RESUMO
OBJECTIVES: We report, for the first time, the distribution of four no-function NAT2 single nucleotide polymorphisms and inferred NAT2 acetylator phenotypes in three indigenous groups (Munduruku, Paiter-Suruí, and Yanomami), living in reservation areas in the Brazilian Amazon. METHODS: Two hundred and seventy-six participants from three indigenous groups (92 for each group) were included and genotyped for four NAT2 polymorphisms (rs1801279, rs1801280, rs1799930, and rs1799931) by the TaqMan system. Minor Allele Frequency (MAF) was determined and NAT2 acetylator phenotypes were inferred. RESULTS: NAT2 rs1801279G>A was absent in all cohorts; rs1799930G>A was absent in Yanomami and rare (MAF 0.016) in Munduruku and Paiter-Suruí; MAF of rs1801280T>C ranged five-fold (0.092-0.433), and MAF of rs1799931G>A varied between 0.179 and 0.283, among the three groups. The distribution of NAT2 phenotypes differed significantly across cohorts; the prevalence of the slow acetylator phenotype ranged from 16.3% in Yanomami to 33.3% in Munduruku to 48.9% in Paiter-Suruí. This three-fold range of variation is of major clinical relevance because the NAT2 slow phenotype is associated with higher risk of hepatotoxicity with antituberculosis chemotherapy and high incidence rates of tuberculosis and burden of latent infection among Munduruku, Paiter-Surui, and Yanomami peoples. According to the frequency of the NAT2 slow acetylator phenotype, the estimated number of individuals needed to be genotyped to prevent one additional event of hepatotoxicity range from 31 (Munduruku) to 39 (Paiter-Surui) and to 67 (Yanomami). CONCLUSION: The rs1801279 polymorphism was not found in any of the cohorts, while the MAF of the other polymorphisms showed significant variation between the cohorts. The difference in the prevalence of the NAT2 slow acetylator phenotype, which is linked to isoniazid-induced hepatotoxicity, was observed in the different study cohorts.
Assuntos
Arilamina N-Acetiltransferase , Frequência do Gene , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Acetilação , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/genética , Brasil , Genótipo , Indígenas Sul-Americanos/genética , Povos Indígenas/genética , Isoniazida/efeitos adversos , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
In Peru, 29 292 people were diagnosed with tuberculosis in 2022. Although tuberculosis treatments are effective, 3.4%-13% are associated with significant adverse drug reactions, with drug-induced liver injury (DILI) considered the most predominant. Among the first-line antituberculosis drugs, isoniazid is the main drug responsible for the appearance of DILI. In liver, isoniazid (INH) is metabolized by N-acetyltransferase-2 (NAT2) and cytochrome P450 2E1 (CYP2E1). Limited information exists on genetic risk factors associated with the presence of DILI to antituberculosis drugs in Latin America, and even less is known about these factors in the native and mestizo Peruvian population. The aim of this study was to determine the prevalence of NAT2 and CYP2E1 genotypes in native and mestizo population. An analytical cross-sectional analysis was performed using genetic data from mestizo population in Lima and native participants from south of Peru. NAT2 metabolizer was determined as fast, intermediate and slow, and CYP2E1 genotypes were classified as c1/c1, c1/c2 and c2/c2, from molecular tests and bioinformatic analyses. Of the 472 participants, 36 and 6 NAT2 haplotypes were identified in the mestizo and native population, respectively. In mestizo population, the most frequent NAT2*5B and NAT2*7B haplotypes were associated with DILI risk; while in natives, NAT2*5G and NAT2*13A haplotypes were associated with decreased risk of DILI. For CYP2E1, c1/c1 and c1/c2 genotypes are the most frequent in natives and mestizos, respectively. The linkage disequilibrium of NAT2 single nucleotide polymorphisms (SNPs) was estimated, detecting a block between all SNPs natives. In addition, a block between rs1801280 and rs1799929 for NAT2 was detected in mestizos. Despite the limitations of a secondary study, it was possible to report associations between NAT2 and CYP2E alleles with Peruvian native and mestizo by prevalence ratios. The results of this study will help the development of new therapeutic strategies for a Tuberculosis efficient control between populations.
