Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.696
Filtrar
1.
Sci Rep ; 14(1): 19876, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191875

RESUMO

Frataxin (FXN) is required for iron-sulfur cluster biogenesis, and its loss causes the early-onset neurodegenerative disease Friedreich ataxia (FRDA). Loss of FXN is a susceptibility factor in the development of diabetes, a common metabolic complication after myocardial hypertrophy in patients with FRDA. The underlying mechanism of FXN deficient-induced hyperglycemia in FRDA is, however, poorly understood. In this study, we confirmed that the FXN deficiency mouse model YG8R develops insulin resistance in elder individuals by disturbing lipid metabolic homeostasis in adipose tissues. Evaluation of lipolysis, lipogenesis, and fatty acid ß-oxidation showed that lipolysis is most severely affected in white adipose tissues. Consistently, FXN deficiency significantly decreased expression of lipolytic genes encoding adipose triglyceride lipase (Atgl) and hormone-sensitive lipase (Hsl) resulting in adipocyte enlargement and inflammation. Lipolysis induction by fasting or cold exposure remarkably upregulated FXN expression, though FXN deficiency lessened the competency of lipolysis compared with the control or wild type mice. Moreover, we found that the impairment of lipolysis was present at a young age, a few months earlier than hyperglycemia and insulin resistance. Forskolin, an activator of lipolysis, or pioglitazone, an agonist of PPARγ, improved insulin sensitivity in FXN-deficient adipocytes or mice. We uncovered the interplay between FXN expression and lipolysis and found that impairment of lipolysis, particularly the white adipocytes, is an early event, likely, as a primary cause for insulin resistance in FRDA patients at later age.


Assuntos
Adipócitos Brancos , Modelos Animais de Doenças , Frataxina , Ataxia de Friedreich , Resistência à Insulina , Proteínas de Ligação ao Ferro , Lipólise , Animais , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Camundongos , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Masculino , Lipase/metabolismo , Lipase/genética , Humanos
2.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119809, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39134123

RESUMO

Friedreich's ataxia (FA) is one of the most frequent inherited recessive ataxias characterized by a progressive sensory and spinocerebellar ataxia. The main causative mutation is a GAA repeat expansion in the first intron of the frataxin (FXN) gene which leads to a transcriptional silencing of the gene resulting in a deficit in FXN protein. The nature of the mutation (an unstable GAA expansion), as well as the multi-systemic nature of the disease (with neural and non-neural sites affected) make the generation of models for Friedreich's ataxia quite challenging. Over the years, several cellular and animal models for FA have been developed. These models are all complementary and possess their own strengths to investigate different aspects of the disease, such as the epigenetics of the locus or the pathophysiology of the disease, as well as being used to developed novel therapeutic approaches. This review will explore the recent advancements in the different mammalian models developed for FA.


Assuntos
Modelos Animais de Doenças , Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Animais , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Mutação
3.
JCI Insight ; 9(16)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39171530

RESUMO

Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.


Assuntos
Modelos Animais de Doenças , Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , NAD , Animais , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Camundongos , Humanos , NAD/metabolismo , Fenótipo , Masculino , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Mononucleotídeo de Nicotinamida/farmacologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Feminino , Técnicas de Silenciamento de Genes , Compostos de Piridínio , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
4.
Expert Rev Neurother ; 24(9): 897-912, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38980086

RESUMO

INTRODUCTION: The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED: This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION: Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.


Assuntos
Ataxia Cerebelar , Humanos , Ataxia Cerebelar/tratamento farmacológico , Ataxia Cerebelar/genética , Terapia Genética/métodos , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia
5.
Biomolecules ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062522

