitrous oxide (N2O) emissions. Findings revealed that compaction significantly increased residual NH4-N concentrations in deeper soil profiles, with the highest 190.80 mg kg-1 recorded in loam soil under sub-surface compaction and dry conditions. Nitrification rates decreased across both soil types due to compaction, evidenced by elevated residual NH4-N levels. Increased NO3-N leaching was observed in loam soil (178.06 mg L-1), greater than sandy loam (81.11 mg L-1), due to initial higher residual NO3- in loam soil. The interaction of compaction and moisture most affected N2O emissions, with the highest emissions in control treatments during dry weather at 2.88 kg ha -1. Additionally, higher NH3 volatilization was noted in moist sandy loam soil under control conditions at 19.64 kg ha -1. These results highlight the necessity of considering soil texture, moisture, and compaction in implementing sustainable N management strategies in agriculture and suggest recommendations such as avoiding broadcast application in moist sandy loam and loam soil to mitigate NH3 volatilization and enhance N use efficiency, as well as advocating for readjustment of fertilizer rate based on organic matter content to reduce potential NO3-N leaching and N2O emissions, particularly in loam soil.


Assuntos
Nitrogênio , Solo , Fertilizantes/análise , Agricultura , Amônia/análise , Areia , Óxido Nitroso/análise
10.
Huan Jing Ke Xue ; 45(5): 2806-2816, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629543

RESUMO

Net ecosystem productivity (NEP) is an important index for the quantitative evaluation of carbon sources and sinks in terrestrial ecosystems. Based on MOD17A3 and meteorological data, the vegetation NEP was estimated from 2000 to 2021 in the Loess Plateau (LP) and its six ecological subregions of the LP (loess sorghum gully subregions:A1, A2; loess hilly and gully subregions:B1, B2; sandy land and agricultural irrigation subregion:C; and earth-rock mountain and river valley plain subregion:D). Combined with the terrain, remote sensing, and human activity data, Theil-Sen Median trend analysis, correlation analysis, multiple regression residual analysis, and geographic detector were used, respectively, to explore the spatio-temporal characteristics of NEP and its response mechanism to climate, terrain, and human activity. The results showed that:① On the temporal scale, from 2000 to 2021 the annual mean NEP of the LP region (in terms of C) was 104.62 g·(m2·a)-1. The annual mean NEP for both the whole LP and each of the ecological subregions showed a significant increase trend, and the NEP of the LP increased by 6.10 g·(m2·a)-1 during the study period. The highest growth rate of the NEP was 9.04 g·(m2·a)-1, occurring in the A2 subregion of the loess sorghum gully subregions. The subregion C had the lowest growth rate of 2.74 g·(m2·a)-1. Except for the C subregion, all other ecological subregions (A1, A2, B1, B2, and D) were carbon sinks. ② On the spatial scale, the spatial distribution of annual NEP on the LP was significantly different, with the higher NEP distribution in the southeast of the LP and the lower in the northwest of the LP. The high carbon sink area was mainly distributed in the southern part of the loess sorghum gully subregions, and the carbon source area was mainly distributed in the northern part of the loess sorghum gully subregions and most of the C subregion. The high growth rate was mainly distributed in the central and the southern part of the A2 subregion and the southwest part of the B2 subregion. ③ Human activities had the greatest influence on the temporal variation in NEP in the LP and all the ecological subregions, with the correlation coefficient between human activity data and NEP being above 0.80, and the relative contribution rates of human factors was greater than 50%. The spatial distribution was greatly affected by meteorological factors, among which the precipitation and solar radiation were the main factors affecting the spatial changes in the NEP of the LP. The temporal and spatial variations in the NEP in the LP were influenced by natural and human social factors. To some extent, these results can provide a reference for the terrestrial ecosystem in the LP to reduce emissions and increase sinks and to achieve the goal of double carbon.