Assuntos
Antituberculosos , Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP2E1 , Isoniazida , Tuberculose , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antituberculosos/uso terapêutico , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/genética , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/genética , Estudos Transversais , Citocromo P-450 CYP2E1/genética , Genótipo , Indígenas Sul-Americanos/etnologia , Indígenas Sul-Americanos/genética , Isoniazida/efeitos adversos , Isoniazida/uso terapêutico , Peru , Farmacogenética , Tuberculose/genética , Tuberculose/tratamento farmacológico , Grupos RaciaisRESUMO
BACKGROUND: Tuberculosis (TB) treatment-related adverse drug reactions (TB-ADRs) can negatively affect adherence and treatment success rates. METHODS: We developed prediction models for TB-ADRs, considering participants with drug-susceptible pulmonary TB who initiated standard TB therapy. TB-ADRs were determined by the physician attending the participant, assessing causality to TB drugs, the affected organ system, and grade. Potential baseline predictors of TB-ADR included concomitant medication (CM) use, human immunodeficiency virus (HIV) status, glycated hemoglobin (HbA1c), age, body mass index (BMI), sex, substance use, and TB drug metabolism variables (NAT2 acetylator profiles). The models were developed through bootstrapped backward selection. Cox regression was used to evaluate TB-ADR risk. RESULTS: There were 156 TB-ADRs among 102 of the 945 (11%) participants included. Most TB-ADRs were hepatic (n = 82 [53%]), of moderate severity (grade 2; n = 121 [78%]), and occurred in NAT2 slow acetylators (n = 62 [61%]). The main prediction model included CM use, HbA1c, alcohol use, HIV seropositivity, BMI, and age, with robust performance (c-statistic = 0.79 [95% confidence interval {CI}, .74-.83) and fit (optimism-corrected slope and intercept of -0.09 and 0.94, respectively). An alternative model replacing BMI with NAT2 had similar performance. HIV seropositivity (hazard ratio [HR], 2.68 [95% CI, 1.75-4.09]) and CM use (HR, 5.26 [95% CI, 2.63-10.52]) increased TB-ADR risk. CONCLUSIONS: The models, with clinical variables and with NAT2, were highly predictive of TB-ADRs.
Assuntos
Arilamina N-Acetiltransferase , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Soropositividade para HIV , Tuberculose Pulmonar , Humanos , Antituberculosos/efeitos adversos , Brasil/epidemiologia , Hemoglobinas Glicadas , Soropositividade para HIV/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Arilamina N-Acetiltransferase/metabolismoRESUMO
BACKGROUND/AIM: Arylamine N-acetyltransferase 1 and 2 (NAT1 and NAT2) are drug-metabolizing enzymes that play a key role in the development of acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS: This study evaluated NAT1 and NAT2 mRNA and protein expression and their enzymatic activity in peripheral blood mononuclear cells (PBMC) from patients with ALL (n=20) and healthy children (n=19) and explored the mechanisms that regulate these enzymes in ALL such as microRNAs (miR-1290, miR-26b) and SNPs. RESULTS: PBMC from patients with ALL showed a decrease in NAT1 mRNA and protein expression. In addition, NAT1 enzymatic activity was decreased in patients with ALL. There was no influence of SNP 559 C>T or 560 G>A on low NAT1 activity. The lower expression of NAT1 might be related to the loss of acetylated histone H3K14 in the NAT1 gene promoter in patients with ALL and the higher relative expression of miR-1290 in the plasma of patients with relapsed ALL compared with healthy controls. There were significantly fewer CD3+/NAT1+ double-positive cells in patients who relapsed compared with control subjects. Based on a t-distributed stochastic neighbor embedding algorithm, CD19+ cells that reappeared in patients with relapse showed low NAT1 expression. In contrast, for NAT2, there were no significant results. CONCLUSION: The expression and function of NAT1 and miR-1290 levels could be involved in modulating immune cells altered in ALL.