RESUMO

Trinucleotide repeat (TNR) expansion is the cause of over 40 neurodegenerative diseases, including Huntington's disease and Friedreich's ataxia (FRDA). There are no effective treatments for these diseases due to the poor understanding of molecular mechanisms underlying somatic TNR expansion and contraction in neural systems. We and others have found that DNA base excision repair (BER) actively modulates TNR instability, shedding light on the development of effective treatments for the diseases by contracting expanded repeats through DNA repair. In this study, temozolomide (TMZ) was employed as a model DNA base damaging agent to reveal the mechanisms of the BER pathway in modulating GAA repeat instability at the frataxin (FXN) gene in FRDA neural cells and transgenic mouse mice. We found that TMZ induced large GAA repeat contraction in FRDA mouse brain tissue, neurons, and FRDA iPSC-differentiated neural cells, increasing frataxin protein levels in FRDA mouse brain and neural cells. Surprisingly, we found that TMZ could also inhibit H3K9 methyltransferases, leading to open chromatin and increasing ssDNA breaks and recruitment of the key BER enzyme, pol ß, on the repeats in FRDA neural cells. We further demonstrated that the H3K9 methyltransferase inhibitor BIX01294 also induced the contraction of the expanded repeats and increased frataxin protein in FRDA neural cells by opening the chromatin and increasing the endogenous ssDNA breaks and recruitment of pol ß on the repeats. Our study provides new mechanistic insight illustrating that inhibition of H3K9 methylation can crosstalk with BER to induce GAA repeat contraction in FRDA. Our results will open a new avenue for developing novel gene therapy by targeting histone methylation and the BER pathway for repeat expansion diseases.


Assuntos
Cromatina , Reparo do DNA , Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Camundongos Transgênicos , Expansão das Repetições de Trinucleotídeos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Animais , Camundongos , Expansão das Repetições de Trinucleotídeos/genética , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Cromatina/metabolismo , Cromatina/genética , Humanos , Dano ao DNA , Temozolomida/farmacologia , Neurônios/metabolismo , DNA Polimerase beta/metabolismo , DNA Polimerase beta/genética
6.
Ann Clin Transl Neurol ; 11(7): 1691-1702, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952134

RESUMO

OBJECTIVE: The dentato-thalamo-cortical tract (DTT) is the main cerebellar efferent pathway. Degeneration of the DTT is a core feature of Friedreich ataxia (FRDA). However, it remains unclear whether DTT disruption is spatially specific, with some segments being more impacted than others. This study aimed to investigate microstructural integrity along the DTT in FRDA using a profilometry diffusion MRI (dMRI) approach. METHODS: MRI data from 45 individuals with FRDA (mean age: 33.2 ± 13.2, Male/Female: 26/19) and 37 healthy controls (mean age: 36.5 ± 12.7, Male/Female:18/19) were included in this cross-sectional multicenter study. A profilometry analysis was performed on dMRI data by first using tractography to define the DTT as the white matter pathway connecting the dentate nucleus to the contralateral motor cortex. The tract was then divided into 100 segments, and dMRI metrics of microstructural integrity (fractional anisotropy, mean diffusivity and radial diffusivity) at each segment were compared between groups. The process was replicated on the arcuate fasciculus for comparison. RESULTS: Across all diffusion metrics, the region of the DTT connecting the dentate nucleus and thalamus was more impacted in FRDA than downstream cerebral sections from the thalamus to the cortex. The arcuate fasciculus was minimally impacted. INTERPRETATION: Our study further expands the current knowledge about brain involvement in FRDA, showing that microstructural abnormalities within the DTT are weighted to early segments of the tract (i.e., the superior cerebellar peduncle). These findings are consistent with the hypothesis of DTT undergoing anterograde degeneration arising from the dentate nuclei and progressing to the primary motor cortex.


Assuntos
Imagem de Tensor de Difusão , Ataxia de Friedreich , Substância Branca , Humanos , Masculino , Feminino , Adulto , Ataxia de Friedreich/patologia , Ataxia de Friedreich/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Transversais , Adulto Jovem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/patologia , Córtex Motor/patologia , Córtex Motor/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/patologia , Vias Neurais/patologia , Vias Neurais/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética
7.
Stem Cell Res ; 79: 103477, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936158

RESUMO

Friedreich's ataxia (FRDA) is a rare neurodegenerative disease caused by an expansion of a GAA repeat sequence within the Frataxin (FXN) gene. Prominent regions of neurodegeneration include sensory neurons within the dorsal root ganglia. Here we present a set of genetically modified FRDA induced pluripotent stem cell (iPSC) lines that carry an inducible neurogenin-2 (NGN2) expression cassette. Exogenous expression of NGN2 in iPSC derived neural crest progenitors efficiently generates functionally mature sensory neurons. These cell lines will provide a streamlined source of FRDA iPSC sensory neurons for studying both disease mechanism and screening potential therapeutics.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Proteínas do Tecido Nervoso , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Ataxia de Friedreich/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Linhagem Celular , Diferenciação Celular , Frataxina
9.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891993

RESUMO

Friedreich's Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature.