Assuntos
Clima , Ecossistema , Humanos , Tecnologia de Sensoriamento Remoto , Areia , Carbono/análise , China , Mudança Climática
11.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629562

RESUMO

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Assuntos
Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Solo , Areia , Ácido Cítrico , Poluentes do Solo/análise , China , Grão Comestível/química
12.
PeerJ ; 12: e17165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590706

RESUMO

Background: Plastic waste is a global environmental issue that impacts the well-being of humans, animals, plants, and microorganisms. Microplastic contamination has been previously reported at Kung Wiman Beach, located in Chanthaburi province along with the Eastern Gulf of Thailand. Our research aimed to study the microbial population of the sand and plastisphere and isolate microorganisms with potential plastic degradation activity. Methods: Plastic and sand samples were collected from Kung Wiman Beach for microbial isolation on agar plates. The plastic samples were identified by Fourier-transform infrared spectroscopy. Plastic degradation properties were evaluated by observing the halo zone on mineral salts medium (MSM) supplemented with emulsified plastics, including polystyrene (PS), polylactic acid (PLA), polyvinyl chloride (PVC), and bis (2-hydroxyethyl) terephthalate (BHET). Bacteria and fungi were identified by analyzing nucleotide sequence analysis of the 16S rRNA and internal transcribed spacer (ITS) regions, respectively. 16S and ITS microbiomes analysis was conducted on the total DNA extracted from each sample to assess the microbial communities. Results: Of 16 plastic samples, five were identified as polypropylene (PP), four as polystyrene (PS), four as polyethylene terephthalate (PET), two as high-density polyethylene (HDPE), and one sample remained unidentified. Only 27 bacterial and 38 fungal isolates were found to have the ability to degrade PLA or BHET on MSM agar. However, none showed degradation capabilities for PS or PVC on MSM agar. Notably, Planococcus sp. PP5 showed the highest hydrolysis capacity of 1.64 ± 0.12. The 16S rRNA analysis revealed 13 bacterial genera, with seven showing plastic degradation abilities: Salipiger, Planococcus, Psychrobacter, Shewanella, Jonesia, Bacillus, and Kocuria. This study reports, for the first time of the BHET-degrading properties of the genera Planococcus and Jonesia. Additionally, The ITS analysis identified nine fungal genera, five of which demonstrated plastic degradation abilities: Aspergillus, Penicillium, Peacilomyces, Absidia, and Cochliobolus. Microbial community composition analysis and linear discriminant analysis effect size revealed certain dominant microbial groups in the plastic and sand samples that were absent under culture-dependent conditions. Furthermore, 16S and ITS amplicon microbiome analysis revealed microbial groups were significantly different in the plastic and sand samples collected. Conclusions: We reported on the microbial communities found on the plastisphere at Kung Wiman Beach and isolated and identified microbes with the capacity to degrade PLA and BHET.


Assuntos
Actinomycetales , Microbiota , Actinomycetales/genética , Ágar/metabolismo , Bactérias/genética , Microbiota/genética , Plásticos/metabolismo , Poliésteres/metabolismo , Poliestirenos/metabolismo , RNA Ribossômico 16S/genética , Areia
13.
PLoS One ; 19(4): e0298720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630661

RESUMO

Geological evidence, such as tsunami deposits, is crucial for studying the largest rupture zone of the Kuril Trench in Hokkaido, Japan, due to its poor historical record. Although 17th-century tsunami deposits are widely distributed across Hokkaido, the presence of multiple wave sources during that period, including the collapse of Mt. Komagatake, complicates the correlation with their wave sources. Understanding the regional distribution of these tsunami deposits can provide valuable data to estimate the magnitude of megathrust earthquakes in the Kuril Trench. The northern part of Hidaka, Hokkaido, where tsunamis from multiple wave sources are expected to overlap, is distant from the Kuril Trench. To clarify the depositional history of tsunami deposits in such distal areas, evaluating the influence of the depositional environments on the event layer preservation becomes even more critical. We conducted field surveys in Kabari, located in the northern Hidaka region, identifying three sand layers from the 10th to the 17th century and two layers dating beyond 2.3 thousand years ago. The depositional ages of most sand layers potentially correlate with tsunami deposits resulting from the Kuril Trench earthquakes. Utilizing reconstructed paleo-sea level data, we estimated that most sand layers reached approximately 2 m in height. However, it is noteworthy that the latest sand layer from the 17th century exhibited an unusual distribution, more than 3 m in height. This suggests a different wave source as the Mt. Komagatake collapse. The discovery of multiple sand layers and their distributions is crucial to constraining the maximum magnitude of giant earthquakes in the Kuril Trench and understanding the volcanic tsunami events related to Mt. Komagatake.