Assuntos
Arilamina N-Acetiltransferase , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Leucócitos Mononucleares/metabolismo , Projetos Piloto , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA MensageiroRESUMO
Arylamine N-acetyltransferase 2 has been related to drug side effects and cancer susceptibility; its protein structure and acetylation capacity results from the polymorphism's arrays on the NAT2 gene. Absorption, distribution, metabolism, and excretion, cornerstones of the pharmacological effects, have shown diversity patterns across populations, ethnic groups, and even interethnic variation. Although the 1000 Genomes Project database has portrayed the global diversity of the NAT2 polymorphisms, several populations and ethnicities remain underrepresented, limiting the comprehensive picture of its variation. The NAT2 clinical entails require a detailed landscape of its striking diversity. This systematic review spans the genetic and acetylation patterns from 164 articles from October 1992 to October 2020. Descriptive studies and controls from observational studies expanded the NAT2 diversity landscape. Our study included 243 different populations and 101 ethnic minorities, and, for the first time, we presented the global patterns in the Middle Eastern populations. Europeans, including its derived populations, and East Asians have been the most studied genetic backgrounds. Contrary to the popular perception, Africans, Latinos and Native Americans have been significantly represented in recent years. NAT2*4, *5B, and *6A were the most frequent haplotypes globally. Nonetheless, the distribution of *5B and *7B were less and more frequent in Asians, respectively. Regarding the acetylator status, East Asians and Native Americans harboured the highest frequencies of the fast phenotype, followed by South Europeans. Central Asia, the Middle East, and West European populations were the major carriers of the slow acetylator status. The detailed panorama presented herein, expands the knowledge about the diversity patterns to genetic and acetylation levels. These data could help clarify the controversial findings between acetylator states and the susceptibility to diseases and reinforce the utility of NAT2 in precision medicine.
Assuntos
Arilamina N-Acetiltransferase , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Acetilação , Polimorfismo Genético , Haplótipos , Fenótipo , GenótipoRESUMO
In Peru, 24,581 people were diagnosed with tuberculosis (TB) in 2020. Although TB treatments are effective, 3.4-13% are associated with significant adverse drug reactions (ADRs), with drug-induced liver injury (DILI) considered the most predominant. Among the first-line antituberculosis drugs, isoniazid (INH) is the main drug responsible for the appearance of DILI. In the liver, INH is metabolized by the enzymes N-acetyltransferase-2 (NAT2), cytochrome P450 2E1 (CYP2E1), and glutathione S-transferase (GST) with two isoforms, GSTT1 and GSTM1. Based on previous studies, we hypothesized that interactions between the GSTT1 and GSTM1 null genotypes induce DILI in TB patients. In this cross-sectional study of 377 participants who completed their anti-TB treatment, we genotyped by revealing the presence or absence of 215- and 480-bp bands of GSTM1 and GSTT1, respectively. We found that the prevalence of the GSTM1 genotype was 52.79% and 47.21% for presence and null, respectively, and for GSTT1 it was 69.76% and 30.24% for presence and null, respectively. Neither genotype was prevalent in the patients who developed DILI (n = 16). We did not confirm our hypothesis; however, we found that the combination of GSTM1 present genotype, GSTT1 null genotype, fast NAT2 acetylators, and CYP2E1 c1/c1 genotype had a significant risk for the development of ADR (OR 11; p = 0.017; 95% CI: (0.54-186.35)). We propose that the presence of the GSTM1 present genotype, GSTT1 null genotype, fast NAT2 acetylators, and CYP2E1 c1/c1 genotype in the Peruvian population could be considered a risk factor for the development of ADR due to therapeutic drug intake.
Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Glutationa Transferase/genética , Tuberculose , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/genética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Estudos Transversais , Citocromo P-450 CYP2E1/genética , Predisposição Genética para Doença , Genótipo , Humanos , Isoniazida , Peru/epidemiologia , Polimorfismo Genético , Tuberculose/tratamento farmacológico , Tuberculose/genéticaRESUMO
BACKGROUND: In Peru, 32,970 people were diagnosed with tuberculosis (TB) in 2019. Although TB treatment is effective, 3.4%-13% is associated with significant adverse drug reactions (ADR), considering drug-induced liver injury (DILI) as the most prevalent. Among the first-line anti-TB drugs, isoniazid (INH) is primarily responsible for the occurrence of DILI. INH is metabolized in the liver by the enzymes N-acetyltransferase-2 (NAT2) and Cytochrome P450 2E1 (CYP2E1). Based on the previous studies, we hypothesized that the interactions between slow CYP2E1 genotype and NAT2 slow acetylators will induce DILI in TB patients. METHODS: In this cross-sectional study, all 377 participants completed their anti-TB treatment, and we genotyped SNPs: rs1041983, rs1801280, rs1799929, rs1799930, rs1208, and rs1799931 for NAT2 and rs3813867 and rs2031920 for CYP2E1. RESULTS: We found that rapid, intermediate, and slow NAT2 acetylator were 15%, 38%, and 47%, respectively, in the general population. Intermediate NAT2 acetylator is the least prevalent among patients with adverse reactions (p = 0.024). We did not confirm our hypothesis, however, we found that the combination of intermediate NAT2 acetylators and CYP2E1 c1/c1 genotype significantly protected (OR = 0.16; p = 0.049) against the development of DILI in our population. CONCLUSION: We propose that the presence of NAT2 intermediate and CYP2E1 c1/c1 genotype could help in therapeutic drug monitoring, and optimize its therapeutic benefits while minimizing its risk for side effects or toxicity.
Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/genética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Estudos Transversais , Citocromo P-450 CYP2E1/genética , Humanos , Peru , Polimorfismo de Nucleotídeo Único , Tuberculose/tratamento farmacológico , Tuberculose/genéticaRESUMO
BACKGROUND: Distinct N-acetyltransferase 2 (NAT2) slow acetylators genotypes have been associated with a higher risk to develop anti-tuberculosis drug-induced hepatotoxicity (DIH). However, studies have not pointed the relevance of different acetylation phenotypes presented by homozygotes and compound heterozygotes slow acetylators on a clinical basis. OBJECTIVES: This study aimed to investigate the association between NAT2 genotypes and the risk of developing DIH in Brazilian patients undergoing tuberculosis treatment, focusing on the discrimination of homozygotes and compound heterozygotes slow acetylators. METHODS/FINDINGS: The frequency of NAT2 genotypes was analysed by DNA sequencing in 162 patients undergoing tuberculosis therapy. The mutation analyses revealed 15 variants, plus two new NAT2 mutations, that computational simulations predicted to cause structural perturbations in the protein. The multivariate statistical analysis revealed that carriers of NAT2*5/*5 slow acetylator genotype presented a higher risk of developing anti-tuberculosis DIH, on a clinical basis, when compared to the compound heterozygotes presenting NAT2*5 and any other slow acetylator haplotype [aOR 4.97, 95% confidence interval (CI) 1.47-16.82, p = 0.01]. CONCLUSION: These findings suggest that patients with TB diagnosis who present the NAT2*5B/*5B genotype should be properly identified and more carefully monitored until treatment outcome in order to prevent the occurrence of anti-tuberculosis DIH.
Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Acetiltransferases/genética , Acetiltransferases/uso terapêutico , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Genótipo , Homozigoto , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/genéticaRESUMO
Since their discovery, arylamine N-acetyltransferases 1 and 2 (NAT1 and NAT2, respectively) have been associated with the metabolism of xenobiotics. NAT2 is the main factor in the therapeutic success of tuberculosis treatment due to its role in the biotransformation of isoniazid. However, researchers have started to investigate the possible participation of NAT1 and NAT2 (NATs) in carcinogenesis, although the mechanisms have not been elucidated fully. NATs enzymatic activity is essential in some types of cancer, such as breast cancer and acute lymphoblastic leukemia. Whether NAT1 and/or NAT2 participate in insulin resistance level in diabetes mellitus or in the immune system remains to be explored. Therefore, it is clear that its role in cell physiology has more implications than just metabolizing compounds.
Assuntos
Arilamina N-Acetiltransferase , Acetiltransferases , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Sistema Imunitário/metabolismoRESUMO
BACKGROUND: We determined the frequency of genetic polymorphisms in three anti-TB drug metabolic proteins previously reported: N-acetyltransferase 2 (NAT2), cytochrome P450 2E1 (CYP2E1), and arylacetamide deacetylase (AADAC) within a Peruvian population in a cohort of TB patients. METHODS: We genotyped SNPs rs1041983, rs1801280, rs1799929, rs1799930, rs1208, and rs1799931 for NAT2; rs3813867 and rs2031920 for CYP2E1; and rs1803155 for AADAC in 395 participants completed their antituberculosis treatment. RESULTS: Seventy-four percent of the participants are carriers of slow metabolizer genotypes: NAT2*5, NAT2*6, and NAT2*7, which increase the sensitivity of INH at low doses and increase the risk of drug-induced liver injuries. Sixty-four percent are homozygous for the wild-type CYP2E1*1A allele, which could increase the risk of hepatotoxicity. However, 16% had a NAT2 fast metabolizer phenotype which could increase the risk of acquiring resistance to INH, thereby increasing the risk of multidrug-resistant (MDR) or treatment failure. The frequency of rs1803155 (AADAC*2 allele) was higher (99.9%) in Peruvians than in European American, African American, Japanese, and Korean populations. CONCLUSIONS: This high prevalence of slow metabolizers for isoniazid in the Peruvian population should be further studied and considered to help individualize drug regimens, especially in countries with a great genetic diversity like Peru. These data will help the Peruvian National Tuberculosis Control Program develop new strategies for therapies.