Assuntos
Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Simulação de Dinâmica Molecular , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Mutação de Sentido Incorreto , Simulação por Computador , Variação Genética
10.
Cells ; 13(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38920668

RESUMO

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.


Assuntos
Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Animais , Humanos , Ataxia de Friedreich/genética , Regulação da Expressão Gênica , Proteínas de Ligação ao Ferro/genética
12.
Mov Disord ; 39(7): 1099-1108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696306

RESUMO

BACKGROUND: Calcitriol, the active form of vitamin D (also known as 1,25-dihydroxycholecalciferol), improves the phenotype and increases frataxin levels in cell models of Friedreich ataxia (FRDA). OBJECTIVES: Based on these results, we aimed measuring the effects of a calcitriol dose of 0.25 mcg/24h in the neurological function and frataxin levels when administered to FRDA patients for a year. METHODS: 20 FRDA patients where recluted and 15 patients completed the treatment for a year. Evaluations of neurological function changes (SARA scale, 9-HPT, 8-MWT, PATA test) and quality of life (Barthel Scale and Short Form (36) Health Survey [SF-36] quality of life questionnaire) were performed. Frataxin amounts were measured in isolated platelets obtained from these FRDA patients, from heterozygous FRDA carriers (relatives of the FA patients) and from non-heterozygous sex and age matched controls. RESULTS: Although the patients did not experience any observable neurological improvement, there was a statistically significant increase in frataxin levels from initial values, 5.5 to 7.0 pg/µg after 12 months. Differences in frataxin levels referred to total protein levels were observed among sex- and age-matched controls (18.1 pg/µg), relative controls (10.1 pg/µg), and FRDA patients (5.7 pg/µg). The treatment was well tolerated by most patients, and only some of them experienced minor adverse effects at the beginning of the trial. CONCLUSIONS: Calcitriol dosage used (0.25 mcg/24 h) is safe for FRDA patients, and it increases frataxin levels. We cannot rule out that higher doses administered longer could yield neurological benefits. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Calcitriol , Frataxina , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Humanos , Ataxia de Friedreich/tratamento farmacológico , Masculino , Feminino , Calcitriol/farmacologia , Calcitriol/administração & dosagem , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Qualidade de Vida , Adolescente , Resultado do Tratamento
13.
Biochimie ; 224: 71-79, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750879

RESUMO

The translocator protein TSPO is an evolutionary conserved mitochondrial protein overexpressed in various contexts of neurodegeneration. Friedreich Ataxia (FA) is a neurodegenerative disease due to GAA expansions in the FXN gene leading to decreased expression of frataxin, a mitochondrial protein involved in the biosynthesis of iron-sulfur clusters. We previously reported that Tspo was overexpressed in a Drosophila model of this disease generated by CRISPR/Cas9 insertion of approximately 200 GAA in the intron of fh, the fly frataxin gene. Here, we describe a new Drosophila model of FA with 42 GAA repeats, called fh-GAAs. The smaller expansion size allowed to obtain adults exhibiting hallmarks of the FA disease, including short lifespan, locomotory defects and hypersensitivity to oxidative stress. The reduced lifespan was fully rescued by ubiquitous expression of human FXN, confirming that both frataxins share conserved functions. We observed that Tspo was overexpressed in heads and decreased in intestines of these fh-GAAs flies. Then, we further overexpressed Tspo specifically in glial cells and observed improved survival. Finally, we investigated the effects of Tspo overexpression in healthy flies. Increased longevity was conferred by glial-specific overexpression, with opposite effects in neurons. Overall, this study highlights protective effects of glial TSPO in Drosophila both in a neurodegenerative and a healthy context.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Frataxina , Proteínas de Ligação ao Ferro , Longevidade , Neuroglia , Animais , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Neuroglia/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Modelos Animais de Doenças , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Drosophila/genética , Animais Geneticamente Modificados
14.
J Neurol Sci ; 461: 123053, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759249