Assuntos
Terremotos , Tsunamis , Japão , Areia , Geologia
14.
Ying Yong Sheng Tai Xue Bao ; 35(3): 687-694, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646756

RESUMO

Understanding land structure change and stability in the process of oasisization is particularly important for the desertification control in sandy land. Based on land use data of eight periods from 1980 to 2020, we extracted the spatial distribution information of oasis land in Mu Us Sandy Land, and analyzed the spatio-temporal variations of land transformation patterns and stability of oasis land with overlay analysis and grid analysis. The results showed that desertification in the Mu Us Sandy Land had reversed, with a significant process of oasis. The area of forest and grassland increased from 10.2% in 1980 to 73.7% in 2020, while the area of oasisization land increased from 32500 km2 in 1980 to 33900 km2 in 2020. The area of extremely severe, severe, and moderate desertification significantly decreased, while the area of non-desertification and mild desertification obviously increased. The four patterns of oasisization land transformation, including stability, fluctuation, expansion, and retreat, which accounted for 78.7%, 12.2%, 6.2%, and 2.9% of the oasisization land area in 2020, respectively. The oasisization land with low change intensity (the cumulative change intensity less than 0.12) in the Mu Us Sandy Land accounted for 82.7% of the total oasisization area, and the oasisization land in the sandy land was generally stable. Zoning management strategies should be applied according to the stability of sand belt and transformation pattern of oasisization land to achieve the goal of efficient system management and improvement, including eliminating sand hazards at desertification expansion areas with strong wind and sand activities, consolidating sand resources at oasisization areas where ecologically fragile desertification was frequent, and sustainably managing and utilizing sand resources at stable expansion of oases in forest- and grass-rich oasisization areas.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Árvores/crescimento & desenvolvimento , Dióxido de Silício , Florestas , Pradaria , Areia , Poaceae/crescimento & desenvolvimento
15.
J Environ Radioact ; 275: 107430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615506

RESUMO

Clay colloids in the subsurface environment have a strong adsorption capacity for radionuclides, and the mobile colloids will carry the nuclides for migration, which would promote the movability of radionuclides in the groundwater environment and pose a threat to the ecosphere. The investigations of the adsorption/desorption behaviors of radionuclides in colloids and porous media are significant for the evaluation of the geological disposal of radioactive wastes. To illustrate the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand systems at different pH (5, 7 and 9), ionic strengths (0, 0.1 and 5 mM), colloid concentrations (300 and 900 mg/L), nuclide concentrations (500, 800, 1100 and 1400 Bq/mL) and grain sizes (40 and 60 mesh), a series of batch sorption-desorption experiments were conducted. Combining the analysis of the physical and chemical properties of Na-montmorillonite with the Freundlich model, the influencing mechanism of different controlling factors is discussed. The experimental results show that the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand strongly are influenced by the pH value and ionic strength of a solution, the colloid concentration as well as quartz sand grain size. The adsorption and desorption isotherms within all the experimental conditions could be well-fitted by the Freundlich model and the correlation coefficients (R2) are bigger than 0.9. With the increase in pH, the adsorption partition coefficient (Kd) at 241Am(Ⅲ)-Na-montmorillonite colloid two-phase system and 241Am(Ⅲ)-Na-montmorillonite colloid-quartz sand three-phase system presents a trend which increases firstly followed by decreasing, due to the changes in the morphology of Am with pH. The Kd of 241Am(Ⅲ) adsorption on montmorillonite colloid and quartz sand decreases with increasing in ionic strength, which is mainly attributed to the competitive adsorption, surface complexation and the reduction of surface zeta potential. Additionally, the Kd increases with increasing colloid concentrations because of the increase in adsorption sites. When the mean grain diameter changes from 0.45 to 0.3 mm, the adsorption variation trends of 241Am(Ⅲ) remain basically unchanged. The research results obtained in this work are meaningful and helpful in understanding the migration behaviors of radionuclides in the underground environment.


Assuntos
Amerício , Bentonita , Coloides , Quartzo , Bentonita/química , Concentração Osmolar , Adsorção , Concentração de Íons de Hidrogênio , Coloides/química , Quartzo/química , Amerício/química , Amerício/análise , Poluentes Radioativos da Água/química , Poluentes Radioativos da Água/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/química , Modelos Químicos , Tamanho da Partícula , Areia/química
16.
PeerJ ; 12: e17207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618566

RESUMO

Long-term microplastics (MPs) environmental pollution trends cannot be understood only by investigating their presence on beaches. Without estimating MPs for the entire beach, comparisons between multiple beaches cannot be made. In this study, Nagasaki Prefecture was selected as the study site, we measured MPs accumulation rate to express the MPs pollution trend and weighted the measurement results to enable comparison of MPs content among multiple sandy beaches. The MPs accumulation rate in the study site was measured by periodic investigation at fixed spots. The average in the supratidal zone was 1.5 ± 0.9 mg-MPs/(m2-sand⋅ d) (n = 15). The weighting of the MPs content in hot spots and non-hot spots by their respective areas enabled us to obtain the representative value and the dispersion of the MPs content in the entire study site. The MPs contents in the three beaches were 298 ± 144, 1,115 ± 518, and 4,084 ± 2,243 mg-MPs/(m2-sand), respectively. Using these values, it is possible to compare the MPs contents of multiple beaches.


Assuntos
Dermatite , Microplásticos , Humanos , Plásticos , Poluição Ambiental , Areia
17.
Curr Microbiol ; 81(5): 129, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587647

RESUMO

Arbuscular mycorrhizal (AM) fungi are being used as a new generation of biofertilizers to increase plant growth by improving plant nutrition and bio-protection. However, because of the obligatory nature of the plant host, large-scale multiplication of AM propagules is challenging, which limits its applicability. This study evaluates the ability of Burkholderia arboris to increase AM production in soybean mill waste and vermicompost amended by soil-sand mixture planted with sorghum as a host plant. The experiment was conducted in a nursery using a completely randomized design with four inoculation treatments (B. arboris, AM fungi, B. arboris + AM fungi, and control) under sterilized and unsterilized conditions. AM production was investigated microscopically (spore density and root colonization), and biochemically (AM-specific lipid biomarker, 16:1ω5cis derived from neutral lipid fatty acid (NLFA), and phospholipid fatty acid (PLFA) fractions from both soil and roots). Integrating B. arboris with AM fungi in organically amended pots was found to increase AM fungal production by 62.16 spores g-1 soil and root colonization by 80.85%. Biochemical parameters also increased with B. arboris inoculation: 5.49 nmol PLFA g-1 soil and 692.68 nmol PLFA g-1 root and 36.72 nmol NLFA g-1 soil and 3147.57 nmol NLFA g-1 root. Co-inoculation also increased glomalin-related soil protein and root biomass. Principal component analysis (PCA) further supported the higher contribution of B. arboris to AM fungi production under unsterilized conditions. In conclusion, inoculation of AM plant host seeds with B. arboris prior to sowing into organic potting mix could be a promising and cost-effective approach for increasing AM inoculum density for commercial production. Furthermore, efforts need to be made for up-scaling the AM production with different plant hosts and soil-substrate types.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Sorghum , Areia , Solo , Glycine max , Grão Comestível , Ácidos Graxos , Fungos
18.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1474-1484, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621931

RESUMO

As a common medicinal and edible resource in China, Coicis Semen has a long history of cultivation and medicinal use. Traditional Chinese medicine(TCM) clinically believes that Coicis Semen has the effect of strengthening the spleen and tonifying the lungs, clearing heat and dampness, removing pus and paralysis, and stopping diarrhea. Therefore, it is used to treat edema, foot odor, spleen deficiency, diarrhea, and other symptoms. The above effects are closely related to the active ingredients of Coicis Semen, such as esters, fatty acids, polysaccharides, proteins, as well as phenolic acids, sterols, flavonoids, lactams, triterpenes, alkaloids, and adenosine. Modern research has found that Coicis Semen also has anti-cancer, anti-inflammatory, antioxidant, hypoglycemic, and hypotensive effects and other pharmacological activities, and it can improve immunity and regulate lipid metabolism. Coicis Semen is widely distributed in China, mainly produced in Guizhou, Yunnan, Fujian, Sichuan, and other places, and the quality of Coicis Semen from different origins varies. From ancient times to the present, Coicis Semen processing methods have experienced the process from simple to complex, and the types of auxiliary materials are more extensive, such as soil, bran, and river sand. These processing methods have been inherited from generation to generation. Nowadays, the commonly used methods are bran-fried, stir-fried, sand-fried, etc. In this paper, by reviewing the relevant literature in China and abroad in recent years, the main active ingredients and related pharmacological effects of Coicis Semen are sorted out, and the effects of different origins and processing methods on the chemical composition of Coicis Semen are summarized, with a view to providing references for the comprehensive development and utilization of Coicis Semen and the further study of its mechanism of action.


Assuntos
Coix , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Areia , China , Medicina Tradicional Chinesa , Diarreia
19.
Chemosphere ; 357: 141892, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615952

RESUMO

Polylactic acid based spherical particles with three architectural variations (Isotropic (P1), Semi porous (P2), and Janus (P3)) were employed to encapsulate zero valent iron nanoparticles (ZVINPs), and their performance was extensively evaluated in our previous studies. However, little was known about their transportability through saturated porous media of varying grain size kept under varying ionic strength. In this particular study, we aimed to investigate the architectural effect of polymeric particles (P1-P3) on their mobility through the sand column of varying grain size in presence of mono, di, and tri-valent ions of varying concentrations (25-200 mM (millimoles)). As per column breakthrough experiments (BTCs) using various types of sands, amphiphilic Janus type (P3) particles exhibited the maximum transportability among all the tested particles, irrespective of the nature of the sand. Owing to the narrower travel path, sands with lower porosity (31%) delayed the plateau by shifting it to a higher pore volume with a minimum retention of iron (C/Co: 0.94 for P3) in the column. The impact of mono (Na+, K+), di (Ca2+, Mg2+), and trivalent (Al3+) ions on their transportability was progressively increased from P3 to P1, especially at higher ionic concentrations (200 mM), with P3 being the most mobile particles (C/Co:0.54 for Al3+). Among all the ions, Al3+ exhibited maximum hindrance to their mobility through the sand column. This could be due to their strong charge screening effect coupled with cation bridging complex formation with moving particles. Experimental results obtained from BTCs were found to be well-fitted with a theoretical model based on advection-dispersion equation, showing minimum retention for P3 particles. Overall, it can be inferred that encapsulation of ZVINPs inside Janus particles (P3) with a right balance of amphiphilicity and highly negative surface charge would be required to achieve considerable transportability through sand aquifers to target contaminants in polluted groundwater existing under harsh conditions (high ionic concentrations).


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Ferro , Poluentes Químicos da Água , Água Subterrânea/química , Ferro/química , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química , Porosidade , Polímeros/química , Tamanho da Partícula , Areia/química , Nanopartículas Metálicas/química
20.
Sci Rep ; 14(1): 8752, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627410

RESUMO

The main challenge in the large-scale application of MICP lies in its low efficiency and promoting biofilm growth can effectively address this problem. In the present study, a prediction model was proposed using the response surface method. With the prediction model, optimum concentrations of nutrients in the medium can be obtained. Moreover, the optimized medium was compared with other media via bio-cementation tests. The results show that this prediction model was accurate and effective, and the predicted results were close to the measured results. By using the prediction model, the optimized culture media was determined (20.0 g/l yeast extract, 10.0 g/l polypeptone, 5.0 g/l ammonium sulfate, and 10.0 g/l NaCl). Furthermore, the optimized medium significantly promoted the growth of biofilm compared to other media. In the medium, the effect of polypeptone on biofilm growth was smaller than the effect of yeast extract and increasing the concentration of polypeptone was not beneficial in promoting biofilm growth. In addition, the sand column solidified with the optimized medium had the highest strength and the largest calcium carbonate contents. The prediction model represents a platform technology that leverages culture medium to impart novel sensing, adjustive, and responsive multifunctionality to structural materials in the civil engineering and material engineering fields.


Assuntos
Carbonato de Cálcio , Cimentação , Carbonato de Cálcio/química , Areia , Precipitação Química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...