Assuntos
Alelos , Arilamina N-Acetiltransferase/genética , Hidrolases de Éster Carboxílico/genética , Citocromo P-450 CYP2E1/genética , Frequência do Gene , Tuberculose/etiologia , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Desequilíbrio de Ligação , Peru , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND AND AIMS: To assess the relevance of the slow acetylator phenotype based on NAT2 genotypes, among patients with pulmonary tuberculosis (PTB) that developed hepatotoxicity after first-line tuberculosis treatment in a Northeastern Mexican population. METHODS: Ninety one PTB patients were included, 7 of them developed hepatotoxicity. NAT2 SNPs (rs1801279, rs1041983, rs1801280, rs1799929, rs1799930, rs1208, and rs1799931) were genotyped by TaqMan allelic discrimination assay. Statistical analyses were performed using Epi Info statistical software 7.0 and SHEsisPlus for haplotype reconstruction. The NAT2 slow non-synonymous SNP were studied by molecular dynamic analysis (MDA). RESULTS: The frequency of the haplotype associated with slow acetylation status for PTB was 58%, and for with hepatotoxicity (PTB-H) represented 42.6%. Three haplotypes, NAT2*5Q, NAT2*5U, NAT2*5Va were exclusively present in seven PTB-H patients, (P = 0.01, P = 0.0006, P = 0.01, respectively). These haplotypes include the combination of two SNPs (I114T + R197Q or I114T + G286E). The effect of the SNPs on protein structure is to disrupt the CoA binding site affecting acetylation activity. CONCLUSION: Our study provides insight into slow acetylation NAT2 haplotypes associated with hepatotoxicity after first-line tuberculosis treatment, for first time, in a Mexican population. The molecular mechanism acts at the CoA binding site.
Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Genótipo , Humanos , Estrutura Molecular , Polimorfismo de Nucleotídeo Único , Tuberculose/tratamento farmacológico , Tuberculose/genéticaRESUMO
Background The standardized doses of isoniazid in therapy against tuberculosis are determined based on total body weight, without considering genetic polymorphisms of the metabolic enzyme N-acetyltransferase-2 that contribute to the wide pharmacokinetic variability of isoniazid. Objective The aim of this work was to build a population pharmacokinetic model of isoniazid in Mexican patients with tuberculosis to characterize typical estimates of pharmacokinetics, as well as inter-individual and residual variability of isoniazid considering the genetic factors associated with the N-acetyltransferase-2 enzyme. Setting A prospective study was conducted at the Department of Internal Medicine in Hospital Central, San Luis Potosí, México. Methods Plasma concentrations of isoniazid were measured by high performance liquid chromatography. The acetylator phenotype was predicted through single nucleotide polymorphisms in the N-acetyltransferase-2 gene. Genetic, anthropometric and clinical covariates were used to develop a pharmacokinetic model. Main outcome measure Isoniazid plasma concentration. Results A total of 69 patients with tuberculosis were included. Blood samples were drawn from 20 min to 12 h post dose to determinate the isoniazid plasma concentration. Typical pharmacokinetics parameters were characterized through two-compartment open model with first-order absorption and linear elimination. Clearance was different for each predicted N-acetyltransferase-2 phenotype being 11.4, 19.2 and 27.4 L/h for slow, intermediate and rapid acetylators, respectively. Central volume of distribution was determined as 1.5 * body mass index (L). Through the application of the model, external validation was performed and initial dose regimen of isoniazid is proposed based on stochastic simulations. Conclusion A validated population pharmacokinetic model of isoniazid was developed in Mexican patients with tuberculosis. Through the application of the final model, initial dose recommendations were provided considering body mass index and N-acetyltransferase-2 phenotype.
Assuntos
Antituberculosos/administração & dosagem , Isoniazida/administração & dosagem , Modelos Biológicos , Tuberculose/tratamento farmacológico , Adolescente , Adulto , Idoso , Antituberculosos/farmacocinética , Arilamina N-Acetiltransferase/genética , Índice de Massa Corporal , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Humanos , Isoniazida/farmacocinética , Masculino , México , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Adulto JovemRESUMO
Atorvastatin (ATV) is a blood cholesterol-lowering drug used to prevent cardiovascular events, the leading cause of death worldwide. As pharmacokinetics, metabolism and response vary among individuals, we wanted to determine the most reliable metabolic ATV phenotypes and identify novel and preponderant genetic markers that affect ATV plasma levels. A controlled, randomized, crossover, single-blind, three-treatment, three-period, and six-sequence clinical study of ATV (single 80-mg oral dose) was conducted among 60 healthy Mexican men. ATV plasma levels were measured using high-performance liquid chromatography mass spectrometry. Genotyping was performed by real-time PCR with TaqMan probes. Four ATV metabolizer phenotypes were found: slow, intermediate, normal and fast. Six gene polymorphisms, SLCO1B1-rs4149056, ABCB1-rs1045642, CYP2D6-rs1135840, CYP2B6-rs3745274, NAT2-rs1208, and COMT- rs4680, had a significant effect on ATV pharmacokinetics (P < 0.05). The polymorphisms in SLCO1B1 and ABCB1 seemed to have a greater effect and were especially important for the shift from an intermediate to a normal metabolizer. This is the first study that demonstrates how the interaction of genetic variants affect metabolic phenotyping and improves understanding of how SLCO1B1 and ABCB1 variants that affect statin metabolism may partially explain the variability in drug response. Notwithstanding, the influence of other genetic and non-genetic factors is not ruled out.
Assuntos
Atorvastatina/administração & dosagem , Atorvastatina/sangue , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Variantes Farmacogenômicos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Arilamina N-Acetiltransferase/genética , Atorvastatina/farmacocinética , Catecol O-Metiltransferase/genética , Cromatografia Líquida , Estudos Cross-Over , Citocromo P-450 CYP2D6/genética , Técnicas de Genotipagem , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas , México , Polimorfismo de Nucleotídeo Único , Método Simples-Cego , Adulto JovemRESUMO
BACKGROUND: There is marked interindividual variability in metabolism and resulting toxicity and effectiveness of drugs used for tuberculosis treatment. For isoniazid, mutations in the N-acetyltransferase 2 (NAT2) gene explain >88% of pharmacokinetic variability. However, weight-based dosing remains the norm globally. The potential clinical impact and cost-effectiveness of pharmacogenomic-guided therapy (PGT) are unknown. METHODS: We constructed a decision tree model to project lifetime costs and benefits of isoniazid PGT for drug-susceptible tuberculosis in Brazil, South Africa, and India. PGT was modeled to reduce isoniazid toxicity among slow NAT2 acetylators and reduce treatment failure among rapid acetylators. The genotyping test was assumed to cost the same as the GeneXpert test. The main outcomes were costs (2018 US dollars), quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios. RESULTS: In Brazil, PGT gained 19 discounted life-years (23 QALYs) and cost $11 064 per 1000 patients, a value of $476 per QALY gained. In South Africa, PGT gained 15 life-years (19 QALYs) and cost $33 182 per 1000 patients, a value of $1780 per QALY gained. In India, PGT gained 20 life-years (24 QALYs) and cost $13 195 per 1000 patients, a value of $546 per QALY gained. One-way sensitivity analyses showed the cost-effectiveness to be robust to all input parameters. Probabilistic sensitivity analyses were below per capita gross domestic product in all 3 countries in 99% of simulations. CONCLUSIONS: Isoniazid PGT improves health outcomes and would be cost-effective in the treatment of drug-susceptible tuberculosis in Brazil, South Africa, and India.
Assuntos
Arilamina N-Acetiltransferase , Tuberculose , Arilamina N-Acetiltransferase/genética , Brasil , Análise Custo-Benefício , Humanos , Índia , Isoniazida/uso terapêutico , Farmacogenética , Anos de Vida Ajustados por Qualidade de Vida , África do Sul , Tuberculose/tratamento farmacológicoRESUMO
Intake of heterocyclic amines (HCAs) and other mutagenic compounds formed during cooking has been hypothesized to be responsible for the positive association observed between red meat and colorectal cancer. We evaluated whether well-done/very well-done preferences for various meat and fish items, higher intakes of meat and fish, and meat-derived and fish-derived HCA are associated with the risk of colorectal adenoma (CRA) in a Japanese-Brazilian population. We selected 302 patients with adenoma and 403 control individuals who underwent total colonoscopy between 2007 and 2013, and collected information on aspects of meat intake using a detailed questionnaire. We also estimated HCA intake of the study participants using an HCA database that matched the cooking methods of this population. Latent class analysis on the basis of response to doneness preferences for different cooking methods of commonly consumed meat and fish items identified four distinct subgroups. Compared with the subgroup characterized by a preference for rare/medium well-done cooking for most meat and fish items, the odds ratio of CRA for the well-done/very well-done preference subgroup was 1.19 (95% confidence interval: 0.51-2.75). High intake of mixed-meat dishes was suggestively associated inversely with CRA, whereas a high intake of poultry was associated positively with CRA. No clear association with intake of total or specific HCAs and no effect modification by N-acetyltransferase 2 acetylation genotype were observed. We found no statistically significant associations between meat and HCA intake and CRA. These findings do not support a positive association between meat and meat-derived HCA intake and the risk of CRA.
Assuntos
Adenoma/epidemiologia , Aminas/administração & dosagem , Arilamina N-Acetiltransferase/genética , Carcinógenos/administração & dosagem , Neoplasias Colorretais/epidemiologia , Culinária/estatística & dados numéricos , Adenoma/genética , Adulto , Idoso , Aminas/efeitos adversos , Aminas/metabolismo , Povo Asiático/estatística & dados numéricos , Brasil/epidemiologia , Carcinógenos/metabolismo , Estudos de Casos e Controles , Colonoscopia/estatística & dados numéricos , Neoplasias Colorretais/genética , Comportamento do Consumidor/estatística & dados numéricos , Culinária/métodos , Comportamento Alimentar , Feminino , Produtos Pesqueiros/efeitos adversos , Predisposição Genética para Doença , Temperatura Alta/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Carne Vermelha/efeitos adversos , Fatores de RiscoRESUMO
INTRODUCTION AND OBJECTIVE: Hepatotoxicity during tuberculosis (TB) treatment is frequent and may be related to the Arylamine N-Acetyltransferase (NAT2) acetylator profile, in which allele frequencies differ according to the population. The aim of this study was to investigate functional polymorphisms in NAT2 associated with the development of hepatotoxicity after initiating treatment for TB in people living with HIV/AIDS (PLWHA) in Pernambuco, Northeast Brazil. MATERIAL AND METHODS: This was a prospective cohort study that investigated seven single nucleotide polymorphisms located in the NAT2 coding region in 173 PLWHA undergoing TB treatment. Hepatotoxicity was defined as elevated aminotransferase levels and identified as being three times higher than it was before initiating TB treatment, with associated symptoms of hepatitis. A further 80 healthy subjects, without HIV infection or TB were used as a control group. All individuals were genotyped by direct sequencing. RESULTS: The NAT2*13A and NAT2*6B variant alleles were significantly associated with the development of hepatotoxicity during TB treatment in PLWHA (p<0.05). Individual comparisons between the wild type and each variant genotype revealed that PLWHA with signatures NAT2*13A/NAT2*13A (OR 4.4; CI95% 1.1-18.8; p 0.037) and NAT2*13A/NAT2*6B (OR 4.4; CI95% 1.5-12.7; p 0.005) significantly increased the risk of hepatotoxicity. CONCLUSION: This study suggests that NAT2*13A and NAT2*6B variant alleles are risk factors for developing hepatotoxicity, and PLWHA with genotypes NAT2*13A/NAT2*13A and NAT2*13A/NAT2*6B should be targeted for specific care to reduce the risk of hepatotoxicity during treatment for tuberculosis.
Assuntos
Terapia Antirretroviral de Alta Atividade , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Infecções por HIV/tratamento farmacológico , Isoniazida/efeitos adversos , Tuberculose/tratamento farmacológico , Adulto , Idoso , Antituberculosos/uso terapêutico , Brasil , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Quimioterapia Combinada , Etambutol/uso terapêutico , Feminino , Infecções por HIV/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Pirazinamida/uso terapêutico , Rifampina/uso terapêutico , Tuberculose/complicações , Adulto JovemRESUMO
BACKGROUND: Tuberculosis (TB) remains a critical infectious, contagious disease worldwide with high prevalence and mortality rate. The directly observed treatment short-course therapy includes rifampicin (RMP) and isoniazid (INH) for at least 6 months. The purposes of this scheme are to interrupt the transmissibility of the Mycobacterium tuberculosis complex and to avoid secondary complications. Low plasma concentrations of these anti-TB drugs have been associated with extended treatment duration, therapeutic failure, and relapse. The determination of anthropometric, genetic, and clinical variables that may affect plasma concentrations of RMP and INH might facilitate the detection of patients at increased risk of therapeutic failure. METHODS: A prospective observational study was performed in patients with TB diagnosis. A fixed-dose combined formulation was administered following clinical guidelines, and 12 venous blood samples were collected within 24 hours after dose for the quantification of plasma levels of RMP and INH by high-performance liquid chromatography-ultraviolet. The plasma concentrations versus time for each drug in each patient were assessed by a noncompartmental approach to obtain Cmax, and the area under the concentration-time curve to the last observation point (AUC0-24 h) was calculated by the linear trapezoidal rule. Genetic polymorphisms of the enzyme involved in INH metabolism (NAT2) and proteins involved in RMP transport (glycoprotein-P and OATP1B1) were determined. RESULTS: A total of 34 patients aged between 18 and 72 years with the diagnosis of TB were included in the current study. A multivariate analysis was performed to determine the anthropometric and genetic characteristics that modified the Cmax and AUC0-24 h of RMP and INH. Results indicated that RMP Cmax and AUC0-24 h were affected by sex, dose/weight, and single nucleotide polymorphism of MDR1. In addition, age, body mass index, and NAT2 acetylator genotype were shown to determine the Cmax and AUC0-24 h for INH. CONCLUSIONS: Anthropometric, genetic, and dosage characteristics of Mexican patients with TB are an important source of risk for subtherapeutic plasma concentrations of anti-TB drugs. Factors such as lower-than-recommended RMP dose, male patients with TB, and MDR1 3435 genotype, in addition to age group, body mass index, and INH acetylator phenotype based on NAT2 genotype, should be considered during treatment.
Assuntos
Antibióticos Antituberculose/sangue , Antituberculosos/sangue , Isoniazida/sangue , Rifampina/sangue , Tuberculose/sangue , Tuberculose/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idoso , Antropometria/métodos , Antibióticos Antituberculose/uso terapêutico , Antituberculosos/uso terapêutico , Arilamina N-Acetiltransferase/genética , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Genótipo , Humanos , Isoniazida/uso terapêutico , Masculino , México , Pessoa de Meia-Idade , Análise Multivariada , Polimorfismo de Nucleotídeo Único/genética , Estudos Prospectivos , Rifampina/uso terapêutico , Tuberculose/tratamento farmacológico , Adulto JovemRESUMO
The products of the polymorphic ADME genes are involved in Absorption, Distribution, Metabolism, and Excretion of drugs. The pharmacogenetic data have been studied extensively due to their clinical importance in the appropriate drug prescription, but such data from the isolated populations are rather scarce. We analyzed the distribution of 95 polymorphisms in 31 core ADME genes in 20 populations worldwide and in newly genotyped samples from the Roma (Gypsy) population living in Croatia. Global distribution of ADME core gene loci differentiated three major clusters; (1) African, (2) East Asian, and (3) joint European, South Asian and South American cluster. The SLCO1B3 (rs4149117) and CYP3A4 (rs2242480) genes differentiated at the highest level the African group of populations, while NAT2 gene loci (rs1208, rs1801280, and rs1799929) and VKORC1 (rs9923231) differentiated East Asian populations. The VKORC1 rs9923231 was among the investigated loci the one with the largest global minor allele frequency (MAF) range; its MAF ranged from 0.027 in Nigeria to 0.924 in Han Chinese. The distribution of the investigated gene loci positions Roma population within the joined European and South Asian clusters, suggesting that their ADME gene pool is a combination of ancestral (Indian) and more recent (European) surrounding, as it was already implied by other genetic markers. However, when compared to the populations worldwide, the Croatian Roma have extreme MAF values in 10 out of the 95 investigated ADME core gene loci. Among loci which have extraordinary MAFs in Roma population two have strong proof of clinical importance: rs1799853 (CYP2C9) for warfarin dosage, and rs12248560 (CYP2C19) for clopidogrel dosage, efficacy and toxicity. This finding confirms the importance of taking the Roma as well as the other isolated populations`genetic profiles into account in pharmaco-therapeutic practice.