RESUMO

Friedreich ataxia is a progressive autosomal recessive neurodegenerative disorder characterized by ataxia, dyscoordination, and cardiomyopathy. A subset of patients with Friedreich ataxia have elevated levels of serum cardiac troponin I, but associations with disease outcomes and features of cardiomyopathy remain unclear. In this study, we characterized clinically obtained serum cardiac biomarker levels including troponin I, troponin T, and B-type natriuretic peptide in subjects with Friedreich ataxia and evaluated their association with markers of disease. While unprovoked troponin I levels were elevated in 36% of the cohort, cTnI levels associated with a cardiac event (provoked) were higher than unprovoked levels. In multivariate linear regression models, younger age predicted increased troponin I values, and in logistic regression models younger age, female sex, and marginally longer GAA repeat length predicted abnormal troponin I levels. In subjects with multiple assessments, mean unprovoked troponin I levels decreased slightly over time. The presence of abnormal troponin I values and their levels were predicted by echocardiographic measures of hypertrophy. In addition, troponin I levels predicted long-term markers of clinical cardiac dysfunction over time to a modest degree. Consequently, troponin I values provide a marker of hypertrophy but only a minimally predictive biomarker for later cardiac manifestations of disease such as systolic dysfunction or arrhythmia.


Assuntos
Biomarcadores , Ataxia de Friedreich , Peptídeo Natriurético Encefálico , Troponina I , Humanos , Ataxia de Friedreich/sangue , Ataxia de Friedreich/diagnóstico , Feminino , Masculino , Biomarcadores/sangue , Adulto , Troponina I/sangue , Peptídeo Natriurético Encefálico/sangue , Pessoa de Meia-Idade , Adulto Jovem , Troponina T/sangue , Adolescente , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Estudos de Coortes
15.
PLoS One ; 19(5): e0303969, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814901

RESUMO

BACKGROUND: The left ventricular (LV) changes which occur in Friedreich ataxia (FRDA) are incompletely understood. METHODS: Cardiac magnetic resonance (CMR) imaging was performed using a 1.5T scanner in subjects with FRDA who are homozygous for an expansion of an intron 1 GAA repeat in the FXN gene. Standard measurements were performed of LV mass (LVM), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF). Native T1 relaxation time and the extracellular volume fraction (ECV) were utilised as markers of left ventricular (LV) diffuse myocardial fibrosis and late gadolinium enhancement (LGE) was utilised as a marker of LV replacement fibrosis. FRDA genetic severity was assessed using the shorter FXN GAA repeat length (GAA1). RESULTS: There were 93 subjects with FRDA (63 adults, 30 children, 54% males), 9 of whom had a reduced LVEF (<55%). A LVEDV below the normal range was present in 39%, a LVM above the normal range in 22%, and an increased LVM/LVEDV ratio in 89% subjects. In adults with a normal LVEF, there was an independent positive correlation of LVM with GAA1, and a negative correlation with age, but no similar relationships were seen in children. GAA1 was positively correlated with native T1 time in both adults and children, and with ECV in adults, all these associations independent of LVM and LVEDV. LGE was present in 21% of subjects, including both adults and children, and subjects with and without a reduced LVEF. None of GAA1, LVM or LVEDV were predictors of LGE. CONCLUSION: An association between diffuse interstitial LV myocardial fibrosis and genetic severity in FRDA was present independently of FRDA-related LV structural changes. Localised replacement fibrosis was found in a minority of subjects with FRDA and was not associated with LV structural change or FRDA genetic severity in subjects with a normal LVEF.


Assuntos
Ataxia de Friedreich , Gadolínio , Ventrículos do Coração , Imageamento por Ressonância Magnética , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/diagnóstico por imagem , Ataxia de Friedreich/patologia , Ataxia de Friedreich/complicações , Masculino , Feminino , Adulto , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/patologia , Criança , Adolescente , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem , Meios de Contraste , Volume Sistólico , Fibrose , Frataxina
16.
Hum Genomics ; 18(1): 50, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778374

RESUMO

Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.


Assuntos
Biomarcadores , Ataxia de Friedreich , MicroRNAs , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Ataxia de Friedreich/sangue , MicroRNAs/genética , MicroRNAs/sangue , Masculino , Biomarcadores/sangue , Prognóstico , Feminino , Adulto , RNA-Seq , Adolescente , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Criança , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Curva ROC , Estudos de Casos e Controles
18.
Curr Pharm Des ; 30(19): 1472-1489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638052

RESUMO

BACKGROUND: Friedreich's Ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE: This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS: A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia", "treatment", "drug candidates", and "mechanisms of action". RESULTS: To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION: While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.


Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Frataxina , Animais
19.
Mov Disord ; 39(7): 1109-1118, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38644761

RESUMO

BACKGROUND: The dentate nuclei of the cerebellum are key sites of neuropathology in Friedreich ataxia (FRDA). Reduced dentate nucleus volume and increased mean magnetic susceptibility, a proxy of iron concentration, have been reported by magnetic resonance imaging studies in people with FRDA. Here, we investigate whether these changes are regionally heterogeneous. METHODS: Quantitative susceptibility mapping data were acquired from 49 people with FRDA and 46 healthy controls. The dentate nuclei were manually segmented and analyzed using three dimensional vertex-based shape modeling and voxel-based assessments to identify regional changes in morphometry and susceptibility, respectively. RESULTS: Individuals with FRDA, relative to healthy controls, showed significant bilateral surface contraction most strongly at the rostral and caudal boundaries of the dentate nuclei. The magnitude of this surface contraction correlated with disease duration, and to a lesser extent, ataxia severity. Significantly greater susceptibility was also evident in the FRDA cohort relative to controls, but was instead localized to bilateral dorsomedial areas, and also correlated with disease duration and ataxia severity. CONCLUSIONS: Changes in the structure of the dentate nuclei in FRDA are not spatially uniform. Atrophy is greatest in areas with high gray matter density, whereas increases in susceptibility-reflecting iron concentration, demyelination, and/or gliosis-predominate in the medial white matter. These findings converge with established histological reports and indicate that regional measures of dentate nucleus substructure are more sensitive measures of disease expression than full-structure averages. Biomarker development and therapeutic strategies that directly target the dentate nuclei, such as gene therapies, may be optimized by targeting these areas of maximal pathology. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Núcleos Cerebelares , Ataxia de Friedreich , Imageamento por Ressonância Magnética , Humanos , Ataxia de Friedreich/patologia , Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/patologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Atrofia/patologia
20.
Mov Disord ; 39(7): 1088-1098, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38686449

RESUMO

BACKGROUND: Early studies in cellular models suggested an iron accumulation in Friedreich's ataxia (FA), yet findings from patients are lacking. OBJECTIVES: The objective is to characterize systemic iron metabolism, body iron storages, and intracellular iron regulation in FA patients. METHODS: In FA patients and matched healthy controls, we assessed serum iron parameters, regulatory hormones as well as the expression of regulatory proteins and iron distribution in peripheral blood mononuclear cells (PBMCs). We applied magnetic resonance imaging with R2*-relaxometry to quantify iron storages in the liver, spleen, and pancreas. Across all evaluations, we assessed the influence of the genetic severity as expressed by the length of the shorter GAA-expansion (GAA1). RESULTS: We recruited 40 FA patients (19 women). Compared to controls, FA patients displayed lower serum iron and transferrin saturation. Serum ferritin, hepcidin, mean corpuscular hemoglobin and mean corpuscular volume in FA inversely correlated with the GAA1-repeat length, indicating iron deficiency and restricted availability for erythropoiesis with increasing genetic severity. R2*-relaxometry revealed a reduction of splenic and hepatic iron stores in FA. Liver and spleen R2* values inversely correlated with the GAA1-repeat length. FA PBMCs displayed downregulation of ferritin and upregulation of transferrin receptor and divalent metal transporter-1 mRNA, particularly in patients with >500 GAA1-repeats. In FA PBMCs, intracellular iron was not increased, but shifted toward mitochondria. CONCLUSIONS: We provide evidence for a previously unrecognized iron starvation signature at systemic and cellular levels in FA patients, which is related to the underlying genetic severity. These findings challenge the use of systemic iron lowering therapies in FA. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Ferro , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/sangue , Ataxia de Friedreich/metabolismo , Feminino , Masculino , Adulto , Ferro/metabolismo , Fígado/metabolismo , Fígado/patologia , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Adulto Jovem , Baço/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ferritinas/sangue , Ferritinas/metabolismo , Hepcidinas/genética , Hepcidinas/sangue , Hepcidinas/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA